
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Joe Barrett
GIAC Security Essentials Certification (GSEC) Practical Assignment
Version 1.4b, Option 1
May 29, 2004

Making Stand-Alone Java Applications More Secure

Abstract
Java has made a name for itself for its cross-platform abilities and ease of use for
network applications. Its object-oriented features and extensive application
programming interface (API) also make it well suited for stand-alone applications
which only run on a single workstation or isolated local area network. The
majority of business applications are not web-enabled. This paper explains the
structure of the Java security model, and ways this model can be used to
enhance the security of stand-alone Java applications. The Java security model
is composed of the language syntax and semantics, Java Virtual Machine and
the Java API, and additional security mechanisms used for authentication,
authorization and cryptographic services. Java developers can produce more
secure applications by having a thorough understanding of the Java language,
knowing how the Java Virtual Machine can prevent malicious code from
damaging their applications, fine-tuning application security with policy files,
using Java security mechanisms correctly, testing the application before release
and staying educated on the latest Java security bugs and patches.

1 Introduction
Java is an object-oriented programming language, developed by Sun
Microsystems and released in 1995. Java is popular in part because of its cross-
platform capabilities–a compiled Java program can be run on multiple operating
systems. Java has been used extensively in both stand-alone and web
applications. Java is also popular for client-server applications, such as
interaction with databases. New technologies, such as Web Services, also use
the Java language. Java programs are compiled into “bytecodes”, a low level
machine language. A Java Virtual Machine (JVM), which is installed either on
top of the underlying operating system or a web browser, executes a Java
program by reading the bytecodes. The language syntax and semantics
(meaning) was designed with security in mind. Also, several security
mechanisms are available for developing an even more secure application.

This paper will concentrate on giving developers some ideas and methods on
how they can make their stand-alone Java applications more secure. This
information can be extended to other types of applications. However,
applications that run over a network or access a server have a host of other
security concerns, such as network sniffing and protecting the integrity and
confidentiality of databases. Despite the popularity of network applications, the
majority of business applications is not web-enabled and could be considered
stand-alone applications (Taylor, Buege, and Layman).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Stand-alone applications run on a single workstation, which may be connected to
an isolated local area network (LAN). These applications are vulnerable from
attackers outside the organization, if the workstation has Internet access either
through a dial-up connection or dedicated line. If the workstation has a modem
(with or without Internet capabilities), it can be accessed from the outside.
Modems should have “auto-answer” turned off.

So, if a stand-alone application is mostly protected from the outside, it is safe
from attack right? Wrong! Aside from intruders that manage to hack their way
into your system, applications can be compromised by regular users, either
accidentally or on purpose. Users do not always have the best intentions in mind
while using an application. Attackers can be grouped into the following: external
attackers, deliberate internal attackers and accidental internal attackers.
External attackers include hackers and competitors. Hackers generally want to
destroy data, use the system to attack other systems, or deface public
information. This is usually done for their own personal satisfaction. Unlike
external attackers, internal attackers usually have permission to access and use
the application. Deliberate internal attackers include disgruntled, malicious or
unethical employees, contractors, or espionage specialists who have infiltrated
the organization (Taylor, Buege, and Layman). They may want to do the
following: steal or modify confidential information, reverse-engineer the
application, damage the application or run the application as another user.
Accidental internal attackers make up the largest group. This group is made up
of novice or untrained users, overworked system administrators and software
developers who release applications without the proper testing and security
controls. On these stand-alone applications, internal attacks are more common
than external attacks (Taylor, Buege, and Layman).

If network and operating system security is in place, application security is
unnecessary, right? Wrong again! Network and operating system security is
very important, but imperfect. It will not stop legitimate users or even hackers
that manage to gain access to the application’s workstation. Application security
should be part of a defense-in-depth strategy, which can include firewalls,
intrusion detection systems, virus software, and the latest security patches to
software and operating systems. Developers should consult with their
organization’s security policy, to decide what security mechanisms are necessary
and appropriate for their applications. They need to be knowledgeable of who is
going to have access to the application, what the application will be used for, how
sensitive and valuable the information is that the application generates and
stores, and how expensive it is to develop the application. This will help the
developer to estimate the risks involved with using and developing the
application; the risk is computed by multiplying the vulnerabilities, threats and
impacts together. After the risk is determined and the organization’s security
policy has been consulted, the developer can then start writing source code. Not
every Java security mechanism will be needed. For example, if users do not

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

needed to sign in/sign off an application, there is no need to use the JAAS (Java
Authentication and Authorization Service).

