GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Security Event Management —
Staying on track and not missing the forest for the trees

A GIAC Practical Assignment

llango S Allikuzhi

June 29, 2004 Revision 002

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of contents

Abstract

The problem that we are trying to address
The solution and its implementation

Missing the forest for the trees

The Essence of Synchronized Time

Analyzing all the logs that we have collected - the difficult part
Taming the Firewall OPSEC Events

Dealing with Access Control Server messages
Venturing into the world of Network Sensors
Conclusion — Forest conquered?

Appendix —A

References

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Security Event Management —
Staying on track and not missing the forest for the trees

Abstract

The purpose of this paper is to share some of my experiences, setting up and managing a
security event management infrastructure on a large private network that connects GSEC
Inc. to its clients and partners. This talks about our experimental venture into consolidating
the logs and getting an insight into troublesome events, the roadblocks encountered, and
pitfalls and successes seen.

| would like to express my sincere thanks to our mentor, Beth Binde of Rutgers University
for her guidance.

The network had a number of firewalls and intrusion detection systems already deployed.
We embarked on a lofty mission of setting up a central security event management
infrastructure that deals with OPSEC events, Syslog messages, SNMP events and other
log encapsulation methods to support 24x7 Security Operations Center.

The management was particularly keen that we leveraged the existing network
management infrastructure. Besides providing a central event console in the Network
Operations Center (NOC) which doubles up as a Security Operations Center (SOC), we
are required to notify appropriate support personnel of critical events through automated
paging system, analyze and provide meaningful reports based on access-list violation logs
of packet-filtering routers and intrusion detection systems’ alerts.

The existing network management infrastructure is built on a protected network — the
Management VLAN is isolated from the campus network and from the access VLAN,
which connects the customers to GSEC Inc’ s data centers. The management network is
protected from access network and the campus network through CheckPoint Firewall-1
enforcement modules. Needless to say only essential services such as ICMP, SNMP
(161/udp), SNMP trap (162/udp), TACACS+ (49/udp), NTP (123/UDP), TFTP (69/udp),
DNS (53/udp), Telnet (23/tcp), SSH (22/tcp), FTP (20/tcp and 21/tcp) are allowed into
specific servers on the management VLAN in the appropriate direction.

The management servers — Central Syslog server, Openview Network Node Manager,
CiscoWorks 2000 server, CiscoSecure/ACS TACACS+ server, Micromuse
Netcool/Omnibus Object Server, Checkpoint Management Server, SourceFire
Management Console, and Concord NetHealth server as well the management interface
of the SourceFire network sensor appliances, SourceFire RNA (Real-time Network
Awareness) appliances and firewall enforcement modules are on management VLAN. The
sniffing interface of the network sensors and RNA are on the access VLAN to capture the
production network traffic between GSEC Inc. and its clients over the private network.
There are firewall rules in place to allow specific workstations on campus network to
access services such as SSH (22/tcp), Telnet, FTP and specific HTTP/HTTPS ports on

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

specific servers on the management VLAN. This is primarily for administrators and users
to access specific hosts and applications.

This private network connects over hundreds of customers to GSEC Inc.'s data centers.
This infrastructure involves a number of core routers and hundreds of edge routers with
extensive deployment of standard and extended access-lists in Cisco I0OS environment.
We have at our disposal network management platforms and tools such as HP Openview
Node Manager 6.2, CiscoWorks 2000 Resource Manager Essentials 3.5 with syslog
analyzer and Micromuse Netcool/Omnibus 3.6 - all deployed on Solaris 8 servers in our
management VLAN. Netcool/Omnibus plays the role of Manager of Managers (MoM); it
provides event correlation and de-duplication capabilities and browser-based operator
consoles (Netcool Webtop). Netcool/Omnibus ObjectServer stores the events in its
memory-resident database and the events are pushed to a backend SQL database on
regular basis through Netcool/Omnibus ODBC gateway. As there is expertise available in-
house to customize rules and build correlation logic, we seemed to lean towards deploying
Netcool/Omnibus as our security event management platform.

The Problem that we are trying to address

The IP access-lists are deployed on the core routers and edge routers to achieve the
following objectives:

- Ingress and egress filter

- Telnet access filter

- Snmp-server access filter

- TFTP Access filter

- Specific application services access filter

Intrusion detection engines (IDS) deployed on the access network capture and analyze
the production network traffic and generate alerts. The IDS alerts in the form of Syslog
messages are in turn sent to central syslog servers, which also receive Syslog messages
from the routers. SourceFire IDS provides an excellent web interface for real-time events
and reports and better yet, when you consolidate all SourceFire events on a central
management console, you can view correlated events on the Management Console
through a web interface. But our management was particularly keen on getting these
events on the central console on the SOC as the staff would not need any additional
training. Hence we decided on deploying Netcool/Omnibus Syslog probe on the central
Syslog server and Firewall-1 probe on the CheckPoint Firewall Management modules to
enable real-time notifications through console.

We almost decided to consolidate the security events from SourceFire Intrusion Detection
Systems (IDS), CheckPoint FW-1 NG Firewalls, CiscoSecure/ACS TACACS+ and Cisco
IOS devices (access-lists denial logs, in particular) to Netcool/Omnibus platform.
Micromuse does offer a security platform offering, called Netcool for Security Management
(NfSM), to address the SIMS market but we decided to implement security event
management around the standard ObjectServer platform, using appropriate probes as this

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

would help us leverage our existing infrastructure and avoid incurring additional
expenditure on the platform.

The concern we had was that most of these devices are chatty in nature and we would run
the risk of flooding the central console so badly that it would be no more be useful to the
operators. We were sure the Netcool/Omnibus Object Server could handle very high
message rate as it relies on memory-resident database versus traditional SQL database
but we were contemplating whether we should have just one ObjectServer handling them
all or we should build a multi-tier ObjectServer architecture. After a lot of deliberations, we
decided to experiment with a simple single-tier ObjectServer architecture, which proved to
be adequate during the implementation phase.

Unlike network fault management events, it is not easy to define “actionable” security
management events. It was a real challenge to come up with a list of critical events, which
would go to the console. Moreover we had to come up with a policy as to what events
should be handled out of real-time console and what should be handled out of scheduled
reports.

Unless the rules are very carefully fine-tuned, there is always a chance of flooding the
console with messages and rendering it useless. We wanted to put only operator
actionable events on the console and the rest of the informational events would be viewed
only from point-solution consoles like SourceFire Management Console or CheckPoint
Management Console.

