
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 1

JAMES DEBARTOLO, JR
MARCH 30, 2004

GSEC PRACTICAL ASSIGNMENT
VERSION 1.4B

Detecting Modifications to your Servers

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

Table of Contents

ABSTRACT..3
WHY MONITOR YOUR SYSTEMS? ...3
THE TOOLS USED ..4
WHAT IS WMI?..5
WHAT WE WILL AUDIT AND WHY? ...5
THE SCRIPT ..6
HOW THE SCRIPT WORKS ...9
RUNNING THE SCRIPT ..16
WMI AND SECURITY ..16
SUMMARY ...17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

Abstract

Monitoring servers is time consuming task. One way to reduce the load is to
automate as much of the process as possible. There are many tasks that can be
automated including, but not limited to virus definition updating, scanning for
vulnerable systems, auditing event logs, and scanning for changes. This paper
will document how you can use scripting to automate scanning systems for
changes to processes, services, and monitoring event logs for errors and logon
failures. The script discussed in this paper is designed for Windows operating
systems. In order to scan systems and collect information the script will use
Windows Management Instrumentation (WMI). WMI is Microsoft’s initiative to
managing systems and will be explained in more detail later in this paper. After
reading this paper you will be on your way to automating the monitoring of your
servers.

Why monitor your systems?

In today’s world, people’s use of the Internet continues to grow. The quantity of
people online has leveled off, but what they do has continued to increase.
Activity includes e-mail, research for work, purchasing, banking… At the same
time the amount of malware of various types continues to grow. Workers will
continue to use the Internet to do their job and other online activities. That
means security professionals will need to continue to defend their systems.
Many times this is difficult with the number of servers and workstations
administrators and security professionals need to protect.

The amount of W32 viruses and worms documented has gone up dramatically in
every 6 month reporting period since 2001. At the same time the time delay from
vulnerability discovery to outbreak has gone down. So not only do we have more
attacks to protect our network from we have less time to mitigate the
vulnerabilities. Once servers are deployed the services and processes should
remain relatively constant. Anti-virus services should remain running to keep
your system protected, and new services or processes should not appear unless
the system has been reconfigured to add a new capability. A new service or
process could indicate the presence of a backdoor or some other malware. This
change could also indicate that a new application is running. In either case a
new vulnerability could be present on the system. One can argue that having
virus protection, firewalls, and intrusion detection systems are enough protection.
These systems generally detect known attack methods and will not detect new
ones until signature files are updated. It is always good to practice defense in-
depth. This helps protect your network in case one of your defenses fails. Also
for those with limited funds the defense method in this paper is available on
current Microsoft server products without any additional expense.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

The Tools Used

The script described in this paper will use Windows Scripting Host (WSH),
Microsoft® Visual Basic® Scripting Edition (VBScript), and Microsoft’s Windows
Management Instrumentation (WMI). WSH is the controller of Windows based
script engines. It would be comparable to the MS-DOS command language and
batch files. There are 2 versions of WSH Wscript.exe and Cscript.exe.
Wscript.exe is the Windows-based version and Cscript.exe is the command-
prompt-based version. VBScript is one of the scripting languages supported by
WSH. WMI is the piece that allows us to manage and monitor Windows systems
locally and remotely. It is a powerful component of VBScript technology. An
explanation of what WMI is and the benefits of WMI provided by Microsoft are:

Windows Management Instrumentation (WMI) makes
managing Windows-based computers much more
convenient than it has been in the past. WMI provides you
with a consistent way to access comprehensive system
management information and was designed, from the
beginning, to work across networks. For system
administrators managing Windows-based computers,
understanding WMI is as important and useful as
understanding the Active Directory® directory service.1

So as you can see Microsoft considers WMI to be very beneficial for
management of Windows-based computers. WMI is very powerful and the
scripts in this paper just take advantage of a small portion of WMI’s capabilities.
Many books on these subjects are also available at your favorite bookstore.
Learning what you can do with WMI and scripts does take time, but the benefits
can be huge. Microsoft does provide some help with their TechNet Scripting
center and VBScript documentation online. The URLs for both of these are
provided at the end of this paper. Some of the examples from the TechNet
Scripting center were usefully in creating the script described in this paper. You
can manage users accounts, services, query processes, map drives, monitor
event logs, … The script I will present in this paper will focus on monitoring
services, processes, finding errors in the event log, and extracting failed logons
from the security logs.

1 http://www.microsoft.com/resources/documentation/windows/2000/server/scriptguide/en-
us/sas_wmi_dieu.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

What is WMI?

OK we now know WMI is important and it can help us but what is it. WMI was
originally release in 1998 with Windows NT Service Pack 4. It was an add-on
component. WMI is now included with Windows 2000, Windows XP, and
Windows 2003. A download is also available for Windows 95 and Windows 98.
Prior to WMI the method to manage servers in your enterprise was through the
graphical tools provided by Microsoft and other third party tools. Your other
option was programmatically using Win32 APIs. This did not give administrators
many options to automate management of servers. WMI solves this problem by
exposing most Windows resources. Administrators now have a framework that
exposes these resources and can use scripts to manage windows servers and
workstations. As long as you have administrative rights to a windows system you
can retrieve information such as free disk space, running services, event log
entries, installed memory, and many other system resources. Many of these
resources can also be managed. Other scripting and programming languages
supporting COM automation can also access resources through WMI. Other
management applications are also able to interface with WMI including third party
applications. WMI is Microsoft’s implementation of Web-Based Enterprise
Management (WBEM). “WBEM is a set of management and Internet standard
technologies developed to unify the management of enterprise computing
environments.”2

