
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 1

Protecting Administrative User Objects:
How Microsoft Got a Good Idea

Completely Wrong

GIAC Security Essentials Certification (GSEC) Practical Assignment Version 1.4b

Option 1 - Research on Topics in Information Security

Submitted: June 30, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 2

Table of Contents
1 ABSTRACT ..4

2 INTRODUCTION AND BACKGROUND ...5

3 OBJECT LEVEL SECURITY...8

4 SECURITY DESCRIPTOR PROPAGATOR PROCESS ...10

5 ISSUES WITH THE SECURITY DESCRIPTOR PROPAGATOR PROCESS ...12

5.1 DIFFERING OBJECT TYPE ISSUE ...12
5.2 APPLICATION OF SECURITY SETTINGS TO NON-USER OBJECTS...15
5.3 POSSIBILITY FOR ESCALATION OF PRIVILEGES...16
5.4 REQUIREMENT FOR THE LOOSENING OF SECURITY ON PROTECTED OBJECTS.......................................19
5.5 TATTOOING OF PERMISSIONS ON PROTECTED OBJECTS ...20
5.6 LACK OF CONTROL OVER SDPROP PROCESS..22

6 APPENDIX A - DEFAULT OBJECT LEVEL SECURITY SETTINGS ..24

6.1 COMPUTER OBJECTS ..25
6.2 GROUP OBJECTS...26
6.3 USER OBJECTS ...26
6.4 DEFAULT ADMINSDHOLDER SECURITY SETTINGS ..27

7 APPENDIX B - DISCUSSION OF TECHNICAL ISSUES SURROUNDING ADJUSTING THE SCHEMA.................29

8 APPENDIX C–HOW TO ASSIGN PERMISSIONS TO USER ATTRIBUTES THROUGH THE ADMINSDHOLDER31

8.1 STEP 1 –RELATING THE ATTRIBUTE TO THE CONTAINER CLASS ...31
8.2 STEP 2 –MAKE ATTRIBUTE VIEWABLE ...32
8.3 STEP 3 –REBOOT ...33
8.4 STEP 4 –ASSIGN PERMISSIONS...33

8.4.1 Active Directory Users and Computers Method...33
8.4.2 DSAcls Method ..35

8.5 STEP 5 –WAIT FOR SDPROP PROCESS TO REPLICATE SECURITY ...36
8.6 STEP 6 –UNRELATING THE ATTRIBUTE FROM THE CONTAINER CLASS ..36
8.7 STEP 7 –REBOOT ...36

9 REFERENCES SECTION ..38

Tables
Table 1 –Computer Object Default Settings.. 25
Table 2 –Group Object Default Settings.. 26
Table 3 –User Object Default Settings .. 26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 3

Table 4 –AdminSDHolder Container Default Settings.. 27
Table 5 –DSAcls Key .. 35

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 4

1 Abstract
Windows 2000 and 2003 domains utilize a background process named the
Security Descriptor Propagator process to enforce a specific level of security
on the objects that Microsoft considers to be of an “administrative” level
within the domain. Unfortunately, the current implementation of this process
has many flaws that may actually hurt the ability of administrators to manage
the security of a default windows environment. This paper attempts to
explain the purpose and workings of this process, what the flaws are and
how Microsoft may be able to fix them, and in some cases how
administrators can get around these flaws in order to keep their environment
secure.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 5

2 Introduction and Background
I first came across the fact that Microsoft has a background process that runs
on the PDC emulator to secure the object level permissions during the
middle of 2003 when I was producing documentation for the security on a
Windows 2000 Active Directory Forest that I had designed. While
documenting the purpose of the default structures, I came across the
AdminSDHolder container and did a search to find out what it was for. When
I found out that it was the basis for further securing administrative objects, I
was impressed with the fact that Microsoft was forward thinking enough to
design a process such as this. I included the information about the purpose
of the container within my documentation and didn’t really think anything
more about it. Unfortunately, this was only just the beginning for me.

Sometime at the beginning of 2004, I was called in to help with a specific
issue that was occurring with Cisco’s CallManager application and
administrative users not being able to be assigned phones. Since our
implementation of the application is Active Directory integrated and I knew
that a service account needed rights to specific properties of the user object,
I immediately knew that the issue related back to the permissions on the
administrative user objects. Therefore, I suggested assigning read and write
access to the user properties on the AdminSDHolder container would fix it.