We could always build separate views for IDS, Firewalls, ACS and I0S Access logs with
filters and make sure that we create separate console displaying different views, using
Omnibus.

While Netcool/lOmnibus does an excellent job of managing the Syslog, SNMP and
OPSEC events on real-time basis with a state-based console, we realized we are still
required to develop systems in-house to do a detailed analysis of these security logs to
figure out how much of it is mere noise - broadcast and protocol traffic, what kind of
services are being denied, and who are the clients who are being denied access. It is not
practical to manage this deluge of events out of a real-time console and hence one needs
to deal with them through scheduled daily reports.

We find that roughly about 350,000-500,000 access list related (%SEC-6-
IPACCESSLOG*) syslog messages are generated on daily basis, which detail access
denied by the packet filtering routers and it is required to understand what is causing
these.

Missing the forest for the trees!!!

After detailed analysis, we discovered that on average, 97.45% of access log messages
were either mere broadcast traffic or the traffic between customer nodes on the remote
ethernet segment on the edge routers. This kind of traffic can easily be ignored. To put it
in simple words, the need of the hour is to ensure that we don't miss the forest for the

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

trees. It is required to analyze only the remaining 2.55% of the access violation logs very
carefully for possible intrusion attempts.

With logs being so large and even the daily event summary we produced being so long
that it was impossible for any administrator to analyze the report on daily basis to take any
corrective action. So it was decided to remove the noise such as broadcast, multicast, the
LAN traffic on the remote side to generate more meaningful report of genuine access
attempts that were denied by the access-lists.

The SourceFire IDS engines were coughing tons of false positives and we started our
exercise with about 160,000 events a day from our primary IDS engine on our access
VLAN. We were simply drowned in these events while our management started pushing
us to forward these alerts to a central management console for operators to monitor these
events. This would have made the existing management consoles completely unusable.
We had to decide what events should go to a central console and what should not. Before
setting up event forwarding, we had to inspect all the existing alerts and weed out the
‘False Positives”. We had to struggle for more than 3 months to identify all the false
positives and apply suppression rules to them and also implement throttle logic to other
events to bring down the daily alerts volume down to few hundreds.

The bulk of our “False Positives “ were generated by our management traffic, which we
could easily suppress. There were other tricky “False Positives” triggered by snort rules for
the DLSw+ traffic between the core and edge routers.

Now we are ready to pass the network sensor events to the SourceFire management
console as well as forward snort syslog alerts to our network management platform to
display on NOC consoles. | personally don’t believe an operator on a console can react to
these alerts in a meaningful way, but we had to do it as mandated by the management. |
would rather look at SourceFire management console for events a few times a day and
spend some quality time analyzing them to figure out what they really are, what caused
them, and if they should be suppressed in future. In any case, we had to deal with this
problem at the source (network sensors) rather than at the central console. We had to
normalize the snort alerts the same way the Omnibus/Firewall-1 probe normalizes the
Firewall-1 events to do any event correlation in future.

Firewall-1 probe did its part of the damage in terms of generating a deluge of abnormal
condition messages such as “port overuse”, and “protocol overuse“ warnings for
management traffic and legitimate application traffic and we were once again caught up
amidst the trees and we had to get past them to see the real problems. Again getting rid
of alerts due to management traffic was simple; we had to define management network
variable and discard all alerts for known protocols. The rest of legitimate traffic generated
“abnormal” firewall messages in large numbers and it was taking up enormous time to
deal with this menace. These false positives were really threatening to ground the project
and we knew there is nothing like weeding them at the source, the firewall probe rules.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Solution and its Implementation

We set up a centralized syslog server on our primary and contingency site to handle this.
We built it on a SunFire 280R server running Solaris 8 with all recommended and security
patches applied.

Our daily volume of syslog messages from routers and IDS at this point of time is around
500,000 messages on average and in other words, about 40-60 MB of data. As
mentioned earlier %SEC-6-IPACCESLOG messages from Cisco routers alone contributed
nearly two-third of the daily syslog volume.

As mandated by regulatory authorities, we have to maintain the logs for a minimum of 6
months time and about 3 months of logs are expected to be available online on the syslog
server.

As syslog messages are logged in different files in the /var file system, it is imperative that
/var is mounted on the separate partition which is sufficiently large. We ensured that the
/var file system was over 18GB and another file system of capacity of 20 GB, /varl was
created on another spindle for archiving syslog messages, SNMP traps and router
configurations for 3 months. The archived router configuration has bailed us out of a lot of
difficult situations when routers configurations need to be restored to a previous state.

We also transfer the logs from /varl directory onto a PC workstation on regular basis
using scp (Secure Copy, using port 22/tcp) and archive them on WORM media along with
md5 hash.

Syslog files are maintained as per standards recommended by CERT. The local host's
syslog messages are sent to /var/adm/messages, while the remote syslog messages are
sent to /var/log/messages.

The following document provides an excellent description of the best practices in
configuring syslog.

http://colin.bitterfield.com/Syslog for the datacenter.html

letc/syslog.conf is configured in such a way that all router syslog messages get into
Ivar/log/messages.

Here is the syslog configuration we use.

/etc/syslog.conf

#ident "@(#)syslog.conf 1.5 98/12/14 SMI" [* SunOS 5.0 */
#

Copyright (c) 1991-1998 by Sun Microsystems, Inc.

All rights reserved.

#

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

syslog configuration file.

#

This file is processed by m4 so be careful to quote (') names
that match m4 reserved words. Also, within ifdef's, arguments
containing commas must be quoted.

#

*.err;kern.debug;daemon.notice;mail.crit Ivarladm/messages

*.alert;kern.err;daemon.err operator
*.alert root
*.emerg *

Added for Cisco Syslog (begin)

local6.info;local6.debug Ivar/log/messages
local7.info;local7.debug /var/log/messages
#

local0.emerg;localO.alert;localO.crit;localO.err;local0.warning;local0.notice;local0.info;local0
.debug /var/adm/dmgtd.log

If access-lists log (%SEC-3-IPACCESSLOGP) message volume gets too big, it may be
worthwhile writing ACL logs into a separate file. In order to split these messages to
separate log files, we can modify syslog.conf as follows:

All LOCAL7 messages (debug and above) go to the ciscoacl
This includes ACL logs, which are logged at severity debug
#

local7.debug /var/log/cisco/ciscoacllog

#

LOCAL7 messages (notice and above) go to the ciscoinfo

This excludes ACL logs which are logged at severity debug
#

local7.notice /var/log/syslog_info

Since the logs grow extremely large in size, it is essential to implement a log rotation
scheme to keep the logs within manageable size and to help streamline the archival
process. The log rotation is set up so that the logs are rotated every day and the rotated
logs are kept for 7 days in the /var/log directory in compressed form (gz). The previous

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

day’s syslog file, messages.1 is copied under “/var1/log/" as 'messages-MMDDYY.gz' and
kept online for 3 months. Please note we rotate only /var/log/messages file on daily basis
and /var/adm/messages is never rotated.