What about SNMP. SNMP is Simple Network Management Protocol. As the
name implies SNMP is a protocol and is simple. SNMP was originally developed
to manage routers and other network related equipment. SNMP made its debut
in 1988 when routers and other network equipment were less powerful than the
devices of today. In 1988 these devices usually did not require nor could they
handle a complex management protocol, so SNMP was a perfect fit. SNMP’s
simple nature and close tie to its protocol make it more difficult for it to work in
today’s complex network. WBEM on the other hand is an initiative and is not tied
to a protocol. If in the future a different network protocol is introduced a
specification for WBEM transmitted over this protocol can be introduced. This is
a flexibility SNMP does not have. Microsoft has provided a SNMP provider so
that SNMP devices can be managed using WMI.

What we will audit and why?

As system administrators concerned about security we need to know what is
going on with the servers we manage. Any changes need to be noted and we

2 http://www.dmtf.org/standards/wbem

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

need to determine what caused the change. We also need to determine what
the effect on the server and network will be. One area to look for changes is in
processes and services that are running. New processes or services could
indicate the presence of malware. Services or processes no longer running
could indicate a security issue. Would your security concerns increase if your
anti-virus was no longer running? If your Host Base Intrusion Detection system
quit running would you be concerned? New processes or services could indicate
a new application has been added to a server. This could add new vulnerabilities
to a server. Would you be concerned if someone added IIS server to your
Window 2003 based file server? Errors in the application or system event logs
could also be a cause for concern. Do you suddenly have an application logging
errors in the event log. Could these errors indicate an availability issue with a
network application? Do you have failed logons coming from a remote system?
This could indicate a hacker attempting to gain access. It could also indicate an
infected machine looking for other machines on the network to infect. Perhaps a
machine that ran disconnected from the network is now on the network. In the
past since this machine was not connected to the network the administrator may
have determined there was no need to install anti -virus software. When the
machine is connected to the network if anti-virus software is not installed the
machine may become infected. This machine does not need to be local it could
be at a remote site on your WAN or on a partner site over an extranet. You may
not have control over this machine, but should be concerned because it could
attempt to infect the PCs and servers under your responsibility.

One of the first tasks you will need to do is determine a baseline for each
machine you will audit. Establishing a baseline will also help you determine what
is running on a machine and how it should be configured. Do you need IIS on a
file server? To limit the vulnerabilities on a machine you should only run the
services required so the machine can do its job. Similar to the principle of least
privilege when assigning rights to users servers should only run the programs
necessary for them to function as intended. This might be the most time
consuming step, but it is important to be thorough. Good documentation is
necessary so that what is normal or authorized for each server is known and you
have something to compare to the current state. The script discussed in the
paper will help you set up your baseline files. The first time the script is run you
can use the output files for each server to set up baseline files. This will be
discussed later on in this paper. You still need to take this extra step; the script
will just help you with documenting your servers and getting the files in the
correct format.

The script

Before you start working on the script you will need to setup your directory
structure to work with the script, log files, baseline files, and list of servers to
audit. Following is the structure I use.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

• UNCPath\Scripts\audit
• UNCPath\Logs\ServerAudit

Based on the number and type of servers managed it may make sense to
structure the directories differently. I have kept it fairly simple by having just two
directories one for the script and one for any reports or logs. I do have the
directory structure set up so that I can divide my scripts into multiple categories
and do the same for my logs. I can create user management scripts and put
them in a different Script subdirectory.

The script uses several input files. The first is a list of servers to audit. The rest
of the input files are baseline files for each server represented in the list of
servers to audit. The file names and path are as follows:

• UNCPath\Scripts\audit\ServerList.txt
• UNCPath\Logs\ServerAudit\baseline_servernameProcess.tsv
• UNCPath\Logs\ServerAudit\baseline_servernameServices.tsv

The serverlist.txt file contains server IP addresses and names separated by tabs
similar to a hosts file. An example is provided in Figure 1.

10.1.1.3 ServerA
10.1.1.4 ServerB
10.1.1.5 ServerC

Figure 1 A sample ServcerList.txt file

The baseline_servernameProcess.tsv and baseline_servernameServices.tsv list
the authorized processes and services for servername. The servername portion
of these file names represent the name of the server in the ServerList.txt file.
When the script runs the baseline files are used to compare against the current
state. For example baseline_ServerAProcess.tsv would be the required input file
when the script audits ServerA. In the rest of the paper I will use the text
servername with the understanding it represents the name of the server audited.
A few lines from baseline_servername.Process.tsv are in Figure 2 and a few
lines from baseline_servername.Services.tsv are in Figure 3.

C:\WINNT\System32\smss.exe
C:\WINNT\system32\csrss.exe
C:\WINNT\system32\winlogon.exe
C:\WINNT\system32\services.exe
C:\WINNT\system32\lsass.exe

Figure 2 A few lines from a baseline file for running processes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

C:\WINNT\System32\services.exe Auto LocalSystem Running
C:\WINNT\system32\CIMNtfy\CIMNtfy.EXE Auto LocalSystem Running
C:\WINNT\System32\cisvc.exe Manual LocalSystem Stopped
C:\WINNT\system32\clipsrv.exe Manual LocalSystem Stopped
C:\WINNT\System32\services.exe Auto LocalSystem Running
C:\WINNT\System32\services.exe Auto LocalSystem Running
C:\WINNT\System32\llssrv.exe Manual LocalSystem Stopped
C:\WINNT\System32\services.exe Auto LocalSystem Running

Figure 3 A few lines from baseline file for services configuration.