Unfortunately, the solution that I proposed did not work and I ended up
calling in Microsoft support in order to try to determine what the problem was.
Before beginning with Microsoft, I gathered a lot of data surrounding the
problem and sent it to them so that they could focus on the actual problem
(which I knew to be related to the permissions for the protected user objects
and the process around it) rather than trying to blame it on the CallManager
application. Once we were on the phone the support person asked me to do
a couple of other things to try to determine what the problem was and then
she asked for time to go over the information that I had originally sent her.
Fortunately, however, I also took a little time after we got off the phone and
ended up determining the root cause of the problem based on the DSAcls
outputs that I had provided earlier1.

Once I had determined the root cause of the issue, Microsoft took the time to
try to help me fix it even though their recommended fixes were not applicable

1 The problem turned out to be that since I could not assign permissions directly to the correct
property on the container object, I had instead assigned it to the “user objects.” Since this only
set an ACE flag to inherit the security to child objects rather than applying it to the object itself,
the permission didn’t give the service account the permission to write to the properties. The
examination of the DSAcls output for the user object showed that the permission was replicated
to the protected user object properly through the process, but the permission was only set to
inherit to the user objects that were child objects of the protected user.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 6

for this situation. This was my first real look at some of the quirks and flaws
of the process and was when I started developing many of the possible
workarounds for these flaws that are the basis for this whitepaper. Many of
the statements about Microsoft support positions and feelings about the
issues surrounding these flaws and workarounds that are included in this
paper, but not directly attributable to a published source, are a direct result of
these conversations about how to fix the issue that I was facing.

In the end, however, Microsoft and I failed to actually fix the problem through
technical means because the solutions that I wanted to apply would not have
been supported by Microsoft, and the solutions that they would support
would have compromised the security of the network. Instead, the issue was
solved by ignoring the technical problem itself and instead by obtaining a
deviation to the security policy of the environment which stated that all users
should only have a single user account. By adding a second non-protected
account to the environment for these users, we were able to do a complete
end-run around the issue without having to actually jump through hoops to fix
it. Once this was solved, I put away my concern for it but all of the
information that I had learned surrounding how the process works was stored
away until this whitepaper was started.

The original intent of this whitepaper actuallywasn’t to solely deal with the
issues surrounding how Microsoft protects administrative users. Instead, it
was going to be an examination of how default security works within a
Windows environment. But, when I got to the portion of the paper that dealt
with protecting administrative users, I started digging deeper in order to be
technically accurate and kept finding more and more flaws with how it is
done. This went on until I realized that this section of the paper was longer
and more interesting than anything leading up to it. So I decided to change
the subject to specifically focus on this issue instead.

The original paper was not completely thrown out in conjunction with this
change, however, as there are two holdover areas from the original paper
still included in this version. These are the Object Level Security section and
the information in the Default Object Level Security Settings appendix.
Although this isn’t specifically related to the problems that the whitepaper
explores, it is something that I feel is critical to know in order to understand
the issues involved. Therefore, I encourage you to take a look at both before
diving into the issues section which represents the meat of the information.

With any luck, this introduction and background has given you some insight
into where some un-attributed Microsoft statements come from, and why I
know so much about a process that is pretty much hidden from the view of
even some of the most knowledgeable network administrators. Also, I think it
is important to point out that this paper is accurate as of its writing in June
2004 in regards to Windows 2000 domains running at the level of service
pack 4, as well as Windows 2003 domains before the release of any service
packs. According to my discussions with Microsoft, they are actively working

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 7

to change some portions of how the process that is described here works,
and these changes will hopefully mitigate or even eliminate some of the
issues and vulnerabilities discussed within this whitepaper.

In addition, the workarounds and suggestions within this paper are specific to
fixing the problem that is being described within that section. Therefore, you
may feel that a suggestion in one area may possibly conflict at some level
with a suggestion in another. It should be understood that this whitepaper
does not attempt to put together a cohesive design for dealing with all of the
issues described, but rather attempts to provide suggestions about how to
deal with each one individually based on the needs of your environment.

Finally, it may not show in this whitepaper because it is specifically about
something that I have issues with, however I do have a lot of respect for
Microsoft and the intelligence that its developers show in designing their
systems. This is especially true in the areas of designing their systems to
work with a very diverse computing base that ranges from the smallest
offices to the largest corporations in the world for both the most
technologically proficient support people and those that barely know how to
turn on a computer2. However, becauseMicrosoft’ssystems must be
everything to everyone, I also feel very strongly that the default configuration
is not necessarily the proper security context for an environment.