We prefer using perl Logfile::Rotate as opposed to Sun’s newsyslog script as this works
across all our Unix platforms.

The following crontab entry is added to ensure syslog rotation
59 23 * ** [usr/local/bin/logrot2

We find about 8:1 compression is achieved by compressing syslog files with gzip and it
really helps conserve disk space. So our syslog archives are in .gz format.

One downside of rotating the logs is that we run into issues when we run scripts to track
dial-backup ISDN calls and there are many instances we come across an ISDN call
closure event for a call which was actually established the previous day. We have to
uncompress the previous day's log and merge it with the current log to do analysis of this
kind.

The log rotation script generates MD5 hash and writes it into another file
(messages.date.gz.md5) to be archived along with the syslog file (messages.date.gz) in
the archive directory. This file contains the hash for the compressed (GNU zip format, of
.gz extension) syslog file and any one accessing this file at a later date would be able to
verify its authenticity by generating md5 hash once again and comparing it with the
original hash stored in the file.

Here is the content of a sample hash file
MDS5 (/usrl/log/messages.060204.gz) = 3a16fd3c046130994fd898bf96803582

Jim Ellis (jte@cert.orq) provides an excellent description of MD5 hash in the following URL
http://www.dsinet.org/tools/crypto/md5/MD5.README

The log rotation scheme ensures last 7 day’s compressed logs are kept in the /var/log
directory on any given day.

#!/usr/local/bin/perl

use File::Copy;
use Lodfile::Rotate;
use POSIX 'strftime’;
rotate syslogs
$log = new Lodfile::Rotate(File =>'/var/log/messages’,
Gzip =>"lusr/bin/gzip");
process log file

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$log->rotate();
undef $log;

#archive the day's syslog in the /varl directory

$date = POSIX::strftime("%D",localtime());

$fdate = $date;

$fdate =~ s/V/lg;

$orig_syslog = "/var/log/messages.1.9z";

$arch_syslog = "/varl/log/messages.$fdate.gz";

$hash_syslog = "/var1/log/messages’;
copy($orig_syslog,$arch_syslog) || die("FATAL: copy $orig_syslog: $\n");
system("/usr/local/bin/md5 $arch_syslog > $hash_syslog");

We ensured all unwanted services are disabled on the syslog server, including telnet and
FTP. You can disable services handled by inetd daemon by editing /etc/inetd.conf. Also
shut off all unwanted, vulnerable services like nfs client, nfs server; these are started by
the startup scripts in etc/rc*.d directories which have to be disabled by renaming the
startup scripts. In other words, simply move /etc/rc3.d/s15nfs.server startup script file as
/etc/rc3.d/DISABLED.s15nfs.server to disable nfs server completely.

Solaris installation puts Sun SNMP agent and DMI agent, which can be completely shut
off by removing the startup scripts. If you do not want to remove them but want to properly
configure the community strings to make them secure, refer the following document.

http://ist.uwaterloo.ca/security/howto/2000-10-04/

OpenSSH is set up for administrative access to the Syslog server and all file transfers are
done using scp. We installed OpenSSH and added /etc/init.d/sshd startup script to start
and stop secure shell daemon. /etc/allow.hosts currently allows access to specific hosts.
OpenSSH daemon is configured only with Protocol 2 and in other words, the susceptible
Protocol 1 is completely disabled and related keys have been removed. If public key
authentication is not possible, it falls back to password authentication, but it sends out only
encrypted password.

lusr/local/etc/sshd_config

#$0penBSD: sshd_config,v 1.65 2003/08/28 12:54:34 markus Exp $
This is the sshd server system-wide configuration file.

Port 22

Protocol 2

For protocol version 2
HostbasedAuthentication no

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IgnoreRhosts yes
PasswordAuthentication yes
PermitEmptyPasswords no

Cisco routers have been configured to send the syslog messages to the central syslog
server as follows:

logging history informational

logging source-interface LoopbackO

logging a.b.c.dl <------ IP address of syslog server
logging a.b.c.d2 <------- |

ntp server a.d.c.el prefer

ntp server a.d.c.e2

The Essence of Synchronized Time

As we consolidate logs on to a single server, the notion of accurate time is essential to
determine the order in which the network events occurred. It is imperative to implement
Network Time Protocol (NTP) to ensure the timestamp on the logs are accurate to do any
useful analysis.

The top NTP hierarchy for the private network consists of core routers, fcorel, fcore2,
fcore3, and so on - which are NOT synchronized directly with external servers but with
hosts in the protected network, which in turn are synchronized with external source.

Router fcorel
ntp server a.d.c.el prefer
ntp server a.d.c.el

Additionally ntp peers can be set up so that time remains synchronized even if the
connectivity with the master source is lost.

Router fcorel
ntp peer fcore2
ntp peer fcore3

Edge routers located at the customer premises are configured to use the core routers for
NTP synchronization:

Router remotel

ntp server fcorel
ntp server fcore2
ntp server fcore3

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The management server also points to the core routers for the NTP source. Apparently
there are some known NTP vulnerabilities as detailed below:
http://www.cisco.com/warp/public/707/NTP-pub.shtml

There is an excellent reference on how to setup NTP securely on Cisco routers, including
access-list implementation for NTP

Hardening Cisco Routers By Thomas Akin
http://www.oreilly.com/catalog/hardcisco/chapter/ch10.html

Sun provide a detailed blue print, which explains the NTP implementation on Solaris
servers.
http://www.sun.com/blueprints/0701/NTP.pdf

Analyzing all the logs that we have collected - the difficult part

As far as access-lists logs are concerned, the following logic is used arriving at the access
list log summary

Discard the entries pertaining to broadcast packets
Over 60% of %SEC-6-ACCESSLOGP messages appear to be broadcasts.