So how does a Java developer go about writing a secure stand-alone
application? First of all, the developer needs at least a basic understanding of
the Java security architecture. Second of all, general coding guidelines should
be followed (such as declaring a class’s methods and fields private unless
absolutely necessary). A good understanding of the Java language is a must.
Thirdly, the developer should implement any required security mechanisms (such
as access control and encryption) correctly. Before the application is released to
the users, it needs to be thoroughly tested. Finally, the developer should keep
abreast of the latest Java bulletins, which will describe the latest security-related
bugs. The JVM should be updated or patched if the correct version is a security
risk. Developers should know the version number and source (Sun
Microsystems, Microsoft, Netscape, etc.) of the JVM their system is running.

This paper will list and describe some fairly easy to implement coding guidelines
that will enhance the security of an application. Java’s security architecture will
then be explained. After that two, important Java security mechanisms will be
introduced - authentication/authorization and cryptography. At the end, the
importance of testing and logging will be emphasized.

2 General Coding Guidelines
A Safer Language
Java was designed to be “safer” than some other languages, like C and C++. So
what does it mean that a language is safer? A language is safe when it disallows
the program from misusing data types, overwriting protected memory or using
variables before they have been initialized properly. A safe language also allows
the developer to hide implementation details and control access to system
resources, such as network connections and input/output. Java is considered
safe in these regards, though it is not perfect. Java developers still need to use
the language features correctly. Java also has exception handling built in,
allowing the application to detect and handle errors easier. Use of the String
data type helps prevent buffer overflows, a major security concern.

In C, C++, and some other languages, the programmer is tasked with making
sure that data types are used properly. Casts from one type to another must be
legal. This includes both primitive data types (integer, float, etc.) and classes.
Whenever a variable or object is cast to another data type, this casting operation
is checked to make sure that it is valid. Otherwise, a ClassCastException is
thrown. This helps prevent memory from being illegally accessed and access
control mechanisms from being violated.

Numerous bugs in C and C++ programs can be traced to poor memory
management. Developers may try to delete objects from memory too early (the
program then tries to access objects that no longer exist) or too late (the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

references to the objects are no longer in scope). With complicated programs,
using multiple developers, it may be difficult to keep track of all the dynamic
memory that is allocated and must eventually be deleted. The incorrect use of
pointers and arrays in some languages can corrupt a program’s internal data or
access another process’s memory. Thankfully, Java comes with its own
automatic memory manager, known as the garbage collector. Java developers
generally do not need to worry about managing memory, since the garbage
collector occasionally deletes objects that are no longer needed or referenced.
Objects can only be accessed indirectly through references instead of pointers,
so that memory cannot be accessed directly. In Java, an out-of-bounds array
index will throw an exception, also disallowing illegal memory accesses. Invalid
array indices are a frequent source of bugs in other languages.

In C and C++, the programmer must initialize all variables or objects before they
are used, or else “garbage” values should be expected. Java objects are
guaranteed to be initialized, at least to default values. Primitive fields of a class
are always initialized when an object of the class is created, however local
variables in a class’s methods are not. If you forget to initialize a local variable
before use, the Java compiler will at least give an error. A Java array of objects
is an array of references, which are initialized to null. A Java array of primitives
is initialized by assigning the value zero to all of the elements in the array.
Despite all these built in precautions, it is still best to explicitly initialize all objects
and local variables before use. That is because default values may not be
correct or even valid for the particular program.

Like C++ and some other object-oriented languages, Java enables
implementation hiding. This means hiding details from the client programmers–
the ones using the classes. Variables (objects and primitives), methods and
classes can be declared with private, protected, public or package access levels.
Private access means access only by the containing class. Protected access is
access by the containing class, the class’s subclasses, and classes in the same
package. Public access is access by all classes. Package access is access by
classes in the same package that it is in. Related classes are often grouped
together into packages.

Java controls access to system resources in part by ensuring safe data types,
use of namespaces, and with variable, method and class access levels. Also,
whenever a system resource is requested by a method, the program checks to
make sure that the method has the proper permissions, based on the code’s
owner, origin and user.

Exception handling is built into Java. Invalid operations and security violations
can be caught and handled before they cause any damage. Some exceptions
should be masked under certain situations. When authenticating a user, an
exception may be raised when the user is not found. In this case, a more
general exception should be rethrown to indicate a general login failure. If this is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

not done, an attacker could use the exception output to determine if a user is
valid.