2 Having worked with some of the largest corporations in the world, I have to say that sometimes I
think the latter category is sometimes more applicable to the corporations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 8

3 Object Level Security
When an NTFS object is created in 2000/XP/2003 it is done with an empty
security descriptor that allows inheritance, however when an Active Directory
object is created it has explicit permissions set on the security descriptor for
the object which may or may not allow inheritance based on the default
security that is applied to that type of object during its creation. NTFS
objects are therefore generally managed through inherited permissions,
whereas Active Directory objects are managed by a combination of inherited
and explicit permissions. This is a very important distinction to understand
when thinking about the permissioning for Active Directory objects.

The explicit security settings for all objects within Active Directory (including
all schema and site entries) are stored on the object itself inside the security
descriptor (to be more technical, as if that is even possible in this paper, it is
actually stored in the ntSecurityDescriptor attribute for the object). Microsoft
defines a Security Descriptor in the following manner:

“A structure and associated data that contains the security information
for a securable object.”3

The security descriptor for a securable object contains structural information
about the security descriptor itself (size, offsets for different properties, etc…)
and seven different properties: Revision; Resource Manager; ControlFlags;
Owner; Group; Discretionary Access Control List (DACL); and System
Access Control List (SACL). The contents of these properties determine
which objects in the environment are allowed to access and manipulate the
secured object, and whether that access is audited.

In addition to the explicit security stored within the security descriptor for an
object, additional settings may be inherited from parent objects. Any
settings that are inheritable by child objects are stored in the security
descriptor of the parent object, and can be specifically set to inherit to all
child objects or even to a certain type of child object (such as a user, group,
or computer). Unless the explicit security of an object blocks the inheritance
of settings, these inherited settings are used in conjunction with the explicit
object level settings when the system assesses whether access should be
granted or audited.

Whenever an object access is attempted, the system retrieves the token of
the user or object attempting the access, then compares the token to the
explicit settings contained within the security descriptor of the secured object.
In Microsoft terms this is known as the lock (security descriptor) and key

3 Definition of the term “security descriptor” from MSDN Platform SDK Security Glossary
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/security/s_gly.asp).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 9

(token) mechanism that forms the basis of Windows access control4. If a
match is found, the system acts according to the settings in the matched
Access Control Entry (ACE) and either allows or denies access based on the
matched ACE. If no match is found utilizing the explicit settings, then the
system compares the token to the ACEs of the inherited permissions and
either allows or denies access accordingly.

This is a very important, and often misunderstood, concept because of its
subtlety. The ordering of permissions on objects in Windows 2000 and
above isn’t deny and then allow, it is deny and then allow explicit access,
followed by deny and then allow inherited accesses in the order in which they
are inherited by the object (i.e., deny then allow permissions inherited from
the direct parent, followed by deny then allow permissions inherited from the
grandparent, and so on through the entire tree of objects that are set to
inherit to the securable object)5.

Therefore, although inheritance allows you to delegate an object by adding to
the permissions of the Active Directory object’s DACL, it actuallydoesn’t
allow you to either remove or block a particular permission with a deny ACE
at the container level or overwrite an inheritance block. This means that in
order to lock down permissions to a level that is tighter than default for an
object class you must either prevent a user from being able to traverse the
container itself, or change the object level security on every object that you
want to secure.

4 For the purposes of this paper, we will be ignoring the “hacker using a credit card to pop open
the lock because Microsoft didn’t put a deadbolt in place by default” portion of the metaphor.
5 See the “Order of ACEs in a DACL” reference in the MSDN Platform SDK Security
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/order_of_aces_in_a_dacl.asp) for details.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 10

4 Security Descriptor Propagator Process
Microsoft recognized the fact that defining object level security for all objects
of the same type would create an issue, because some objects should be
protected to avoid the possibility of an escalation of privileges. Therefore,
Windows programmers designed a specific process to protect the objects
that are considered to be “administrative”. The Security Descriptor
Propagator (SDProp) background process runs on the Domain Controller
that holds the PDC emulator FSMO role on an hourly basis, and is utilized to
set the explicit permissions for each administrative user object.
Administrative objects in the context of the SDProp process are those that
have had the adminCount property of their object set to a value higher than
zero.