Major contributor of this is the NETBIOS broadcasts generated by Windows systems on
the customer’s network (which enter Interface Ethernet O of edge routers).

These are harmless irritants, generated due to carelessness or ignorance on the part of
Windows administrators, not to have disabled NETBIOS on hosts on a network segment
that connects to another organization's network. These entries are safely ignored.

Next discard the entries pertaining to communication between client's nodes on the
Ethernet segment. We can safely assume 24-bit network mask, and discard access log
entries if the traffic is between hosts on the client network (which connect to the network
through interface Ethernet O on the edge router). If the first 3 octets of the source and
destination IP addresses match, and if the address is a public address, then we can safely
discard these messages

This constitutes roughly another third of the access-list syslog messages.

Once we remove these, we are left with about 5000 messages of which 15-20% are
protocol traffic being denied for valid reasons.

Once we discard the protocol traffic, we are actually left with about 4000+ messages to
deal with.

Please note that all public addresses have been changed to imaginary addresses.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The following is an example of kind of broadcast packets denied by access-lists; these
events fill up the log to the extent of over 95%

The following entry is a NETBIOS broadcast from a client workstation being blocked by
our edge router

May 16 23:40:19 rtr38sa 163590: May 16 23:38:34.870 EDT: %SEC-6-IPACCESSLOGP:
list 101 denied udp a.b.c.211(137) -> a.b.c.255(137), 1 packet

The following is a RIP (Routing information Protocol V2) routing protocol broadcast,
which can be ignored

May 16 23:40:19 rtr432sa 327923: May 16 23:38:11.802 EDT: %SEC-6-
IPACCESSLOGHP: list 101 denied udp a.b.d.65(520) -> a.b.d.255(520), 7 packets

The following is an example of udt_os broadcast from a client on the remote side

May 16 23:40:19 rtrb26sa 572329: .May 16 23:38:12.323 EDT: %SEC-6-
IPACCESSLOGHP: list 101 denied udp a.c.b.197(7331) -> a.c.d.255(3900), 2 packets

The following is another example of NETBIOS irritant

May 16 23:40:15 rtr58sa 20366565: May 16 23:38:31.678 EDT: %SEC-6-
IPACCESSLOGHP: list 101 denied udp x.y.z.251(138) -> x.y.z.255(138), 1 packet

So we are finally getting past the trees and getting a glimpse of the real forest!!!

| use a port table file to convert the ports seen in the logs to service names. We can create
this port table containing services for TCP/UDP ports, by downloading from IANA site,

http://www.iana.org/assignments/port-numbers

We created a file containing services for all well-known and registered ports. What if our
organization's in-house applications use some of these registered ports for some other
purpose? The port table downloaded would not provide me with the TCP/UDP ports used
by our in-house applications, which are neither well-known nor registered ports. So we
gather data on in-house applications and add these entries to the port table at the very
end. Finally we parse these port table entries and load them into an associative-array (perl
mongers, call this hash). In the hash, %services, we would have all ports pointing to the
appropriate service.

Now we can parse the access logs with Perl and create a summary report detailing each
rejected transaction with count, each denied service with count of attempts, each denied
source IP address with count, or each denied destination IP address with count. Assuming
that there are many repeats of a particular type of denied transaction, we would finally end

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

up with an event report of about 500-1000 lines that details all denied transactions with the
appropriate service name against them and the count. It's still a large report and people
can easily miss an important rejected transaction or al least they complain they can do so.

The forest is not easy to conquer!

We can't possibly reduce the number of transactions being reported but we can alter the
presentation of them so that the critical transactions show up on top.

First we list packets for well-known ports (which would include most critical transaction
types, such as, telnet, ftp, http, https et al.), followed by rejected transactions for ports
used by our in-house applications and then rest of the registered and non-registered ports.

This report is generated every day, archived under /varl/reports and kept online for 6
months.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Here is a sample report.

*** Rejected connections

Port/proto Service

Source -> Destination

ACL Router

Attempts

111-tcp
111-tcp
113-tcp
123-udp
135-tcp
135-tcp
135-tcp
139-tcp
162-udp
21-tcp
21-tcp
21-tcp
21-tcp
22-tcp
25-tcp
443-tcp
443-tcp
443-tcp
445-tcp
80-tcp
80-tcp
80-tcp
80-tcp
80-tcp
80-tcp

sunrpc a.b.c.1->a.b.d.229

sunrpc a.b.c.1->a.b.d.229

auth a.d.250.34->a.d.244.0

ntp a.e.229.10->a.k.10.3
epmap a.u.2.181->a.ss.32.65
epmap a.9qq.84.93->a.q.28.229
epmap a.dd.81.78->a.q.28.229
netbios-ssn a.ff.212.137 ->a.d.244.0
snmptrap a.i.77.34->a.w.0.130

ftp a.dd.p.136 ->a.ss.34.1

ftp a.u.p.137 ->a.ss.34.1

ftp a.u.207.145 ->a.h.19.151
ftp a.i4.157.246->a.h.19.151
ssh a.p.185.198->a.mx.61.118
smtp a.ee.5.39 ->a.mx.61.118
https a.e8.140.7 ->a.s.89.15
https a.e8.140.7 ->a.s9.93.119
https a.0.253.197->a.h.19.151
microsoft-ds a.l.8.85->a.q.28.229
www-http a.w.203.84->a.q.28.229
www-http a.zz.59.192->a.mn.134.30
www-http a.zz.159.192->a.mn.197.59
www-http a.f.65.46 ->a.mx.61.118
www-http a.y.126.212->a.mx.61.118
www-http a.i3.82.28->a.h.19.151

list 101 rtr958sa
list 101 rtr958sa
list 101 rtr958sa
list 101 rtral2s

list 101 rtri66sa
list 101 rtr958sa
list 101 rtr958sa
list 101 rtr958sa
list 101 rtr206sa
list 101 rtr310sa
list 101 rtr310sa
list 101 rtrj78sa
list 101 rtrj78sa
list 101 rtre54sa
list 101 rtre54sa
list 101 rtrg62sa
list 101 rtr970sa
list 101 rtrj78sa
list 101 rtr958sa
list 101 rtr958sa
list 101 rtrf74sa
list 101 rtrf74sa
list 101 rtre54sa
list 101 tre54sa
list 101 trj78sa

NNNAUORNNRPRREPRNNERPRNRNRPORRRER

P

o

(0]

***Service denials:

epmap

epmap

ftsrv
timeflies

netware-csp

netbios-ns

I
I
I
I
I
I
| fc-cli
I
I
I
I
I
I

chromagrafx
netbios-dgm
telesis-licman

gwha
gwha

© SANS Institute 2004,

135-tcp 683
135-udp 9
1359-udp 1
1362-udp 1
1366-tcp 1
137-udp 272
1371-tcp 2
13714-tcp 1
1373-udp 1
138-udp 14
1380-udp 1
1383-tcp 1
1383-udp 1

As part of GIAC practical repository.