As you can tell from Figure 2 a baseline_servernameProcess.tsv would list all of
the processes that were running when the baseline for servername was
established. These should be all of the processes that are authorized to run on
the server. In a similar fashion a baseline_servernameServices.tsv would list the
startup state and current state of all services when the baseline on servername
was established. These are the authorized services on servername. The
baseline files are the ones you will want to compare the current list of processes
and services to each time the script runs. Special care will need to be taken to
make sure there are no unauthorized modifications to the baseline files. If
someone had access to the baseline files, modifications could be made that
would hide or mask malicious changes to a server. The files generated when the
script runs, are:

• UNCPath\Logs\ServerAudit\servernameProcess.tsv
• UNCPath\Logs\ServerAudit\servernameServices.tsv
• UNCPath\Logs\ServerAudit\Changes.log
• UNCPath\Logs\ServerAudit\ErrorReport.log
• UNCPath\Logs\ServerAudit\EventErrors.log
• UNCPath\Logs\ServerAudit\SecurityFailures.log

ServernameProcess.tsv contains the list of Processes that were running when
the script ran. ServernameServices.tsv contains the list of services and their
startup state and current state when the script ran. For each server that is
audited there is a set of files where servername is the name of the server in the
server list file. These are the files compared to the baseline files for the
respective server. Any differences are then logged in the changes.log file that
can be used for a quick inspection for any discrepancies. If no baseline file
exists when the script runs an error will be logged in ErrorReport.log and the
script will continue processing. You can then use the newly created
servernameProcess.tsv and servernameServices.tsv to establish baseline files.
All running processes will need to be authorized. In a similar fashion the current
state and startup state of any service will need to be authorized. Once

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

authorized, you only need to change the name of the files by inserting ‘baseline_’
before the current name of the file.

How the script works

I will discuss key subroutines of the script in the following sections. At the end of
the paper the script will be included in its entirety in Listing 1. The first subroutine
I will discuss is CheckProcesses

Line numbers were added to the code for clarity. In lines 1 – 2 we connect to the
server represented by strComputerIP and open the WMI namespace
(\root\cimv2). Next in lines 3 – 4 we select from the CIM Class, Win32_Process,
all processes running on the system. Once we have the list of processes, we
write them to file for later comparison in lines 5 – 7. In lines 9 – 10 we set the
string strServerLog to the name and path of the file just created. Since the
established naming convention for a baseline file is baseline pre-pended to the
file name we now know the name of the baseline file. This is done in lines 11 –
12. Now we can call subroutine CheckFiles with the names of the current file
and the baseline file. The result of this subroutine is a list of changes between
the current file and the baseline. How this subroutine works will be explained
later. Sample data from CheckProcesses subroutine would look like the data in
Figure 4.

sub CheckProcesses()

1 Set objWMIProcess = GetObject("winmgmts:" _
2 & "{impersonationLevel=impersonate}!\\" & strComputerIP & "\root\cimv2")
3 Set colProcess = objWMIProcess.ExecQuery _
4 ("Select * from Win32_Process where ExecutablePath <> null")
5 For Each objProcess in colProcess
6 objTextFile.WriteLine objProcess.ExecutablePath
7 Next
8 objTextFile.Close
9 strServerLog = "c:\Project\Logs\ServerAudit\" _
10 & strComputerName & "Process.tsv"
11 strServerBaseline = "c:\Project\Logs\ServerAudit\BaseLine_" _
12 & strComputerName & "Process.tsv"
13 objTextFileChanges.Writeline "Checking for processes for changes."
14 call CheckFiles(strServerLog, strServerBaseline)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

C:\WINDOWS\System32\smss.exe
C:\WINDOWS\system32\winlogon.exe
C:\WINDOWS\system32\services.exe
C:\WINDOWS\system32\lsass.exe
C:\WINDOWS\system32\svchost.exe

Figure 4 Some sample output from CheckProcesses subroutine

A word of caution on checking processes. On systems that support multiple
users logging on such as Windows Terminal Server it would not be a good idea
to run this check. On these systems since they support remote logons from
many users they would most likely have different process running based on what
the users are doing when they logon. It may also not be a good idea to run this
check on servers that start and stop processes on a frequent basis. You would
not be able to set a reliable baseline under either of these conditions.

Subroutine CheckServices works nearly identical to CheckProcesses. In lines 1
– 2 we connect to the server represented by strComputerIP and open the WMI
namespace (\root\cimv2). Next in lines 3 – 4 we select from the CIM Class,
Win32_Services, all services configured on the system. For each item in the
selection we write the path to the service, startup mode, startup name or account
name under which the service runs, and current state information to a text file in
lines 5 – 10 for later comparison. Then we set variables to represent the paths to

sub CheckServices()

1 Set objWMIService = GetObject("winmgmts:" _
2 & "{impersonationLevel=impersonate}!\\" & strComputerIP & "\root\cimv2")
3 Set colService = objWMIService.ExecQuery _
4 ("Select * from Win32_Service")
5 For Each objService in colService
6 objTextFile.WriteLine objService.PathName & vbtab & _
7 objService.StartMode & vbtab & _
8 objService.StartName & vbtab & _
9 objService.State
10 Next
11 objTextFile.Close
12
13 strServerLog = "c:\Project\Logs\ServerAudit\" & strComputerName _
14 & "Service.tsv"
15 strServerBaseline = "c:\Project\Logs\ServerAudit\Baseline_" _
16 & strComputerName & "Service.tsv"
17 objTextFileChanges.Writeline "Checking for services for changes."
18 call CheckFiles(strServerLog, strServerBaseline)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11

the baseline file and the current file and call CheckFiles in lines 13 – 18. Output
from the CheckServices subroutine would look similar to the sample data in
Figure 5 below. Looking at line 1 in more depth we see that Application Layer
Gateway Service path is “c:\ WINDOWS\System32\alg.exe”. It is set to manual
start, runs under “NT Authority\LocalServices” and is currently running. If this is
the authorized state for this service we would expect it to normally report the
same information every time we checked.