Microsoft’s stated purpose behind this process is to:

“(protect) administrative accounts from being modified by unauthorized
users if the accounts are moved to a container or organizational unit in
which a user has been delegated administrative privilege for the
modification of user accounts.”6

In addition to preventing users that have rights over an OU from modifying
administrative accounts that were mistakenly assigned into that OU, this
process also protects administrative objects from being modified by members
of the Account Operators group. By default, Account Operators are explicitly
assigned full control over normal user and group objects. In contrast, the
default security for administrative objects gives no specific rights to the
Account Operators group7.

The SDProp process first queries all groups in the domain that are set to be
protected in order to determine all the objects that either have direct or
transitive membership (membership in a group that is a part of the
administrative group) and updates the value of the AdminCount property of
the object to one. The process then queries administrative objects to
determine if the security descriptor on the object matches the security
descriptor on the AdminSDHolder container (CN=AdminSDHolder,
CN=System, DC=%Domain%, DC=%Root%). If the descriptors match, the
process moves to the next administrative object. If they do not match, the
process replaces the security descriptor on the administrative object with a

6 Quoted from knowledge base article 232199 - Description and Update of the Active Directory
AdminSDHolder Object (http://support.microsoft.com/default.aspx?kbid=232199).
7 For a full listing of default user and group object security descriptor settings and the default
permissions on the AdminSDHolder see the Default Object Level Security Settings appendix of
this document.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 11

new descriptor that matches the settings of the AdminSDHolder container8.
This is accomplished by directly copying the settings of the AdminSDHolder
security descriptor over the security descriptor of the administrative object
itself, however no other properties or values of the AdminSDHolder container
are replicated to the administrative object that is being protected.

8 The description of the operations of the SDProp process was created based information in the
following knowledge base articles: 232199 - Description and Update of the Active Directory
AdminSDHolder Object (http://support.microsoft.com/default.aspx?kbid=232199); 251343 -
Manually Initializing the SD Propagator Thread to Evaluate Inherited Permissions for Objects in
Active Directory (http://support.microsoft.com/default.aspx?scid=kb;EN-US;251343); and 318180
- AdminSDHolder Thread Affects Transitive Members of Distribution Groups
(http://support.microsoft.com/default.aspx?scid=kb;en-us;318180) as well as testing and
observation on a 2003 Domain Controller running in both 2000 Mixed and 2003 Native modes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 12

5 Issues with the Security Descriptor Propagator
Process

As you have seen in the previous sections, the idea behind the SDProp
process is necessary based on how Microsoft implemented security for
Active Directory utilizing object level security. Unfortunately, the
implementation of the SDProp process was not very well executed by
Microsoft. The main purpose of this whitepaper is to discuss the issues in
relation to this particular process that should be understood by a security
administrator. Understand, however, that Microsoft generally defends their
implementation of SDProp and therefore does not necessarily acknowledge
these items as being issues or vulnerabilities that should be fixed in current
versions of the OS. I also wish to point out that these issues and
workarounds have been identified through working with Microsoft on the
issue described in the introduction as well as testing and research on
publicly available documents, however Microsoft has not provided me with
any “inside” information or necessarily confirmed what I state in this section.
Therefore, it is possible that my observations and/or research have led me
to conclusions that are inaccurate and you should always confirm
information for yourself before taking it as the absolute truth.

The issues that I have identified and are discussed below are as follows:
the object utilized for the basis of the descriptor is a different object type
than the objects that are being secured; the SDProp process will apply to
any object type that has an adminCount attribute and is placed in a
protected group; there is a vulnerability for some privilege escalation based
on the default rights of the objects; the security applied through the process
actually represents a loosening of security on the protected objects in some
regards as opposed to the security on normal user objects; objects that are
subjected to the SDProp process are “tattooed” with the permissions; and
there is no supported way for an administrator to manage which groups are
protected by the SDProp process.

5.1 Differing Object Type Issue
Unfortunately, because the designers of this process decided to utilize a
container object as the basis for the security descriptor that is propagated,
there is an irresolvable issue relating to assigning rights to attributes that
are only available to the object class of the protected object, but not the
container class to which the AdminSDHolder belongs. The best example of
how this might manifest itself would be the issue that I faced with
CallManager being an Active Directory integrated application that needs to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 13

read from and write to the attributes that have been extended on the user
object9.

