
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

A Look at Some of the Mathematics Behind Rijndael 
Brett Carpenter 
January 24, 2001 
 
Introduction 
As a layman, I have often been frustrated by the way in which the mechanics of ciphers 
are passed off as a black box into which plaintext is inserted and from which, with the 
help of magic, ciphertext is retrieved.  The branch of mathematics behind this magic is 
known as cryptology.  The purpose of this paper is to shed a tiny ray of light on the 
concepts at work in this field.  Specific attention will be paid to Rijndael (pronounced 
Rhine-dahl), the National Institute of Standards and Technology’s recent choice for the 
Advanced Encryption Standard (AES). 
 
I apologize in advance to any mathematicians who might happen to read this paper. 
 
Objectives 
The objectives of this paper are as follows: 
 

• To introduce, at a very high level, some of the concepts in mathematics 
underlying cryptology and the Rijndael block cipher 

• To describe the Rijndael block cipher in light of these concepts 
 
Mathematical Background 
The mathematical concepts mentioned in the following sections are taken loosely from 
the fields of algebra and analysis.  This section describes the model that the designers of 
Rijndael used to represent binary data. 
 
Fields 
A field is a set – called F, for example – along with two operations, “addition” (⊕) and 
“multiplication” (⊗).  F is closed under these operations; that is, the sum or product of 
any two elements of F is also an element of F.  A mathematician might express this 
property as follows: 
 

FbaFba ∈⊕⇒∈,  
FbaFba ∈⊗⇒∈,  

 
It is important to note that these operations need not be what we think of as standard 
addition (+) and multiplication (*); thus the use of the alternate symbols. 
 
The properties of a field include the following, among others: 
 

• Addition is commutative: abba ⊕=⊕  
• Multiplication is distributive: )()()( cabacba ⊗⊕⊗=⊕⊗  

 
The real number system, ℜ, is an example of a field. 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
GF(28) 
A finite field – that is, a field containing a finite number of elements – is used as the basis 
for Rijndael:  GF(28).  This is the Galois Field (GF) containing 28, or 256, elements.  
Note that any byte value can be mapped to exactly one element of GF(28).  A common 
representation of the elements of GF(28) is a polynomial of degree seven with 
coefficients in {0,1}.  Go with me on this one!  A byte, b, consisting of bits 
b7b6b5b4b3b2b1b0, is the mapped to GF(28) as the polynomial 
 

01
2

2
3

3
4

4
5

5
6

6
7

7 bxbxbxbxbxbxbxb +++++++ . 
 
Example 1: 
 

The byte with hex value ‘92’ (binary 01011100) is mapped to 
 

2346 xxxx +++ . 
 
 
Sounds like this might come in handy when dealing with binary data, right? 
 
Addition and Multiplication in GF(28) 
Real numbers can be added and multiplied.  All of us do this every day.  For example, 
 

2 + 2 = 4. 
 
Well, there is an analogous operation in GF(28).  The “addition” (⊕) of two elements 
results in the polynomial with coefficients that are given by the sum modulo 2. 
 
Example 2: 
 

24624565 xxxxxxxx ++=+++⊕  
 
Written in hex, we have: 
 

‘32’ ⊕ ‘D4’ = ‘98’. 
 
Or, in binary, we have: 
 

00100000 ⊕ 01110100 = 01010100. 
 

 
Thus, “addition” (⊕) in GF(28) is the standard bitwise XOR operation.  Pretty 
straightforward so far! 
 
“Multiplication” (⊗) is a little trickier.  It corresponds with multiplication of the 
polynomials modulo m(x), where 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1)( 348 ++++= xxxxxm  
 

or ‘11B’ in hex.  Well, I haven’t modulo’d a polynomial recently, but this is done to 
ensure that the product is in fact an element of GF(28), among other things.  Sounds 
reasonable, though. 
 
Example 2: 
 

xxxxxxxxxxxxxxxxxxx ++++=++++++++=++⊗++ 2347234565672334 )()()()()1(  
 

Then, calculate the previous result modulo m(x): 
 

xxxxxxxxxxxxxx ++++=++++++++ 23473482347 )1mod()( . 
 
This is equivalent to ‘25’ ⊗ ‘14’ = ‘9E’ in hex. 
 

 
Like the “addition” operation in GF(28), the “multiplication” operation satisfies the 
requisite properties of a field, as described above. 
 
Result: We now have an abstract representation of our binary data that includes 

some basic mathematical operations. 
 
Why Does Any of This Matter? 
The steps described above have resulted in the following: digital information, represented 
at the lowest logical level as bits and bytes, can be mapped to a mathematical “model” 
that has certain “nice” qualities.  In the case of Rijndael, that model is the finite field 
GF(28).  These qualities, and their implications, are then ultimately used to encipher and 
decipher the data. 
 
For example, polynomials with coefficients in GF(28) can be used to represent arrays of 
bytes or multi-byte words.  If a3, a2, a1, and a0 are elements of GF(28), then 
 

01
2

2
3

3 axaxaxa +++  
 

is used to represent a 4-byte vector, or 4-element array of bytes, or a 4-byte word.  
Imagine it as an array of arrays.  Thus, this model lends itself well to operations at both 
the byte and word level.  These byte- and word-level representations are also convenient 
for a cipher that is to be implemented on a modern computer. 
 
As another example, multiplication of polynomials with coefficients in GF(28) is done 
modulo M(x), where 
 

1)( 4 += xxM , 
 
and can be conveniently represented as a matrix operation: 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 





































=



















3

2

1

0

0123

3012

2301

1230

3

2

1

0

b
b
b
b

aaaa
aaaa
aaaa
aaaa

c
c
c
c

, 

 
where an and bn are two polynomials of degree 3 and cn is their product: 
 

an ⊗ bn = cn. 
 