C:\WINDOWS\System32\alg.exe Manual NT AUTHORITY\LocalService
Running
C:\WINDOWS\system32\svchost.exe -k netsvcs Manual LocalSystem
Stopped
C:\WINDOWS\System32\svchost.exe -k netsvcs Auto LocalSystem
Running
Figure 5 Some sample output from the CheckServices subroutine.

Sub CheckEventLog(ComputerName) Part 1

1 Const CONVERT_TO_LOCAL_TIME = False
2
3 Set dtmStartDate = CreateObject("WbemScripting.SWbemDateTime")
4
5 DateToCheck = CDate(date -1 & " 05:30:00 AM")
6 dtmStartDate.SetVarDate DateToCheck, CONVERT_TO_LOCAL_TIME
7
8 Set objWMIEvent = GetObject("winmgmts:" _
9 & "{impersonationLevel=impersonate}!\\" & ComputerName & "\root\cimv2")
10 Set colLoggedEvents = objWMIEvent.ExecQuery ("Select * from " _
11 & "Win32_NTLogEvent Where Logfile = 'System'" _
12 & " and Type = 'Error' and TimeWritten >= '" & dtmStartDate & "'")
13 For Each objEvent in colLoggedEvents
14 objTextFileEventErrors.writeline ComputerName
15 objTextFileEventErrors.writeline "Event date: " & objEvent.TimeWritten
16 objTextFileEventErrors.writeline "Type: " & objEvent.Type
17 objTextFileEventErrors.writeline "Description: " & objEvent.Message
18 Next
19 Set objWMIEvent = GetObject("winmgmts:" _
20 & "{impersonationLevel=impersonate}!\\" & ComputerName & "\root\cimv2")
21 Set colLoggedEvents = objWMIEvent.ExecQuery ("Select * from " _
22 & "Win32_NTLogEvent Where Logfile = 'Application'" _
23 & " and Type = 'Error' and TimeWritten >= '" & dtmStartDate & "'")
24 For Each objEvent in colLoggedEvents
25 objTextFileEventErrors.writeline ComputerName
26 objTextFileEventErrors.writeline "Event date: " & objEvent.TimeWritten
27 objTextFileEventErrors.writeline "Type: " & objEvent.Type
28 objTextFileEventErrors.writeline "Description: " & objEvent.Message
29 Next

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12

In the first part of subroutine CheckEventLog the script sets the date and time, so
that events after a certain time are selected. This is done in lines 3 – 6, in the
code included here the date to check is set for 5:30 AM yesterday. The date
would need to be set according to the time the script will be run and the
frequency. If this script was run multiple times per day you would want to set the
dtmStartDate variable to the last time the script was run. This way you can
search for errors that have happened since the last time the script was run. In
lines 8 – 9 we connect to the server represented by strComputerIP and open the
WMI namespace (\root\cimv2). Next in lines 3 – 4 we select from the CIM Class,
Win32_NTLogEvent, all events meeting our criteria. This select statement filters
for events from the System EventLog with a type of error and those events that
occurred after the date and time specified in dtmStartDate. The For Next loop in
lines 13 – 18 loop s through all of the events that meet the selection criteria and
log the computer name, date and time of the event, event type, and a description
of the event. Lines 19 – 29 repeat the process just described except events are
selected from the application log. An example of output from events that meet
the criteria is in Figure 6. This error happened on February 19, 2004 at 4:57:11
AM local time. The type of event was error. The error in this event was related
to a trust relationship with another domain that was not available. My experience
so far has been that this script has been very successful in reporting errors on
the servers I manage. The errors are logged in one convenient report that is in
my inbox when I arrive at work. I then go through the report and determine what
servers need attention.

ServerA
Event date: 20040219045711.000000-300
Type: error
Description: No Windows NT Domain Controller is available for domain DomainA.
(This event is expected and can be ignored when booting with the 'No Net'
Hardware Profile.) The following error occurred:
There are currently no logon servers available to service the logon request.

Figure 6 Example log entry of an Event Log error

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13

The remaining part of subroutine CheckEventLog queries the security event log.
In the select statement in lines 4 – 6 the notable difference from the prior queries
is the type of event it selects. The query is looking for ‘audit failure’ events in the
security log. Within the For Next loop in lines 7 – 16 the script filters all of the
events that met the select criteria for those with “Logon Failure” in the description.
The resulting report from this script has been the most beneficial. It has so far
revealed several failed logon attempts that were not caused by what I expected.
Instead of human intruders there have been a couple of cases of PCs infected
with worms looking for other servers or PCs to infect. The attempts have been
made from outside my area of responsibility. This proves no matter how good
your security measures are you still have to worry about others that are
perceived to come from trusted locations such as corporate WAN, corporate
dialup/VPN, or partners connected via an extranet. We have multiple defenses
in place so these attempts to spread the worm were stopped and I was able to
report to individuals who could contact the administrators responsible for the
infected PCs. In the future should our other defenses fail it would be
advantageous to have these other situations cleaned up before that happens. It
is to our benefit to practice defense in-depth.