According to the Microsoft security philosophy, the right of an account (such
as a service account) or group (possibly a group of users who manage the
application) to write to this attribute would be assigned at the OU level and
passed down to the normal user objects through inheritance. By default,
however, the AdminSDHolder specifically blocks the inheritance of
permissions in order to insure that the object level permissioning is not
lessened by rights that might be inherited. Since the permission to write to
the user property cannot be assigned directly to a container (because you
cannot assign it to a container, unless the container class has also been
extended), and the object is not set to inherit security, it is not possible to
assign the permission to write to the specific attribute in a default
configuration.

Microsoft can fix this issue by utilizing specific objects of the proper types
(user, group, or computer) that would be stored within the AdminSDHolder
container and that the SDProp process could reference to apply proper
permissions. This would allow the assignment of security for the specific
attributes that are valid for that object type rather than trying to utilize the
permissions that are available on a container object as the basis for the
SDProp process. Unfortunately, there is no good workaround that is
supported by Microsoft for this problem currently.

One ofMicrosoft’s official recommendations for dealing with this issue from
a technical viewpoint is to change the default security on the
AdminSDHolder so that it inherits the permissions from above rather than
blocking that inheritance10. Unfortunately, this would specifically allow
lower level users to manage objects which have higher level privileges
(which is a security 101 level no-no). This suggestion can be made more
palatable by actively managing the protected objects through placing them
in their own “administrators” OU instead of storing them with all other non-
protected user, group or computer objects (even if the other accounts or
groups are also utilized by support rather than end-user personnel). If this
is the case, you could block inheritance at the “administrators” OU level and
explicitly set the permissions that are necessary at that level in conjunction
with allowing inheritance.

9 Read access is not an issue in a default configuration, because read access is given to the
authenticated users group by the AdminSDHolder container security.
10 See KB article 817433 - “Delegated permissions are not available and inheritance is
automatically disabled” (http://support.microsoft.com/default.aspx?kbid=817433) for details.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 14

Theidea of a separate OU for “administrators” actually follows a Microsoft
recommended practice for domain design11; however it does not actually
address the stated purpose behind the process that is quoted above. In
addition, the Microsoft recommendations surrounding the creation of an
“administrators” account OU, or allowing inheritance as a solution to this
problem, do not state that the security on these OUs should be changed
from the defaults in order to accommodate the different security needs of
these protected objects.

Another possibly less intrusive option (depending upon the accounts or
groups involved) that is officially supported by Microsoft, would be to assign
the write all properties permissions to the necessary account or group12.
Although this would allow that particular user or group to manage
administrative accounts, a security administrator may judge this to be less
of a risk than giving permissions to the Account Operators or other group
with full control over the OU in which the accounts reside (especially if we
are only talking about a single service account).

The best option for dealing with this issue from a technical standpoint,
however, is to add an ACE to the security descriptor of the AdminSDHolder
container that is specific to the user or group that you want to allow to have
access to the attribute. This could be achieved programmatically by directly
adding an ACE with the proper information to the security descriptor.
Unfortunately, when I proposed this to Microsoft as a workaround for my
issue, they specifically stated to me that they would not support
programmaticallyapplying an ACE that isn’t applicable to the security
descriptor. The other way to achieve the same goal however, would be to
change which attributes are available to the container class within the
schema and then assign the specific rights that are necessary on the
AdminSDHolder itself. Once the access control entry is assigned, the
attribute could be unrelated from the object class with minimal (if any)
technical issues13.

This particular option was never part of my discussions with Microsoft
personnel, so I cannot relate what their support position would be. But the

11 See “The Best Practices OU Model” section of the “Best Practice Active Directory Design for
Managing Windows Networks” document
(http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/activedirectory/pla
n/bpaddsgn.mspx) for details.
12 See KB article 817433 - “Delegated permissions are not available and inheritance is
automatically disabled” (http://support.microsoft.com/default.aspx?kbid=817433) for details.
13 I believe that a discussion of the technical ramifications of utilizing this option through a schema
adjustment is very relevant to this whitepaper, however it also represents a serious tangent at this
point because it is not directly related to the differing object type issue itself. Therefore, the
technical ramifications of this option discussion is included as the “Discussion of Technical Issues
Surrounding Adjusting the Schema” Appendix to this paper.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 15

addition of an optional attribute to the object class is a standard method that
is provided by Microsoft and therefore should be supported. What is
questionable is whether the removal of this attribute and the leaving of a
“dead” ACE entry in the security descriptor of the AdminSDHolder container
object would be supported even though it causes no harm (it is the
equivalent of the infamous “account unknown” that you would see if the
ACE contained an entry for a SID of a deleted group or account). Although
the Microsoft personnel that I was dealing with when I was discussing doing
the same thing programmatically wouldn’t go into details about why they
wouldn’t support that option, it is very conceivable that their discomfort with
it had more to do with the fact that the security would be brute-forced into
the security descriptor with a 3rd party program rather than the actual“dead”
ACE that would be applied.