String objects use UTF8 for their internal representation. Every String object has
a length and a table of characters storing current information. Because of the
UTF8 format and runtime checks, String buffer overflow attacks cannot occur as
long as String operations are done at the Java language level (Last Stage of
Delirium Research Group). However, native method calls are not necessarily
safe. Also related to buffer overflows, runtime checks and the Java bytecode
verifier help to prevent Java programs from illegal stack frame accesses. String
objects are immutable, so a hacker could potentially read String objects from
memory. When storing sensitive text such as passwords and user names, it may
be best to use an array of characters (char array). That way, the array can be
overwritten when the sensitive information is no longer needed.

Much of the rest of this section, General Coding Guidelines,is taken from Sun’s
“Security Code Guidelines” document and Java World’s “Twelve Rules for
Developing More Secure Java Code” article by Gary McGraw and Edward
Felten.

Privileged Code
Normally, code cannot access system resources without the proper permissions.
Code that lacks the proper permissions yet needs access to system resources,
can be put inside a privileged block. As one can imagine, this can be a
dangerous thing if not used carefully. Privileged code should be as small as
possible and privileged blocks should only be used if security exceptions would
otherwise be thrown (Sun, Security Code Guidelines).

Public methods that use tainted variables should not wrap around privileged code
(Sun, Security Code Guidelines). A tainted variable is a variable passed in as a
parameter and not controlled by the privileged code. This might allow anyone to
use the privileged code and its associated permissions to access sensitive
system resources. Instead, make sure these methods are private. Further
information on privileged blocks is available at
http://java.sun.com/j2se/1.4.2/docs/guide/security/doprivileged.html.

Methods and Fields
All variables should be made private, except for good reason. Use “get” and “set”
methods instead, to insure data always stays in a valid state. Especially avoid
using non-final public static variables, since code can change the values without
first going through the proper permission checks (Sun, Security Code
Guidelines).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Package Access
It is possible for malicious code to gain access to a class’s fields and methods by
defining new classes of its own within the class’s package. The Security Code
Guidelines document from Sun explains how to prevent this:

1. The package can be protected from insertion of rogue classes by
adding the following line to the java.security properties file:
…
package.definition=Package#1 [,Package#2,…,Package#n]
…
This causes a class loader’s defineClass method to throw an exception
when an attempt is made to define a new class within these packages,
unless the code has been granted the following permission:
…
RuntimePermission(“defineClassInPackage.”+package)
…

2. Another way to protect against package-insertion is by putting the
package’s classes in a sealed JAR file. (see
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html)
By using this technique, no code can be granted permission to extend
the package and hence there is no need to modify the java.security
properties file.

Access to a package’s fields and methods can be restricted to only specified
code. Sun’s Security Code Guidelines document also explains how to restrict
package access:

This can be done by adding the following line to the java.security
properties file:
…
package.access=Package#1 [,Package#2,…,Package#n]
…
This causes a class loader’s loadClass method to throw an
exception when an attempt is made to access a class from these
packages, unless the code has been granted the following
permission:
…
RuntimePermission(“accessClassInPackage.”+package)
…

Initialization

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Before using an object, there is a way to verify that the constructor has initialized
the object. McGraw and Felten (1998) show how to do this:

Make all variables private. If you want to allow outside code to access
variables in an object, this should be done via get and set methods. (This
keeps outside code from accessing noninitialized variables.)…Add a new
private boolean variable, initialized, to each object. Have each constructor
set the initialized variable as its last action before returning. Have each
nonconstructor method verify that initialized is true before doing anything.
(Note that you may have to make exceptions to this rule for methods
called by your constructors. If you do this, it’s best to make the
constructors call only private methods.) If your class has a static
initializer, you will need to do the same thing at the class level.

Make classes and methods final
Classes and methods should be made final unless necessary. This prevents an
attacker from extending the code through inheritance.

Inner Classes
Do not use inner classes. Inner classes are translated by the compiler into
ordinary classes, and can be accessed by any code in the same package
(McGraw and Felten). The inner class can access the enclosing outer class’s
fields, even if they are private. The outer class’s private fields are made into
package scope, in order for the inner class to access them.