Author retains full rights.

netbios-ssn
iclpv-sc
igi-lm
hiq
hiq
gandalf-lm
essbase
mloadd
rgtp
ms-sql-s
ms-sql-m
https

microsoft-ds

www-http
irdmi

pro-ed

http-alt

© SANS Institute 2004,

139-tcp
1390-tcp
1404-tcp
1410-tcp
1410-udp
1421-tcp
1423-udp
1427-udp
1431-udp
1433-tcp
1434-udp
443-tcp
4431-udp
4432-udp
4442-udp
445-tcp
4462-tcp
80-tcp
8000-tcp
8015-udp
8032-udp
8059-udp
8080-tcp
8090-udp

[—

o O

»
ol

Nwl—\l—‘l—\-bal\JwI—‘l—\l—‘-hl\Jl—\l—‘l—\l\Jl—\l—‘Nl\JNw
o

As part of GIAC practical repository.

Author retains full rights.

Taming the Firewall-1 OPSEC Events

We were really keen on choosing a robust, secure solution to handle firewall events. In
other words, we did not want to rely on traditional mechanism like syslog or snmp. As we
had Checkpoint Firewall-l NG already deployed enterprise-wide and Micromuse
Netcool/lOMNIBUS already in place as a platform for network management, we
considered Netcool Firewall-1 probe, among other solutions.

We are quite convinced about Netcool’s scalability and its event correlation capabilities.
We were confident that it could handle very high burst rate of events without any
problems, thanks to its memory-resident database architecture. The management
preferred a firewall event management solution, which is OPSEC-certified and a vendor
who has strong relationship with Checkpoint as a member of OPSEC Alliance. As our
Proof-of-Concept exercise with Netcool Firewall-1 probe proved to be quite successful and
the probe met most of our objectives, we decided to deploy Netcool Firewall-1 probe in a
pilot project, covering 5 enforcement modules. This eliminated the learning curve on the
management platform and we had to only learn the probe module.

| suppose the same results could be achieved securely with syslog-ng implementation, but
we were to implement this using a vendor product and hence we ventured into setting up
Netcool Firewall-1 probe on our Netcool management server. We were not too
comfortable putting the probe on the Firewall management server itself which would have
been ideal as we would be trapping the events locally.

You would encounter a lot of Checkpoint Firewall-1 jargons in rest of this section. So let
me define some of these terms first.

Enforcement modules are used to monitor and apply the Checkpoint Firewall-1 security

policy. Whenever the enforcement module detects a session, it generates an event, which
is then forwarded to the management module.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

_——t
<<<<<< 1
OPSEC <

Sl <
nco_labl Solaris
Solaris8 Checkpoint FW1 OPSEC_
Netcool/omnibus Management Module e
Checkpoint FW1 NG prodfw4

Object Server (nco_objserv) OPSEC
Webtop Server (webtop)
Firewalll Probe (nco_p_firewall1)
license server(Imgrd)

===
Checkpoint FW1 NG prodfw5

The management module logs all of the connections across many enforcement modules.
The Firewall-1 probe connects to the management module, using LEA and the connection
is authenticated. OPSEC provides the authenticated connections between OPSEC clients
and server, which reduces the risk involved. Typically the management module plays the
role of OPSEC server while the Firewall-1probe is the client.

When the Firewall-1probe is started, it reads the following configuration files in that order:

Properties file

Rules file

Management file

LEA configuration

Policy file

Abnormal behavior definition file

These configuration files control the behavior of the probe.

Properties file (SOMNIHOME/firewall/firewalll/firewall.props) needs to be customized to
suit the environment. This defines the location of all configuration files including the rules
file.

The Firewall-1 probe requires some additional fields in the Object Server schema. So the
default Netcool/OMNIBUS database schema should be extended using the modified
schema provided in the SOMNIHOME/firewall/objectserver.

Known Offenders file lets you handle known offenders differently. Whenever a source or

destination matches the IP address in the known offenders file, the probe generates an
event.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Probe Policy file is used to classify events from Firewall-1 enforcement modules.

LEA Server is a process running on the Firewall-l management module. LEA
configuration file defines the location of the management module host machine and
contains the port number and IP address of the management module.

LEA Configuration File (firewalll.lea.conf) is used for authentication between probe and
management module

#opsec_sic_name "CN=opsec_application_name,O=0org_code"
opsec_sic_name "CN=NETCOOL,O=fwmgt1..99jybd"
‘opsec_sic_name” is the distinguished name(DN) of the client application

opsec_sslca file "opsec.pl2”
opsec_sslca file is the name of the certificate file on the client system

fwmgmtl is the name of the Firewall-1 management module

fwmgtl host 10.30.6.4

This indicates to the probe the address of the Firewall-1 Management module

fwmgtl auth_port 18184

auth_port is the port used by the LEA server running on the management module. The
authentication is established, using 18184/tcp between OPSEC server (Checkpoint
Management module) and client (the host running Firewall-1 probe

fwmgtl auth_type sslica

auth_type is the authorization method used by the firewall, the Secure Sockets Layer
Certificate Authentication (SSLCA)

fwmgtl opsec_entity_sic_name "CN=cp_mgmt,0=fwmgtl..99jybd"
opsec_entity_sic_name is the firewall management module distinguished name (DN)
It is required to complete the following tasks to ensure proper authentication of the probe,
using Checkpoint Policy Editor:
= Add a “Client workstation”, for the host running Firewall-1 probe

= Create an OPSEC application, called “NETCOOL”,
o with the “Client workstation” created above as “host”

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0 “LEA” and “SAM” against “Client Entities”
= Create a certificate for the OPSEC application
o Enter a unique password in the “Communications” window for the OPSEC
application, “NETCOOL”
o Choose “Initialize” to generate a certificate

= Transfer the certificate to the OPSEC client

= Log into client, the Firewall-1 probe host

» Run ./opsec_pull_cert —-h <address of FW-1 management> -n <OPSEC
Application> -p <password to the certificate> —o0 <cert_name> —od <sicname>