Again, this lends itself well to being implemented on a computer. 
 
Finally, multiplication by the polynomial x corresponds with a bit-level shift left and an 
XOR with the hex value‘1B’.  This can also be represented as a matrix operation: 
 





































=



















3

2

1

0

3

2

1

0

00010000
00000100
00000001
01000000

b
b
b
b

c
c
c
c

 

 
where cn is the product of x and bn: 
 

x ⊗ bn = cn. 
 
The Rijndael Block Cipher 
 
Overview 
As you might expect from the background given above, the Rijndael block cipher is 
designed to use simple whole-byte operations.  Its supports independent key and block 
sizes of 128, 192, or 256 bits.  The description of the algorithm given here is for the case 
where key and block sizes are both 128 bits. 
 
The Rounds 
Rijndael is composed of an initial XOR step, nine round transformations (or rounds), and 
an additional round performed at the end with one step omitted.  The input to each round 
is called the State.  Each of the first nine rounds is in turn composed of four 
transformations: 
 
• ByteSub 
• ShiftRow 
• MixColumn 
• AddRoundKey 
 
The MixColumn transformation is omitted from the tenth round. 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
The Inputs 
Since 128 bits is 16 bytes, our State (am,n) and Cipher Key (km,n) can be represented by 
4*4 matrices.  Each column contains four consecutive bytes, so each successive row is a 
word.  The order of the bytes in the input block is preserved in this manner. 
 



















3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3.02.01.00.0

aaaa
aaaa
aaaa
aaaa

 


















3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3.02.01.00.0

kkkk
kkkk
kkkk
kkkk

 

The State The Cipher Key 
 
The initial step is to XOR the State with a Round Key.  See AddRoundKey, below. 
 
Transformation 1 - ByteSub 
In this step, the individual bytes of the input block are substituted according to values 
given in an S-Box, or Substitution Table.  The Rijndael specification includes a formula 
for creating this S-Box.  In brief, a given byte value is replaced with its reciprocal in 
GF(28), multiplied by a bitwise modulo 2 matrix, and XORed with hex ‘63’.  Some 
sample input and corresponding ByteSub values are: 
 

Input ByteSub 
‘00’ ‘99’ 
‘01’ ‘48’ 
‘20’ ‘124’ 
‘FF’ ‘22’ 

 
Transformation 2 - ShiftRow 
Next, the individual rows of the State are shifted left as follows: 
 

Row Offset 
0 0 
1 1 
2 2 
3 3 

 
Example 
 



















 →



















128416
731511
214106

13951

161284
151173
141062
13951

ShiftRow  

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Transformation 3 - MixColumn 
Next, each column of the State is multiplied by the polynomial 
 

c(x) = ‘03’x3 + ‘01’x2 + ‘01’x + ‘02’, 
 
which is equivalent to multiplication by the matrix 
 



















2113
3211
1321
1132

. 

 
Transformation 4 - AddRoundKey 
Finally, the Round Key is XORed with the State.  An Expanded Key is generated from 
the Cipher Key by a process called Key Expansion, which can be performed before or 
during the cipher process.  The result is a key whose length is 11 times the length of the 
original Cipher Key, or 1408 bits in our case.  The contents consists of the original 
Cipher Key, followed by 128-bit blocks consisting of four-byte words such that each 
word is the XOR of the preceding four-byte word and either the corresponding word in 
the previous block or a function of it.  Each Round Key is a 128-bit block of the 
Expanded Key. 
 
The Big Picture 
The steps of Rijndael are as follows: 
 
Initial AddRoundKey 
Round 1 

ByteSub 
ShiftRow 
MixColumn 
AddRoundKey 

… 
Round 9 

Byte Sub 
ShiftRow 
MixColumn 
AddRoundKey 

Round 10 
Byte Sub 
ShiftRow 
AddRoundKey 

 
The following is a nice illustration of Rijndeal round: 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Figure 1: A Rijndael Round 

 
The Inverse Cipher 
The inverse of a round is as follows: 
 

• AddRoundKey 
• InverseMixColumn 
• InverseShiftRow 
• InverseByteSub 

 
The AddRoundKey transformation is a simple XOR, and so is its own inverse.  By 
design, the other transformations are invertible, so decryption is fairly straightforward.  
This is one of those instances where the nice qualities of GF(28) come in handy! 
 
Conclusion 
The mathematics of cryptology is extremely complex and algorithm described above was 
designed to thwart the efforts of cryptanalysts, or those who attempt to break ciphers.  
For example, they introduce confusion and diffusion to foil statistical analysis.  The true 
brilliance at work here is of course beyond the scope of this paper.  It is, however, 
possible for us non-cryptologists to at least visualize what might occur to data as it passes 
through a cipher. 
 
References 
1. Baltimore Technologies. “Technical Overview of RIJNDAEL - The AES.” URL: 

http://dev.baltimore.com/aes/tech_overview.html (24 Jan. 2001). 
2. Rijmen, Vincent. “Rijndael.” 4 Dec. 2001. URL: 

http://csrc.nist.gov/encryption/aes/rijndael/ (24 Jan 2001). 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3. RSA Security. “RSA Laboratories’ Frequently Asked Questions about Today’s 
Cryptography, Version 4.1.” 2000. URL: 
http://www.rsasecurity.com/rsalabs/faq/index.html (24 Jan. 2001). 

4. Savard, John J.G. “The Advanced Encryption Standard (Rijndael).” 2000. URL: 
http://home.ecn.ab.ca/~jsavard/crypto/co040801.htm (24 Jan. 2001). 

5. Schneier, Bruce. Applied Cryptography. 2nd Edition, John Wiley & Sons, Inc, 1996. 