Class Names
Avoid class names in code. Unfortunately, Java forces the programmer to use
class names in variable declarations, instanceof expressions and exception-
catching blocks (McGraw and Felten, 1998). This opens the application up to
mix-and match attacks, in which the attacker either constructs a new library that
links some of your signed classes together with malicious classes, or links
together classes that were not meant to be used together. Sometimes it is
necessary to determine if two objects were created from the same class, or see if
an object is a member of a particular class. Different classes can have the same
name, so a better way is to compare class objects for equality directly. McGraw
and Felten (1998) explain how to do this:

For example, given two objects, A and B, if you want to see whether they
are the same class, use this code:

if (a.getClass() == b.getClass()) {
// objects have the same class

} else {
// objects have different classes

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

You should also be on the lookout for cases of less direct by-name
comparisons. Suppose, for example, you want to see whether an object
has the class “Foo.” Here is the wrong way to do it:

if (obj.getClass().getName().equals(“Foo”)) // Wrong!
// objects class is named Foo

} else {
// object’s class has some other name

}
Here’s a better way to do it:

if (obj.getClass() == this.getClassLoader().loadClass(“Foo”)){
// object’s class is equal to the class that this class calls “Foo”

} else {
// object’s class is not equal to the class that
// this class calls “Foo”

}

Making copies of objects
Prevent an attacker from redefining your clone method by making objects
noncloneable. An attacker can create new objects with the object cloning
mechanism, even if the constructors are not executed. An attacker can define a
subclass if the class is not cloneable, and make the subclass implement the
java.lang.Cloneable interface. McGraw and Felten (1998) show how to make
objects noncloneable and prevent an attacker from redefining the clone method:

public final void clone() throws java.lang.CloneNotSupportedException {
throw new java.lang.CloneNotSupportedException();
}

If you want your class to be cloneable, and you’ve considered the
consequences ofthat choice, then you can still protect yourself. If you’re
defining a clone method yourself, make it final. If you’re relying on a
nonfinal clone method in one of your superclasses, then define this
method:

public final void clone() throws java.lang.CloneNotSupportedException {
super.clone();
}

Serialization
When an object is in a serialized state, it is outside the control of the JVM
environment and its security (Sun, Security Code Guidelines). If an attacker can
serialize your objects or obtain your serialized objects, the attacker can read the
internal state of your objects. This includes any private fields and other objects

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

that are referenced. McGraw and Felten (1998) explain how to make objects
impossible to serialize, by declaring the writeObject method this way:

private final void writeObject (ObjectOutputStream out) throws
java.io.IOException {
throw new java.io.IOException(“Object cannot be serialized”);
}

Classes should also be made nondeserializeable, to prevent an attacker from
creating a sequence of bytes that can deserialize to an instance of the class.
You then have no control over what state the deserialized object is in. McGraw
and Felten (1998) explain that you can make it impossible to deserialize a byte
stream into an instance of a class by declaring the readObject method like this:

private final void readObject (ObjectInputStream in) throws
java.io.IOException {
throw new java.io.IOException (“Class cannot be deserialized”);
}

If you must use the Serializable interface, use the transient keyword for fields that
contain direct handles to system resources and contain information relative to an
address space (Sun, Security Code Guidelines). This prevents others from
saving or restoring the fields. In order to guarantee that a deserialized object has
a valid state, a class can define its own deserializing method and use the
ObjectInputValidation interface. Classes that define their own serializing method
should not pass an internal array to any DataInput/DataOutput method that takes
an array as a parameter (Sun, Security Code Guidelines). An attacker could
then subclass ObjectOutputStream and overwrite the write (byte [] b) method.
This would let the attacker access and modify the private array (Sun, Security
Code Guidelines). Alternatively, the bytestream produced by the serialization
package can be encrypted to prevent another from reading a serialized object’s
private state.

Signing Code
Avoid signing code, because this will give the code special privileges. Put signed
code into one archive file. This will help prevent an attacker from carrying out a
mix-and-match attack (McGraw and Felten, 1998).

Reverse engineering code and code obfuscation
Attackers may be interested in either obtaining original source code or reverse
engineering bytecode, to obtain secret information inside the source code (such
as passwords or keys) or better understand how the application works (to make it
easier to attack). Source code may be proprietary or contain proprietary
technology, so a competitor may be interested in viewing it. Tools are available
for free that can decompile Java bytecode into a readable format. One such tool
is JODE, available at http://jode.sourceforge.net. Code obfuscation, modifying

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

source code to make it more difficult to read, will help but not prevent
decompilation. Code obfuscators can do the following: rename variables to
cryptic values, rename and repackage class files and make slight modifications in
program flow (Taylor, Buege, and Layman).

To really prevent an attacker from decompiling classes they must be encrypted,
then decrypted right before they are used. The JVM must be able to read the
class files, so in order to do this, one must write a custom class loader by
following these steps:

1. Write a program to encode a class file.
2. Extend the URLClassLoader class and override the findClass method.
3. Write a driver program that will load a particular class.