Management file (firewalll_management.fw)

It defines the management modules the probe connects to.

bash-2.03# more /opt/OMNIbus/probes/solaris2/firewalll_management.fw
sample management file

MAN {

name: 'fwmgtl'

type: 'normal'

position: 'end'

mode: 'current'

MAN {

name: 'fwmgtl'
type: 'account'
position: 'end'
mode: 'current'

3

“type” is the type of the log to capture events from; “NORMAL” means the events are
acquired from the current firewall log and “ACCOUNT” means from the current accounting
log

“position” indicates where to start reading the events from

‘current” mode means probe acquires events as they are generated

SAM configuration file (firewalll_sam.conf)

bash-2.03# more firewalll_sam.conf

#opsec_sic_name "CN=opsec_application_name,O=org_code"

opsec_sic_name "CN=NETCOOL,O=fwmgtl..99jybd"

opsec_sslca_file "opsec.pl2"

management_module host 10.30.6.4

management_module auth_port 18183

management_module auth_type sslca

management_module opsec_entity_sic_name "CN=cp_mgmt,0=fwmgtl..99jybd"

To capture events from the FireWall-1 Enforcement Modules that are managed by
FireWall-1 Management Stations you are connecting to their details must be added the
probe's policy file: $SOMNIHOME/firewall/firewall1/firewall1l_policy.fw.

Here are the environment variables that are required:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OMNIHOME=/opt/OMNIbus
OPSECDIR=/opt/OMNIbus/firewall/etc

Finally we are required to configure the probe to accept events from FireWall-1
Enforcement Modules.

To capture events from the FireWall-1 Enforcement Modules that are managed by
FireWall-1 Management Stations you are connecting to their details must be added the
probe's policy file: SOMNIHOME/firewall/firewalll/firewalll_policy.fw.

The probe can be started by running $OMNIHOME/firewall/firewalll/nco_p_firewall. It
should ideally be added under the control of what Micromuse calls as Process Control
(NCO_PA) so that NCO_PA watches and automatically restarts when the process dies,
but we could not really do that as the Firewall-1 probe 3.5 expects $OMNIHOME variable
to be set to /opt/OMNIbus whereas the rest of the version 3.6 sub-systems expect this
variable to be set to /opt/netcool/omnibus.

The probes come with abnormal behavior definition file. This file contains a set of usage
templates to detect abnormal behavior. Here are some of the interesting events detected
by the Firewall-1 default behavior definition file:

= Machines Scan

0 Multiple machine scan

o0 asingle IP hitting 50+ destination machines
= Denial of Service/Application mis-configuration

0 HTTP/POP3/SMTP/TCP/UDP Port Overuse
o 100+ hits from one machine to another Machine on port 80 (HTTP) or
110/tcp (POP3) or 25/tcp (SMTP) /any single TCP/UDP port from one
machine to another
= Machine overuse
0 1000_accepts between any 2 machines
= Password Guessing
0 Telnet password guessing
o FTP password guessing
= Port Scanning
o TCP port san
o UDP port scan
= Application Overuse
o Large FTP/HTTP/POP3/SMTP/TCP/UDP transfer check
= Excessive ICMP echo request/replies

We found we were generating numerous false positives for legitimate traffic in terms of
excessive port usage and excessive UDP usage. Again it took enormous efforts to fine-
tune the rules to suppress these messages to get the firewall events down to a few
hundreds a day. | am still not fully convinced that these are actionable events that can be

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sent to central console but we nevertheless sent them over as mandated. These are
certainly useful to security administrators or network administrators, and should make their
life a lot easier.

Dealing with Access Control Server messages

You can forward all syslog messages from CiscoSecure ACS server by adding the
following line to /etc/syslog.conf in CiscoSecure Solaris server:

local0.debug @loghost
Needless to say we need to make syslogd reread its configuration file, with SIGHUP.

If you are not too comfortable adding few thousands of messages to your central syslog
server on any given day, it may be worthwhile logging it locally and running SWATCH or a
vendor syslog probe to parse it.

It is possible to make it log locally with the following entry in the syslog.conf
local0.debug /var/log/csacslog

Venturing into the world of Network Sensors

Snort engine based SourceFire network sensors were deployed to implement network
intrusion detection on the private network. This provides real-time traffic analysis and
packet logging on IP networks. Sourcefire Intrusion Sensors are delivered as complete
appliances, with hardware, software and operating system optimized for and they provide
an easy to use web-based interface for all aspects of sensor management. BTW,
SourceFire is founded none other than Snort’s author, Martin Roesch.

http://www.sourcefire.com/technology/whitepapers.html#detection

Snort can be configured to send alerts when a network packet matches the rule in the
configuration file. The management interface of network sensors are on management
VLAN while the sniffing interface of the network sensors are on the access VLAN to
capture the production network traffic between GSEC Inc. and its clients over the private
network.

Most organization prefer to let network sensors send the alerts to the central management
console to form a security operations console. We were required to send snort alerts to a
central console, which is normally monitored by personnel at the NOC round the clock.
This also opens up the possibility for notifying security personnel of critical alerts through
paging and other notification systems, which are in place.

We have deployed highly customized snort rules in our network sensors to ensure there
are not too many alerts on regular basis. Our policy editor using latest version of
SourceFire provides us additional features such as suppression of alerts based on source
IP or destination IP as well as throttling of alerts, besides standard snort “pass” rules. This

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

has helped bring down the alert volume to a manageable label and hence there is
absolutely no threat of flooding a central management console.

As we were required to forward the alerts to Omnibus management console, SourceFire
network sensors were configured to generate syslog messages to the central syslog
server where Netcool/omnibus syslog probe is deployed. Syslog probe intercepts the
messages and sends it to Netcool object server to be displayed on webtop clients.

Netcool/omnibus Syslog probe (nco_p syslog) is installed and started on the central
syslog server.