On Windows 2000 and earlier systems you need to keep in mind that the default
installation does not turn on auditing security events. You will need to turn this
on so that these events are logged. For logon/logoff events you will want to log
success and failure events. In the event that there are logon failures these will
be logged when the script runs. You may want to manually check the logs and
see if after a failure if there is a successful logon. This could indicate that your
system was compromised. If a hacker does penetrate your system they may

Sub CheckEventLog(ComputerName) Part 2

1 Set objWMIEvent = GetObject("winmgmts:" _
2 & "{impersonationLevel=impersonate}!\\" & ComputerName _
3 & " \root\cimv2")
4 Set colLoggedEvents = objWMIEvent.ExecQuery ("Select * from " _
5 & "Win32_NTLogEvent Where Logfile = 'Security'" _
6 & " and Type = 'audit failure' and TimeWritten >= '" & dtmStartDate & "'")
7 For Each objEvent in colLoggedEvents
8 If instr(objEvent.Message, "Logon Failure") > 0 then
9 objTextFileSecurityFailures.writeline ComputerName
10 objTextFileSecurityFailures.writeline "Event date: " _
11 & objEvent.TimeWritten
12 objTextFileSecurityFailures.writeline "Type: " & objEvent.Type
13 objTextFileSecurityFailures.writeline "Description: " _
14 & objEvent.Message
15 End If
16 Next

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14

attempt to cover their tracks by clearing the event log. This is logged as Event
517, “The Audit log was cleared”, in the security event log.

Subroutine CheckFiles takes as input two files, compares them, and reports the
differences. The two files are the baseline file and the current file. This
subroutine is called from both CheckProcesses and CheckServices. CheckFiles
does two different file checks. In the first the current log file is completely read
into strFile in line 4. The baseline file is read one line at a time until end of file in
the Do Loop in lines 5 – 12 as each line is read it is tested to see if it is contained
in the current log file. If the string is not found, the instr command in line 7
returns 0, you now have a process or service that has been removed or changed
state. An example of this is shown in Figure 7. In the second file check, lines 15
– 25 the reverse is tested. This time the complete baseline file is read in and
then the Do Loop cycles through the current log file one line at a time. If it finds
any line in the current file that it does not locate in the baseline file you now have
a process or service that has been added or the state has changed. An example

sub CheckFiles(ServerLog,ServerBaseline)

1 If objFSO.FileExists(ServerBaseline) Then
2 Set objTextFileLog = objFSO.OpenTextFile(ServerLog)
3 Set objTextFileBaseline = objFSO.OpenTextFile(ServerBaseline)
4 strFile = objTextFileLog.Readall
5 Do Until objTextFileBaseline.atEndOfStream
6 strBaseline = objTextFileBaseLine.Readline
7 If instr(StrFile, strBaseline) = 0 then
8 objTextFileChanges.Writeline strComputerName _
9 & " *** " & strBaseline _
10 & " *** baseline condition does not match current."
11 End If
12 Loop
13 objTextFileLog.Close
14 objTextFileBaseline.Close
15 Set objTextFileLog = objFSO.OpenTextFile(ServerLog)
16 Set objTextFileBaseline = objFSO.OpenTextFile(ServerBaseline)
17 strFile = objTextFileBaseline.Readall
18 Do Until objTextFileLog.atEndOfStream
19 strTextFileLog = objTextFileLog.Readline
20 If instr(StrFile, strTextFileLog) = 0 then
21 objTextFileChanges.Writeline strComputerName _
22 & " *** " & strTextFileLog _
23 & " *** current condition does not match baseline."
24 End If
25 Loop
26 objTextFileLog.Close
27 objTextFileBaseline.Close
28 Else
29 objErrorReport.writeline ServerBaseline & " does not exist."
30 End If

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15

of this is in Figure 8. At this point you would want to investigate why the process
is now running but was not when the baseline was authorized. To some degree
there is some duplication by doing both of these checks. If the only change is
that a service is now stopped instead of running, two entries will be logged in the
report. There will be one entry because the baseline does not match what is in
the current log file. The second entry will be logged because the current entry is
not contained in the baseline file. What you can do is compare the two lines and
determine what has changed. In the example in Figure 9 you will notice that the
service alg.exe has stopped.

ServerA *** C:\WINDOWS\system32\spoolsv.exe *** baseline condition does not
match current.

Figure 7 A process that was running in the baseline that is now missing.

ServerA *** C:\WINDOWS\system32\clipsrv.exe *** current condition does not
match baseline.
Figure 8 A process has been added.

ServerA *** C:\WINDOWS\System32\alg.exe Manual NT
AUTHORITY\LocalServiceRunning *** baseline condition does not match current.
ServerA *** C:\WINDOWS\System32\alg.exe Manual NT
AUTHORITY\LocalService Stopped *** current condition does not match baseline
Figure 9 Service is now stopped.

The CheckFiles subroutine does a fairly simple string comparison check that will
help catch changes to our servers monitored. Any change in the string will be
logged as a change. It could be the service or process is still running but the
path has changed to a new location. Has a worm infected a system? If the
current state of the service is stopped and the baseline condition is running will
also be logged as a change. This is the example in figure 9. Did the service
crash or has someone or something performed a denial of service? The logged
changes will help you determine what needs a closer look. This should help you
proactively administrate your servers before it becomes an availability issue for
the users of the system. You will also be able to spend less time on servers that
are running well.