For most applications this is overkill, but Taylor, Buege, and Layman explain how
to do it.

Applications can be run with debugging information. This helps the user in case
of problems, but also helps an attacker understand the inner workings of an
application. Debugging should be turned off when releasing an application to the
users. Debugging information can be turned off the Java compiler, javac, this
way:
javac–g:none Program.java, where Program is the name of the application.

3 Java Security Architecture
The Java security model has evolved and improved over the years. The first
release of the Java Development Kit, JDK 1.0, featured the “sandbox” security
model. Mobile code, such as applets, was given severely restricted access to a
system’s resources. Local applications were given unlimited access. This
obviously limited flexibility in enforcing a system’s security policy. Security in
JDK 1.1 was a slight improvement. An applet could now be signed, giving it
unlimited access like a local application, assuming that the signed applet was
trusted. Unsigned applets stayed in the sandbox. Before JDK 2, security for
applications could be fine-tuned only with substantial programming, by
subclassing and customizing the SecurityManager and ClassLoader classes.
With JDK 2, the security model is much improved, making it easier to provide
fine-grained security. Local applications run unrestricted by default, but can be
limited if necessary.

The Java security model can be thought of as composed of four layers, as stated
by Herholtz:

Layer 1–Java Programming Language (ensures semantics/syntax,
memory access protections, strong typing (safety) e.g. no forged pointers,
buffer overflow, memory leakage. Segregates name-spaces (memory) of
local and network obtained resources.)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Layer 2–Java Virtual Machine (JVM) normally resident on a Client’s Web
browser (ensures typed memory access, byte-code verifier, memory
garbage cleansing/reallocation).
Layer 3–Libraries/ClassLoader(s). Three types with 2 basic functions:
Internal, Class Loader Objects (applet, RMI, Secure) Roll your own
classes (access to files and network resources–implements network
classes/objects, methods/functions, disallows unauthorized access, maps
names to class objects, invokes security for necessary classes) 1)
Instantiates bytecode as classes. 2) Manages namespace
Layer 4–Security Manager/Runtime environment (defines and
implements security policy, centralizes access control). Configurable
portion of model, client or platform independent (discretionary access
control). Layer 4 must be specifically SA configured to invoke security
resident of bottom three layers. Layer 4 allows tailoring of the Java
Security Model to specific security policies.

The layers of the Java Security Model do not support each other; they are more
like links in a chain (Herholtz). When one link is broken, security is violated.

The Java Security Architecture is not perfect, and has been criticized for lacking
a formal proof of its correctness and evolving nature, among other things.
Herholtz criticizes the Java model on these grounds:

1. Language and Bytecode Flaws–Use of data types in Java cannot be
proven correct, leading to occasional bugs in class verification.

2. Strength of mechanism–The Security Manager is not adequately
protected by safe typing, is not always invoked, cannot be verified and is
not tamperproof.

3. Simplicity of mechanism–Method call stacks can be traversed by multiple
threads of execution with different levels of trust, and byte code can
traverse through the Java security model in at least three ways.

4. Complete Mediation–Native code called by untrusted code have
circumvented security mechanisms.

5. Auditing–Recording and logging is not automatically done when an
exception is thrown or when a security breach occurs.

6. Verification–There is no verification of the Java security model or policy.
The security model lacks a formal definition and specification.

7. Ease of use–Proper configuration and management of fine-grained
security controls is not easy.

8. Tamper resistance–Flaws in the language have allowed tampering to
occur in the past, and the flexible nature of the security mechanisms may
inadvertently allow attackers to tamper with the JVM.

9. Ambiguity–There is a lack of security system requirements.

So, what should this mean to the Java developer? A few of these criticisms
seem mostly theoretical, in this author’s opinion. They do emphasize the
following: a sound understanding of the Java language, its security model and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mechanisms is necessary, there is a learning curve to understanding and
implementing Java security properly, developers need to know about the latest
bugs and successful attacks against Java applications, logging should be used to
know who is using the application and what they are doing with it, and finally
security is unfortunately not perfect.