SourceFire network sensor appliance (Snort intrusion detection engine) has been set up
to generate and forward syslog alerts the central syslog servers in GSEC primary and
contingency sites.

root@sf-ns01:/etc/sf# more bysyslog.conf
processor dp_alert

output alert_syslog2: facility: LOCALZ,
severity: ERROR;

tag: SFIMS;

syslog_host: 192.168.1.2;

syslog_port: 514;

]

——

I — = e < < << < <<

m ®— Slcol
,—‘—‘—‘ nco_'3 Linux

nco labl Solaris: SourgeFire

i Syslog Server Management
Solaris8 g
Netcool Syslog Phobesyslo
Netcool/omnibus €1co0t Syslog esysiog Confcole

Object Server (nco_objserv) (nco_p_syslog)
Webtop Server (webtop)

Firewalll Probe (nco_p_firewalll) syslog oy

license server(Imgrd) MultSoyrceFire

SH I : :

co——

SourceFire
network sensor
sf-ns02
w/ snort 3 engine

We had to implement the following steps to configure Netcool/OMNIBUS to handle
SourceFire syslog messages and Cisco ACL log messages.

The following line added to /etc/syslog.conf in the host running syslog probe

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

*.debug /var/adm/ncolog
Syslog probe properties file is configured with /var/adm/ncolog as syslog file.

Add the following to Netcool/OMNIBUS syslog rules file
/opt/netcool/omnibus/probes/solaris2/syslog.rules

else if(regmatch($Token6, "*SFIMS:")) {
$agent = "SourceFire"

}

case "SourceFire™:

@Agent = $agent

@Summary = extract($Details, "SFIMS: \[[0-9]+:[0-9]+:[0-9]+\] (.*)")
@AlertKey = extract($Details, "SFIMS: \[[0-9]+:[0-9]+:[0-9]+\] (.*)")
@Severity =4

if(regmatch($Details, "SEC-6-IPACCESSLOG.*"))

discard
@Type=2
@Severity=2

}

Add the following lines under section case "Cisco":
@Summary = extract($Details, "%/(.*)")
else if (regmatch(@Summary, ".*SEC-6-IPACCESSLOGP.*"))

{
@Severity = 2

@Type =2
@AlertKey = extract($Details, ".*list ([*]+).*")

}

"syslog.rules"” 1035 lines, 23866 characters

Check the modified to ensure there are no syntax errors
/opt/netcool/omnibus/probes/nco_p_syntax -rulesfile
/opt/netcool/omnibus/probes/solaris2/syslog.rules

Load the new rules by sending KILLHUP to Netcool/OMNIBUS’s syslog probe process
(nco_p_syslog)

/opt/netcool/omnibus/probes>kill -HUP 2812

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Here are some of syslog messages we received from SourceFire (snort) network sensor
with custom policy

May 17 18:16:34 sfns01 sfnsO1SFIMS: [1:499:3] Snort Alert [1:499:0] [Classification:
Potentially Bad Traffic] [Priority: 2] {ICMP} m.n.0.28 -> a.b.c.129

DESCRIPTION: http://www.snort.org/snort-db/sid.html?sid=499
RULE: alert icmp $SEXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Large ICMP
Packet"; dsize: >800; reference:arachnids,246; classtype:bad-unknown; sid:499; rev:3;)

Suspect TFTP Get

May 17 18:18:16 sfns01 sfnsO1SFIMS: [1:1444:2] Snort Alert [1:1444:0] [Classification:
Potentially Bad Traffic] [Priority: 2] {UDP} a.b.c.130:1634 -> a.n.m.66:69
DESCRIPTION: http://www.snort.org/snort-db/sid.html?sid=1444

RULE: alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Get";
content:"|00 01]"; offset:0; depth:2; classtype:bad-unknown; sid:1444; rev:2;)

Our inference: This is turned out to be due to bad router configuration due to which router
keeps attempting TFTP Get from a non-existent TFTP server

May 17 18:18:27 sfns01 sfnsO1SFIMS: [119:2:1] Snort Alert [119:2:0] [Classification:
Unknown] [Priority: 1] {TCP} a.m.n.35:55639 -> a.b.c.1:80
DESCRIPTION: http://www.snort.org/snort-db/sid.html?sid=119

RULE: alert tcp $HOME_NET 6789 -> $SEXTERNAL_NET any (msg:"BACKDOOR Doly
2.0 access"; flow:established,from_server; content:"Wtzup Use"; depth:32;
reference:arachnids,312; sid:119; classtype:misc-activity; rev:4;)

May 17 20:08:08 sfns01 sfnsO1SFIMS: [121:4:1] Snort Alert [121:4:0] [Classification: Not
Suspicious Traffic] [Priority: 2] {PROTO255} a.b.c.4 -> a.e.c.74

DESCRIPTION: http://www.snort.org/snort-db/sid.html?sid=121

RULE: alert tcp SEXTERNAL_NET 1000:1300 -> $HOME_NET 146 (msg:"BACKDOOR
Infector 1.6 Client to Server Connection Request"; flow:to_server,established; content:"FC
" sid:121; classtype:misc-activity; rev:4;)

May 17 20:08:08 sfns01 sfnsO1SFIMS: [121:4:1] Snort Alert [121:4:0] [Classification: Not
Suspicious Traffic] [Priority: 2] {PROTO255} a.c.a.6 -> a.c.d.42
Our inference: These are certainly “False Positives” from the sensor

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Conclusion

Now we have the real-time security console fully up and running in the SOC, which fulfilled
a key management objective. The console provides a central view of all network security
events.

Our journey towards weeding out IDS false positives, false Firewall-1 abnormal events
and eliminating broadcast noise off access syslog messages continues. Besides keeping
us busy, Snort has helped us figure out a lot of network issues due to misconfigured
routers. The Firewall-1 probe has certainly helped figure out and fix a lot of issues due to
bad rules or remove logging of unnecessary drops. Thanks to de-duplication, we are
seeing a few events on the console unlike the firewall log viewer which does not de-
duplicate events, this is a big plus. We have just one entry for a connection request that
has been dropped thousands of times a day with the count going up each time a duplicate
event occurs.

The operators would require a good amount of training on security related aspects to
understand and react to the security messages that show up on the console. It would take
a lot of hand holding to get the SOC personnel up to speed before we make the SOC
productive. It's also important to continue the efforts to eliminate non-actionable events
reaching the console.