One more report generated when running this script is ErrorReport.log. This
report contains errors encountered when the script is run. There are two types of
errors that might be generated when the script runs. The first type is “server
IPAddress unavailable.” IPAddress is the IP address of the system that was
unavailable when the script was executed. This error is logged if the script is
unable to ping the computer. The second type of error that you could encounter
is when baseline files for an audited system do not exist. This could indicate that
you added a new system to monitor and did not create baseline files or that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16

something has happened to your baseline files. An example of ErrorReport.log is
in Figure 10.

c:\Project\Logs\ServerAudit\BaseLine_ServerCProcess.tsv does not exist.
c:\Project\Logs\ServerAudit\Baseline_ServerCService.tsv does not exist.
server 10.3.8.6 unavailable.

Figure 10 Example ErrorReport.log.

Running the Script

The script is designed to run on a Windows 2003 Server or Windows XP
Professional. Although the script is designed to run on Windows 2003 or
Windows XP it is able to remotely audit Windows systems that support WMI.
Ideally you may want to schedule them to run using Scheduled Tasks included in
Microsoft’s operating systems or any number of third party products. The script
will need to run under an account that has administrative rights on the machines
you intend to audit. More details on security will be in the following section on
WMI Security. Another step you may consider is emailing these reports when
the script completes so that they can be reviewed.

WMI and Security

Since WMI is very powerful and can control your enterprise you need to be
concerned about security. Very similar to the way Windows NT, 2000, and 2003
maintain a list of who has access to what, WMI infrastructure maintains a list of
who has access to what namespace. You can access and set the security by
using the WMI control application. The WMI control application can be accessed
from the Start menu, select Run, enter wmimgmt.msc, right-click WMI control,
and select properties. This works for Windows 2000 and later. On Windows
95/98 and Windows NT from the Start menu, select Run, and enter wbemcntl.
Vulnerabilities in DCOM can also affect WMI. Microsoft Security Bulletins MS03-
026 and MS03-039 both dealt with buffer overflow vulnerabilities in DCOM. If
your solution to mitigate these vulnerabilities was to shutdown DCOM you may
have some problems with remote WMI queries. WMI is not the cause but is
indirectly affected by vulnerability in DCOM. There has also been at least one
worm, w32.HLLW.Cydog@mm written that attempts to use WMI to terminate
processes running on a system. A WMI vulnerability is not exploited in this case
but the power of WMI is used to further exploit the machine infected with the
worm. I have found references to a couple of tools that will attempt cracking

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17

Windows passwords using the WMI Service. A link to one of these tools,
WMICracker.exe, is provided in the list of references.

Summary

Monitoring many servers is a time consuming task if done manually and it is
bound to be skipped on days when other events take precedent. If you can
automate the task you can increase the likelihood that the task will be completed
on a regular basis. Then you can review the report and concentrate your efforts
on the issues that need to be addressed. There are some simple tasks that can
be done to monitor security breaches, configuration changes that can open up
other vulnerabilities and system or application errors that can affect the
availability of a system. The script discussed in this paper automates several
tasks that a security professional or system administrator should do on a regular
basis. After the script runs I have 4 reports ready for me to review:

• SecurityFailures.log
• EventErrors.log
• Changes.log
• ErrorReport.log

 With these reports I can determine what course is necessary to make the proper
correction. The Worldwide financial impact from major virus outbreaks has been
over $10 billion every year since 19993. The most recent outbreak of MyDoom
alone is estimated at $4 billion Worldwide. MyDoom was also the fasting
spreading worm ever released and was able to launch a successful denial-of-
service attack against www.sco.com4. To me protecting our corporate networks
is not an option but a requirement.

Not much work is needed to get this script working in your environment. I will
summarize the steps you will need to take:

1) Run the script on Windows 2003 Server or Window XP Professional.
2) Audit machines running.

a. Windows 2000 or higher.
b. Windows NT 4 SP4 or higher with the WMI add-on installed.
c. Windows 95/98 with the WMI installation package from Microsoft.

3) Setup some method of notification.
4) Run the script with administrative rights to the machines you want to audit.

Following these steps will get the script running in your environment and start
saving you some time.

3 http://www.computereconomics.com/article.cfm?id=936
4 http://www.computereconomics.com/article.cfm?id=932

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18

This script is just a start. There is more that can be done to enhance the
automating of many of our administrative tasks. You may want to increase the
frequency that the script runs to more quickly catch problems. Event Logs
should also be collected and archived. Microsoft has a script in their TechNet
Scripting Center that does the task. The link to this script is found in the list of
references. There are many other scripts in the TechNet Scripting Center that
can be used to make the life of an administrator a li ttle easier. Commercial
products are available as well that will monitor your event logs real time and
archive the events. Another aspect of auditing you may want to consider is
changes to the file system. Monitoring changes to a file system would be difficult
to accomplish on your own. A product available from Tripwire Inc. is available to
do this task. First you establish a snapshot of your system (baseline) and then
at some interval you take a new snapshot of your system and compare it to the
baseline snapshot. You would then need to setup some notification method that
is triggered when a modification is detected. The principle is the same as the
script discussed in this paper. Further details on this product are available at
www.tripwire.com.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19

Listing 1 Complete audit script

Const ForReading = 1
Const FoobjTextFileChangesrWriting = 2
Const ErrorReport = "c:\Project\Logs\ServerAudit\ErrorReport.log"
Const ServerList = "c:\Project\Scripts\Audit\serverlist.txt"
Const PingComputer = "."
strLF = chr(10)