Java security will now be described in general terms. Some features of the
security model will then be explained in more detail. Java security starts with the
bytecode verifier, which examines all untrusted bytecode before it is run through
the JVM. It makes sure that the class files are in the correct format and conform
to the standards of the Java programming language. The Class Loaders do
further checks, to make sure that malicious or damaging classes are not loaded
into the JVM. The Security Manager and the Access Controller work together, to
make sure that code does not access resources without the proper permissions.
Classes are grouped together into protection domains, which have similar
permissions. The system domain is given special privileges and includes system
code and classes in the CLASSPATH (where local code resides). One or more
policy files contain a list of “grant” entries. A grant entry contains an optional list
of signers, an optional codebase (source of the code), an optional list of principal
(user) class name/principal name pairs, and one or more permissions followed by
a target and action. The signers’ values are actually aliases for certificates
containing public keys, corresponding to private keys used to sign the
certificates. The subject that signed the code may not be the same as the author
or distributor of the code. The signer just vouches for the code. In addition, Java
includes several security mechanisms (JCE - Java Cryptography Extension,
JAAS) and tools (keytool, jarsigner, Policy Tool, etc.). Running code is allowed
to access certain system resources based on its class, origin, signer and user.

From McGraw and Felten (1999, Chapter 2, section 6), class files contain the
following:

 The magic constant (0xCAFEBABE)
 Major and minor version information
 The constant pool (a heterogeneous array composed of five primitive

types)
 Information about the class (name, superclass, etc.)
 Information about interfaces
 Information about the fields and methods in the class
 Debugging information

The bytecode verifier attempts to prove that code is in the right format before it is
run in the JVM. It is only run for untrusted classes. The class file that is about to
be loaded is checked for correct length, magic number (0xCAFEBABE) and
format. The verifier ensures that private, protected, public, and package access
to classes, methods, and variables is respected. If there is a problem in a class,
it is not loaded into the JVM. It performs four passes when checking a class.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The first pass makes sure that the class file format is correct and can be parsed.
During the second and third passes, code is checked to see that it conforms to
Java programming rules of syntax and semantics. During the fourth pass,
symbolic references are resolved into direct references; this pass occurs during
runtime.

Class loading in Java follows a hierarchical structure. At the root is the
primordial, or system class loader. Class loaders are loaded by other class
loaders, except for the primordial class loader. The primordial class loader will
load the classes required for all Java programs. A child class loader delegates
the task of loading a specific class to its parent. If the parent cannot load a class
then it allows the child to. This helps prevents class spoofing attacks. Before a
class is loaded, a cache is checked to see if the class has already been loaded.
The Security Manager also checks to see whether a class is allowed to run. The
creation of class loaders is severely limited; special permission is needed by the
Security Manager to create a class loader. Class loading is usually done right
before the class is needed in the running program. Class Loaders are
responsible for namespaces, so that identical identifiers can exist without
interference.

The Security Manager (java.lang.SecurityManager class) works with the Access
Controller, and is called to determine whether code can access resources such
as files or network connections. The Security Manager calls “check” methods to
determine access permissions. For example, a call to the checkRead method
will determine whether a file can be read. Anytime a potential dangerous
operation is about to be performed, a check is made. If the check fails, a security
exception is thrown and the method is not called. The Security Manager is not
automatically installed in an application; it can be listed as a command line
option. Decisions on access to resources use the security policy in effect, which
is based on the contents of the policy file(s) and privileged blocks.

A protection domain is composed of a set of principals (users) and types of
permissions. A group of classes is mapped into a protection domain; the
mapping occurs before the classes are used and cannot be changed.
Exceptions are thrown when a class in a protection domain tries to access a
resource it does not have permission to use. A protection domain is associated
with a codesource. Classes with the same codesource and signers are placed
into the same protection domain. A system protection domain type controls
access to system resources, while an application protection domain type controls
access to portions of an application. Code that is part of the Java API is trusted,
and given all permissions. If a Security Manager is loaded with an application,
the application has no permissions to resources other than those granted in the
security policy.

Security policy is set by the security policy file(s) in effect. The policy file
(sometimes called the policy configuration file) contains entries that grant

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

permissions to protection domains. This file plays a large part in securing an
application. The JVM finds the policy files from the security properties file. Three
security policy files can be used–the systemwide policy file, the user policy file
in the user’s home directory, and any application policy file that the application
chooses to load. To specify an additional or different policy file when starting up
an application, use the “–Djava.security.policy” command line argument. This set
the value of the java.security.policy property. Here is the format: “java -
Djava.security.manager -Djava.security.policy=someURL SomeApp”. The
system policy file grants system wide code permissions. It grants all permissions
to standard extensions, lets anyone listen on unprivileged ports, and allows any
code to read standard properties that are not security sensitive (Sun’s Default
Policy Implementation and Policy File Syntax). Access to the policy files should
be limited. Policy files can be edited by a text editor or created using the Policy
Tool, which implements a graphical user interface. It is possible to prevent
system properties from being set on the command line. This prevents attackers
from loading their own security policy file.