This exercise has certainly rendered a useful security console, which could certainly
increase the productivity of security administrators and prevent possible attacks. The
correlation of events from different devices would be the next big challenge facing us. The
ongoing efforts to suppress the “false positives” and update the rules to incorporate new
signatures continues

After all this, | realize that the “forest” is really a moving target (reminds one of
Shakespeare’ s Macbeth) and we can never afford to be complacent that we have already
conquered it!!'! These tools certainly do provide us with a good insight into what goes on in
the network, but they don't make us feel safe. We find some nay sayers in the
organization dismiss these efforts as “much ado about nothing”. Well, the forest could turn
out to be just a bunch of insignificant trees on many occasions or it could be Macduff's
invaders, who had cut branches of trees to hold in front of them as camouflage and we
better be prepared to face them before they get us. So our efforts go on.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix -A

#/usr/local/bin/perl

acl_insight

provides daily summary of router 1P access-list violations
HH

use Getopt::Std;

use File::Basename;

use Sys::Hostname;

use POSIX 'strftime’;

Initialize

$PGM = basename($0);

$HOST = hostname();

$time = POSIX::strftime("%D %T" localtime());
$date = POSIX::strtime("%D",localtime());
$fdate = $date;

$fdate =~ S\V///g;

print "$time $PGM starting on $HOST\n";

$BASE DIR ='/varllog/;

#3BASE DIR ="'/,

$ACCESS LOG =3$BASE DIR.'syslog_info_day";
$SERVICES ="/port_table’

open (LOG,"<$ACCESS LOG") || die "ERROR:Could not open $ACCESS_LOG:$!";

if (open(SERVICES,"$SERVICES")) {
while (<SERVICES>) {
chomp;
next if /"#/;
IN\SHMt+(\SH)/ || next;
$services{$1} = $2;
}
close(SERVICES);
} else{
die ("FAILED to open $SERVICES: $!");
}

foreach $svcport (sort keys %services) {
#print "$sveport $services{ $sveport}\n”;
$denia_by_service{ $svcport} = 0;

}

print "Router Access-list Violations Summary - Dated $date\n”;
print "generated by \"$PGM\" on $HOST at $time\n";

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#Aug 8 14:32:58 rtr66sa 930423: .Aug 8 14:26:08.486 EDT: %SEC-6-IPACCESSLOGP: list 101
denied udp a.u.2.57(1025) -> a.u.255.255(42508), 2 packets

$msgcount = 0;
$deny =0;
$count =0;
$discard =0;

while (<LOG>) {
chomp;
$msgeount++;

if ($_=~/N\SH\s+\d+ \d+:\d+:\d+ (\S+) \d+: .* E[S|D]T: %SEC-6-IPACCESSLOGP: list (\d+)
denied (\S+) \S+H)\(\d+\) -> (\d+\.\d+\.
\d+H\\d+H\((\d+)V),/) {

$deny++;

($host,$acl ,$proto,$sourcei p,$desti p, $destport) = ($1,$2,$3,$4,$5,$6);
#if destination is broadcast address, discard the entry

$svcport = $destport.”-".$proto;

$srcoctet3 = $sourceip;

$srcoctet3 =~ S\.\d+$//;

$destoctet3 = $destip;

$destoctet3 =~ \.\d+$//;

if ($destip =~ /\.255%/) {
#print "broadcast - discard \n";
#last;
$discard++;

} esif ($srcoctet3 eq $destoctet3) {
#assuming 24 bit network mask, discard access log
#if the traffic is between hosts on the client network
#(interface ethernet O on the edge router)
#log discard
$discard++;

} else{

#print "$acl denied $proto $sourceip -> $destip($destport) $services{ sveport} \n*;
$denial_by reason{ $destport, $proto, $sourceip, $destip, $acl, $host } ++;
#$denial_by_source{ $sourceip} ++;

$denial by destination{ $destip} ++;

$denial_by_service{ $svcport} ++;

#$denied packets by service{ $destport/$proto} += $packets;
#$denied_packets by source{ $sourceip} += $packets;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#$denied packets by destination{ $destip} += $packets;
#$denied_packets by service{ $destport} += $packets;
}
} #if
} #while

close (LOG) || die "ERROR:Could not close $ACCESS LOG:$!";

Desired output
print "Service denials\n";

for $key (sort keys %denial_by service) {

printf("| %15s %-15s-> %-15s\n", $services{ $key}, $key, $denial_by_service{ $key}) if
$denial_by_service{ $key} !=0;
}

if (keys%denia by reason) {
print <<EOF;
*** Reected connections

Port/proto Service Source Dedtination access list Router Attempts

EOF

for $key (sort keys %denial_by reason) {
$attempts = $denial_by_reason{ $key} ;
$count += $denia by reason{ $key};
($destport, $proto, $sourceip, $destip, $acl, $host) = split($;, $key);
$sveport = $destport.”-" . $proto;
$services{ $svcport} = 'unknown' if !$services{ $sveport} ;
printf("| %-10s %-15s | %-15s->%-15s |list %-3d | %-10s| %6d \n", $svcport,
$services{ $svcport}, $sourceip, $destip, $acl,
$host, $attempts) if $destport < 1024;
}

for $key (sort keys %denia_by reason) {
#$attempts = $denial_by reason{ $key} ;
#$Scount += $denial_by reason{ $key};
($destport, $proto, $sourceip, $destip, $acl, $host) = split($;, Skey);
$sveport = $destport.”-".$proto;
$services{ $sveport} = 'unknown' if !$services{ $svcport} ;
printf("| %-10s %-15s | %-15s->%-15s |list %-3d | %-10s| %6d \n", $svcport,
$services{ $sveport}, $sourceip, $destip, $acl,
$host, $attempts) if $destport > 1024;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

}

print "\n\n";

print "Total count of syslog messages processed : $msgcount\n”;
print "Total count of denied access attempts : $deny\n”;

print "Total count of broadcast attempts dropped : $discard\n”;
print "Total count of genuine access attempts dropped : $count\n";
exit(0);

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

Wealth of information available on http://www.sans.org/rr

Sun Solaris documentation
http://docs.sun.com/db/coll/47.8

CERT provides some very useful advice on how to harden Solaris.
http://www.cert.org/security-improvement/practices/p038.html

Snort 2.0 Intrusion Detection by Brian Caswell, Jay Beale, James C Foster and Jeffery
Posluns

SourceFire White papers and documentation
http://www.sourcefire.com/technology/whitepapers.html

Real-time Alerting with Snort
By Jack koziol
http://www.linuxsecurity.com/feature stories/feature story-144.html

http://www.cert.org/security-improvement/implementations/i003.01.html

http://www.snort.org/

Cisco Systems Documentation
http://www.cisco.com/univercd/cc/td/doc/product/software/ios11/sbook/ssysmgmt.htm

http://www.micromuse.com/sols/ent sec man.html

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