5.2 Application of Security Settings to non-User objects
Although the stated purpose for the SDProp process is to protect
administrative level user objects, the SDProp applies to any object that is
added to a protected group through either direct or nested membership and
that the adminCount property is valid for. This means that objects such as
computer accounts or groups that are mistakenly given membership in a
group that is protected will also have their object level security re-written as
a result. Since the Computer account has very different security needs
than a user object, the security that is applied to the AdminSDHolder would
have a seriously adverse effect on the computer account14. As for changing
the security on a group, this change could create operational problems if
the group isn’t supposed to be limited to being managed by Domain Admin
level personnel by default15.

Microsoft can address this issue by changing the SDProp process to look at
the type of object that the process is going to apply to, and then not run
against any objects that are not specifically of the user or inetOrgPerson
type16. Unfortunately, the only way to deal with this issue administratively at

14 For a full listing of default computer object security descriptor settings and the default
permissions on the AdminSDHolder see the Default Object Level Security Settings appendix of
this document.
15 For a full listing of default group object security descriptor settings and the default permissions
on the AdminSDHolder see the Default Object Level Security Settings appendix of this document.
16 inetOrgPerson is a new object type for Windows 2003 that is utilized for compatibility with
X.500 directories. Since this object didn’t exist in Windows 2000 and the security for the user and
inetOrgPerson objects are exactly the same, I have chosen to utilize the user object to discuss
almost all issues in this whitepaper except where I have felt that stating inetOrgPerson was
necessary. However, the issues are exactly the same for all inetOrgPerson objects as they are
for user objects in all cases described within the paper.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 16

this moment is to make sure that computer or non-administrative group
objects do not receive membership within a protected group, and to re-
apply the default security settings for computer and group objects that have
unfortunately been changed.

5.3 Possibility for Escalation of Privileges
The elimination of the escalation of privileges by non-authorized users is
the basis of the idea behind the SDProp process, unfortunately it doesn’t
actually remove this possibility entirely. As you can see by the
AdminSDHolder Container Default Settings table in the Default Object Level
Security appendix, both the Administrators and Domain Admins groups
have rights to manage the accounts and groups that the SDProp process
applies to. However, this process also applies the security descriptor of the
AdminSDHolder container to both the Enterprise Admin and Schema Admin
groups (and users assigned to this group) in the forest root of the domain.

Therefore, by default, members of the Built-in Administrators group on the
Domain Controllers and the Domain Admins of the forest root domain have
the right to assign their own accounts into both the Enterprise Admins and
Schema Admins groups and/or manipulate the accounts that have these
group memberships assigned to them. That means that these users have
the ability to escalate their own permissions from just managing the forest
root domain to managing both the schema and the Active Directory
structures in all domains within the forest.

According to my discussions with Microsoft personnel about this issue, they
acknowledge this as a general issue but basically state that this is one of
the main reasons you should be very careful when giving membership in
the Domain Admins or Administrators groups of the forest root. Personally,
I believe that is a valid answer in regards to mitigating the vulnerability (as
is any alerting or reporting that would be done based on the addition of a
user account to this group). However, from a security point of view, I
believe that it should be considered to be a vulnerability and therefore
should be addressed since there are many reasons for support personnel to
have membership in these groups but not Enterprise Admins in an
operational environment.

The second escalation of privileges threat is one that Microsoft and I
specifically disagree on, and it relates to the privileges of the Administrators
group itself. This particular issue is not limited to the SDProp process, but it
is specifically applicable to it since we are talking about the management of
the most powerful users within the network. In my opinion, the
Administrators group for a Domain Controller (which is the Built-in
Administrators group on the domain) represents a large violation of the
“least privilege” security principle within the Windows environment as well

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 17

as providing no opportunity for a separation of duties between those who
need administrative rights to the server and those who need to administer
the logical infrastructure of the network.