Set fsoServerList = CreateObject("Scripting.FileSystemObject")
Set tsoServerList = fsoServerList.OpenTextFile(ServerList)
Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objErrorReport = objFSO.CreateTextFile(ErrorReport,True)
Set objTextFileChanges = objFSO.CreateTextFile("c:\Project\Logs\ServerAudit\Changes.log",
True)
Set objTextFileEventErrors =
objFSO.CreateTextFile("c:\Project\Logs\ServerAudit\EventErrors.log", True)
Set objTextFileSecurityFailures =
objFSO.CreateTextFile("c:\Project\Logs\ServerAudit\SecurityFailures.log", True)

Do Until tsoServerList.atEndOfStream
 strComputer = tsoServerList.readline
 DelimPos = Instr(strComputer, vbtab)
 strComputerIP = left(strComputer, DelimPos -1)
 strComputerName = right(strComputer, len(strComputer) - DelimPos)
 Set objWMIService = GetObject("winmgmts:\\" & PingComputer & "\root\cimv2")
 Set colComputers = objWMIService.ExecQuery _
 ("Select * from Win32_PingStatus where Address = '" & strComputerIP & "'")
 For Each objComputer in colComputers
 If objComputer.StatusCode = 0 Then
 objTextFileChanges.Writeline "Checking " & strComputerName
 Set objTextFile = objFSO.CreateTextFile("c:\Project\Logs\ServerAudit\" _
 & strComputerName & "Process.tsv", True)
 Call CheckProcesses
 Set objTextFile = objFSO.CreateTextFile("c:\Project\Logs\ServerAudit\" _
 & strComputerName & "Service.tsv", True)
 Call CheckServices
 Call CheckEventLog(strComputerName)
 objTextFileChanges.Writeline "Done checking " & strComputerName
 objTextFileChanges.Writeline
 Else
 objErrorReport.writeline "server " & strComputerIP & " unavailable."
 End If
 Next
Loop
objTextFileChanges.Close
objTextFileEventErrors.Close
objTextFileSecurityFailures.Close

wscript.quit

sub CheckProcesses()

 Set objWMIProcess = GetObject("winmgmts:" _

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 20

 & "{impersonationLevel=impersonate}!\\" & strComputerIP & "\root\cimv2")
 Set colProcess = objWMIProcess.ExecQuery _
 ("Select * from Win32_Process where ExecutablePath <> null")
 For Each objProcess in colProcess
 objTextFile.WriteLine objProcess.ExecutablePath
 Next
 objTextFile.Close
 strServerLog = "c:\Project\Logs\ServerAudit\" _
 & strComputerName & "Process.tsv"
 strServerBaseline = "c:\Project\Logs\ServerAudit\BaseLine_" _
 & strComputerName & "Process.tsv"
 objTextFileChanges.Writeline "Checking for processes for changes."
 call CheckFiles(strServerLog, strServerBaseline)
End sub

sub CheckServices()

 Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputerIP & "\root\cimv2")
 Set colService = objWMIService.ExecQuery _
 ("Select * from Win32_Service")
 For Each objService in colService
 objTextFile.WriteLine objService.PathName & vbtab & _
 objService.StartMode & vbtab & _
 objService.StartName & vbtab & _
 objService.State
 Next
 objTextFile.Close

 strServerLog = "c:\Project\Logs\ServerAudit\" & strComputerName _
 & "Service.tsv"
 strServerBaseline = "c:\Project\Logs\ServerAudit\Baseline_" _
 & strComputerName & "Service.tsv"
 objTextFileChanges.Writeline "Checking for services for changes."
 call CheckFiles(strServerLog, strServerBaseline)

End Sub

sub CheckFiles(ServerLog,ServerBaseline)

 If objFSO.FileExists(ServerBaseline) Then
 Set objTextFileLog = objFSO.OpenTextFile(ServerLog)
 Set objTextFileBaseline = objFSO.OpenTextFile(ServerBaseline)
 strFile = objTextFileLog.Readall
 Do Until objTextFileBaseline.atEndOfStream
 strBaseline = objTextFileBaseLine.Readline
 If instr(StrFile, strBaseline) = 0 then
 objTextFileChanges.Writeline strComputerName _
 & " *** " & strBaseline _
 & " *** baseline condition does not match current."
 End If
 Loop
 objTextFileLog.Close
 objTextFileBaseline.Close

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 21

 Set objTextFileLog = objFSO.OpenTextFile(ServerLog)
 Set objTextFileBaseline = objFSO.OpenTextFile(ServerBaseline)
 strFile = objTextFileBaseline.Readall
 Do Until objTextFileLog.atEndOfStream
 strTextFileLog = objTextFileLog.Readline
 If instr(StrFile, strTextFileLog) = 0 then
 objTextFileChanges.Writeline strComputerName _
 & " *** " & strTextFileLog _
 & " *** current condition does not match baseline."
 End If
 Loop
 objTextFileLog.Close
 objTextFileBaseline.Close
 Else
 objErrorReport.writeline ServerBaseline & " does not exist."
 End If
End sub

Sub CheckEventLog(ComputerName)

 Const CONVERT_TO_LOCAL_TIME = False

 Set dtmStartDate = CreateObject("WbemScripting.SWbemDateTime")

 DateToCheck = CDate(date -1 & " 05:30:00 AM")
 dtmStartDate.SetVarDate DateToCheck, CONVERT_TO_LOCAL_TIME