Even though there are a number of Permission classes built into the Java SDK,
additional Permission classes can be created. To see a description of the built in
Permission classes, along with their security risks, go to
http://java.sun.com/j2se/1.4.2/docs/guide/security/permissions.html. This
document also lists methods in the Java SDK that require permissions.

From Sun’s Default Policy Implementation and Policy File Syntax, the syntax for
grant entries in a policy file is as follows:

grant signedBy “signer_names”, codebase “URL”,
principal principal_class_name “principal_name”,
principal principal_class_name “principal_name”,
… {

permission permission_class_name “target_name”, “action”,
signedBy “signer_names”;

permission permission_class_name “target_name”, “action”,
signedBy “signer_namees”;

…
};

Refer to this document for more detail on policy files and several policy file
examples.

4 Brief Overview of JAAS and JCE
In J2SE 1.3, JAAS and JEC were optional packages. In J2SE 1.4, these are part
of the core security structure. JAAS and JCE are “pluggable” in that the
underlying security implementation and algorithms are kept separate from the
Java code that serves as an interface. Security implementations can be changed
without changing Java code.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The JAAS API does not replace any of the Java security, but provides additional
functionality. Authentication is the process of determining that a subject is who
they say they are. Authorization determines whether a request from an
authenticated user is allowed. After a subject is authenticated, a
javax.security.auth.Subject object is populated with its associated identities, or
Principals. Subjects can obtain public or private credentials, which are security-
related attributes. Any object can represent a credential. Sensitive credentials,
such as private keys, are stored within a private credential set. Credentials that
are shared, such as public keys, are stored within a public credential set.

The LoginModule class validates a user and assigns principals to the subject.
The CallbackHandler class communicates with the user to valid the user’s
identity. The Subject class is the target of the login process. The Principal class
is an entity that is granted access rights.

Authentication can be performed several ways, but the following steps are
necessary according to Sun’s JAAS Reference Guide:

1. An application instantiates a LoginContext.
2. The LoginContext consults a Configuration to load all of the LoginModules

configured for that application.
3. The application invokes the LoginContext's login method.
4. The login method invokes all of the loaded LoginModules. Each

LoginModule attempts to authenticate the subject. Upon success,
LoginModules associate relevant Principals and credentials with a Subject
object that represents the subject being authenticated.

5. The LoginContext returns the authentication status to the application.
6. If authentication succeeded, the application retrieves the Subject from the

LoginContext.

According to Taylor, Buege, and Layman (pg38), the following steps are needed
for JAAS authorization:

1. Create appropriate security policy file entries.
2. Create a custom Permission class, a subclass of the

java.security.Permission class.
3. Create a custom action class, an implementation of

java.security.PrivilegedAction.
4. Execute the static Subject doAsPrivileged method, passing the Subject

instance containing the principals required and the custom
PrivilegedAction, along with an optional AccessControlContext.

5. Within the body of the PrivilegedAction run method, access the
SecurityManager and call the checkPermission method using the
custom Permission class.

CES uses a “provider”-based architecture. It can be used for
encryption/decryption, ensuring the integrity of messages, and nonrepudiation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(proving that the sender is the one who sent the message). The provider refers
to a package that implements one or more cryptographic services. These
include key generation, digital signatures and message digests. Symmetric,
asymmetric, block and stream ciphers can be used for encryption/decryption.
The default provider is SUN, from Sun Microsystems. Their package has several
implementations, including the following: the Digital Signature Algorithm (DSA),
MD5 and SHA-1 message digest algorithms, the SHA1PRNG pseudorandom
number generation algorithm, and X.509 certificate generation.

The JCE API uses the factory design pattern to create objects, in which a
constructor is not used. Instead, a getInstance method is called to return a
reference to the object. A cipher object is set to one of four modes:
ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE (wraps a key into bytes
for transportation), and UNWRAP mode (unwraps a previously wrapped key).

5 Testing Programs
For an application to be secure, it must also be reliable. The application’s input,
output, internal data, and computations should be correct. How much the
application needs to be tested depends on its value, complexity, and security
concerns. Several methods of testing exist, include unit testing and manual
testing by testing specialists. JUnit is a unit testing software program available
for Java, available at http://junit.org. One of the most common causes of
software bugs is improper input validation. Applications should be able to error
check and handle the following bad input: incorrect data types (for example, you
expect an integer and the user gives you a floating point number), out of range
numbers (too large or too small), input that is too long or short, null values and
characters that have special meanings for the operating system or underlying
programming language.