 Set objWMIEvent = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & ComputerName & "\root\cimv2")
 Set colLoggedEvents = objWMIEvent.ExecQuery ("Select * from " _
 & "Win32_NTLogEvent Where Logfile = 'System'" _
 & " and Type = 'Error' and TimeWritten >= '" & dtmStartDate & "'")
 For Each objEvent in colLoggedEvents
 objTextFileEventErrors.writeline ComputerName
 objTextFileEventErrors.writeline "Event date: " & objEvent.TimeWritten
 objTextFileEventErrors.writeline "Type: " & objEvent.Type
 objTextFileEventErrors.writeline "Description: " & objEvent.Message
 Next
 Set objWMIEvent = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & ComputerName & "\root\cimv2")
 Set colLoggedEvents = objWMIEvent.ExecQuery ("Select * from " _
 & "Win32_NTLogEvent Where Logfile = 'Application'" _
 & " and Type = 'Error' and TimeWritten >= '" & dtmStartDate & "'")
 For Each objEvent in colLoggedEvents
 objTextFileEventErrors.writeline ComputerName
 objTextFileEventErrors.writeline "Event date: " & objEvent.TimeWritten
 objTextFileEventErrors.writeline "Type: " & objEvent.Type
 objTextFileEventErrors.writeline "Description: " & objEvent.Message
 Next

 Set objWMIEvent = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & ComputerName _
 & " \root\cimv2")
 Set colLoggedEvents = objWMIEvent.ExecQuery ("Select * from " _

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 22

 & "Win32_NTLogEvent Where Logfile = 'Security'" _
 & " and Type = 'audit failure' and TimeWritten >= '" & dtmStartDate & "'")
 For Each objEvent in colLoggedEvents
 If instr(objEvent.Message, "Logon Failure") > 0 then
 objTextFileSecurityFailures.writeline ComputerName
 objTextFileSecurityFailures.writeline "Event date: " _
 & objEvent.TimeWritten
 objTextFileSecurityFailures.writeline "Type: " & objEvent.Type
 objTextFileSecurityFailures.writeline "Description: " _
 & objEvent.Message
 End If
 Next
End Sub

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 23

References

Cole, Gwyn. “The Future of Systems Management.”
URL: http://www.wbem.co.uk/articles/SNMPvsWBEM.pdf (28 March 2004).

Madden, Mary. “America’s Online Pursuits.” Pew Internet & American Life Project.
22 December 2003. URL:http://www.pewinternet.org/reports/toc.asp?Report=106
(29 February, 2004).

McNab, Chris. “2004, year of the Chinese hacker.” 12 January 2004.
URL: http://www.oreillynet.com/pub/wlg/4148 (29 March 2004).

“My Doom Virus Update: Fastest Spreading Virus Ever.” February 2004.
URL: http://www.computereconomics.com/article.cfm?id=932 (29 February 2004).

Sevcenco, Serghei. “W32.HLLW.Cydog@mm.” 27 February 2003.
URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.cydog@mm.
html (28 March 2004).

“Symantec Internet Security Threat Report.” Malicious Code Trends. September
2003 URL:
https://enterprisesecurity.symantec.com/Content/displaypdf.cfm?SSL=YES&EID
=0&PDFID=551&promocode=ITR (29 February 2004).

“The Cost Impact of Major Virus Attacks Since 1995.” February 2004.
URL: http://www.computereconomics.com/article.cfm?id=936 (29 February 2004).

“Using Tripwire for Servers for Damage Assessment and Remediation.” 2002
URL:
http://www.tripwire.com/files/literature/application_notes/appnote_damage_recov
ery.pdf (28 March 2004).

“Web-Based Enterprise Management (WBEM) Initiative.” 2004
URL: http://www.dmtf.org/standards/wbem (28 March 2004).

The following URLs are Copyright © 2004 Microsoft Corporation, One Microsoft
Way, Redmond, Washington

Backup and Clear Event Logs
URL:
http://www.microsoft.com/technet/community/scriptcenter/logs/scrlog04.mspx
(2 March 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 24

“Best Practices for Mitigating RPC and DCOM Vulnerabilities.”
URL: http://www.microsoft.com/technet/security/topics/virus/bpdcom.mspx
(28 March 2004).

Stemp, Greg, et al. “WMI Scripting Primer: Part 1.” 13 June 2002.
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnclinic/html/scripting06112002.asp (28 March 2004).

Maintaining WMI Security
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wmisdk/wmi/maintaining_wmi_security.asp (28 March 2004).

SNMP Provider
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wmisdk/wmi/snmp_provider.asp?frame=true (28 March 2004).

TechNet Script Center
URL: http://www.microsoft.com/technet/community/scriptcenter/default.mspx (29
February 2004).

VBScript User’s guide and Language reference
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/vtoriVBScript.asp (2 March 2004).

Windows Script Host Overview
URL:
http://www.microsoft.com/windowsxp/home/using/productdoc/en/default.asp?url=
/WINDOWSXP/home/using/productdoc/en/wsh_overview.asp (2 March 2004).

Windows Management Intrumentation Overview
URL:
http://www.microsoft.com/resources/documentation/windows/2000/server/scriptg
uide/en-us/sas_wmi_dieu.mspx (1 March 2004).

Windows Management Instrumentation Scripting
URL:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/featus
ability/wmiscrpt.mspx (29 February 2004).

Windows Management Instrumentation System Requirements
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wmisdk/wmi/system_requirements.asp?frame=true (28 March 2004).