After the application has been released to the users, logging can be useful for
both application errors and security violations. The extensive Java Logging API
is available for just these purposes. It can direct log messages to files, database,
network sockets, and the console. It is possible to have separate Logging
objects for applications and security, or separate Logging objects for each class.
Different levels can be set for logging objects based on their importance, ranging
from finest to severe.

Taylor, Buege, and Layman (pg117) recommend logging the following events:

- Successful and unsuccessful login attempts
- Logouts and application shutdowns
- Successfully accessing sensitive functionality
- Unsuccessfully attempting to access any functionality
- Severe application exceptions that could affect the integrity of application

data or functionality

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It is recommended, but often not followed, that tests should be written before
executable code is written. This can improve the design of the software.
Testing, or at least automated testing, should be done whenever code is
updated.

References
Sun Microsystems documents:

1. Java Security Architecture, 1999,
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-
specTOC.fm.html

2. Summary of Tools for the Java 2 Platform Security, October 14, 2002,
http://java.sun.com/j2se/1.4.2/docs/guide/security/SecurityToolsSummary.html

3. API for Privileged Blocks, April 30, 2001,
http://java.sun.com/j2se/1.4.2/docs/guide/security/doprivileged.html

4. JAAS Reference Guide, August 8, 2001
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html

5. JAAS Authorization Tutorial,
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnAndA
zn.html

6. JAAS Authentication Tutorial,
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnOnly.
html

7. Security Code Guidelines, February 2, 2000
http://java.sun.com/security/seccodeguide.html

8. Default Policy Implementation and Policy File Syntax, April 20, 2002
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html

9. jarsigner–Jar Signing and Verification Tool, 2002
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/jarsigner.html

10. Java Cryptography Architecture, August 4, 2002
http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html

11. Java Cryptography Extension Reference Guide, January 10, 2002
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html

12. Permissions in the Java 2 SDK, 2002
http://java.sun.com/j2se/1.4.2/docs/guide/security/permissions.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13. Policy Tool–Policy File Creation and Management Tool, 2002
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/policytool.html

14. Security Managers and the Java 2 SDK, May 1, 2001
http://java.sun.com/j2se/1.4.2/docs/guide/security/smPortGuide.html

15. Java Logging Overview, November 26, 2001
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

SANS GSEC Practicals
1. Ankolekar, Vilas, Application Development Technology and Tools:
Vulnerabilities and threat management with secure programming practices, a
defense-in-depth approach, November 2003.

2. Herholtz, Matthew, Java’s Evolving Security Model: Beyond the Sandbox for
Better Assurance or a Murkier Brew?, March 2001.

Other Online Documents:
1. Clark, Mike, JUnit FAQ, April 22,2003,
http://junit.sourceforge.net/doc/faq/faq.htm

2. Last Stage of Delirium Research Group, Java and Java Virtual Machine
Security Vulnerabilities and their Exploitation Techniques, version 1.0.0, October
2, 2002,
http://www.lsd-pl.net/documents/javasecurity-1.0.0.pdf

3. McGraw, Gary and Felten, Edward, Twelve rules for developing more secure
Java code, December 1998
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html

4. Srinivas, Raghavan, Java security evolution and concepts, Part 1: Security
nuts and bolts, April 2000,
http://www.javaworld.com/javaworld/jw-04-2000/jw-0428-security_p.html

5. Srinivas, Raghavan, Java security evolution and concepts, Part 2: Discover
the ins and outs of Java security, July 2000
http://www.javaworld.com/javaworld/jw-07-2000/jw-0728-security_p.html

6. Srinivas, Raghavan, Java security evolution and concepts, Part 5: J2SE 1.4
offers numerous improvements to Java security, December 2001
http://www.javaworld.com/javaworld/jw-12-2001/jw-1221-jdk4security_p.html

Books:
1. Eckel, Bruce, Thinking In Java, 3rd Edition, Prentice Hall, New Jersey, 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. McGraw, Gary and Felten, Edward, Securing Java, John Wiley and Sons, Inc.,
1999.
Contents available at http://www.securingjava.com/TOC.html

3. Taylor, Buege, and Layman, Hacking Exposed J2EE & Java, McGraw-
Hill/Osborne, Berkeley, CA, 2002.