In general, Microsoft believes that only those users who are Domain Admin
level users or above should be given membership in this group because of
the amount of privileges provided to this group17. However, this is not really
feasible in a real-world operational environment. Many applications that are
installed upon a server require service/application accounts that must be
members of the administrators group in order to work properly18. If these
applications provide services that are necessary on the Domain Controllers,
then they must also be given membership in the Administrators group.
Unfortunately, the amount of users who may be a member of the Built-in
Administrators group, but don’t require rights within Active Directory, is not
always limited to the few service accounts necessary for applications on the
Domain Controller.

In larger environments, different support teams are required to be utilized in
order to manage many different aspects of the network. In one particular
Windows 2000 world-wide enterprise environment that I have worked in, we
limited the amount of accounts with Domain Admin group membership to
around a dozen users by actively assigning the correct level of permissions
for these support people to do their job at the OU level. However, in order
to support the need for 24 x 7 support of the global infrastructure and the
different operational teams that were responsible for it, the administrators
group on the Domain Controller had around a hundred users assigned
through different group memberships. Although I agree with Microsoft that
this is way too many users with this level of access, each individual user
with this membership had both a business case for why they needed it, and
the political backing to override generic security concerns about too many
users with Administrator access.

Since these accounts do not actually require any rights within Active
Directory itself, the fact that they receive these incredibly powerful rights
through their membership in this group is the basis for my feeling that this is
a large violation of the principle of least privilege. This is especially true
since there is no real security justification for why the Administrators group
has privileges within Active Directory to begin with. The Domain Admins
and Enterprise Admin groups are specifically assigned object level security
permissions for every object within the domain, however the Administrators
group is additionally given active directory rights at the root of the domain

17 This includes some instances inside Active Directory that the administrators group actually has
more rights on objects than the Domain Admins group itself.
18 Microsoft is actively working to try to get vendors to write their applications so that this is not
actually necessary, but it is a long way from actually happening at this point in time.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 18

(and on some default objects that block inheritance) that are inherited down
through the normal structures. The only difference in the effective rights of
the Administrators and Domain Admins is that the Administrators are
actually given “delete” permissions on some objects that the Domain
Admins do not have assigned directly19. To me, this seems to reflect the
“just make it work” mentality that is the traditional Microsoft style, rather
than the new “secure by design” slogan that they say they are following
today.

Although, it may seem like this whole discussion is tangential to the issue of
possible escalation of privileges in relation to the SDProp process, I feel
that this is very important for understanding whether the second escalation
of privileges concern is valid or not. I have been told by Microsoft
personnel in the Active Directory security area that “the BuiltIn- Admins
group on DCs is the by far the most powerful group in the system20”. If this
is actually the case, then the fact that the Built-in Administrators group has
the right to add themselves into the Domain Admins group (or the
Enterprise Admins and Schema Admins if the Domain Controller is within
the Forest Root) is not actually an escalation of privileges since these are
lower level groups from the Built-in Administrators. However, I believe that
each of these groups should be considered to have higher levels of
authority than the Administrators group since I feel that they should only be
utilized for managing the server itself rather than Active Directory.
Therefore, from my point of view the default permissioning of the
AdminSDHolder container that is replicated by the SDProp process does
represent a second escalation of privileges vulnerability. In this case, it is
up to the reader to decide for themselves about this issue.

There is an easy workaround for the Administrators group being able to
escalate their privileges, but the dealing with the Domain Admins in the
Forest root is much more difficult. Removing the Administrators group from
the permissions of the AdminSDHolder in a domain would stop the
Administrators group from being able to manage the membership and/or
user objects that are protected by the SDProp process in that domain. This
workaround could also work for the Domain Admins in the Forest Root.
However it would require that you have Enterprise Admin level personnel

19 The reason for this particular difference in rights is completely baffling to me since the Domain
Admins are part of the Administrators group be default and therefore also receive these rights
through this group membership.
20 This quote is from a part of an e-mail from a Microsoft person regarding a discussion of the
general subject of Active Directory security. However, because the writer was not aware that I
might be quoting him, and this is not a publicly available quote, I do not feel it is proper to either
identify him or provide a copy of the e-mail as a reference for this whitepaper. This is only
provided as a reference to the fact that some people within Microsoft view the Built-in
Administrators group in this way.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 19

managing the protected objects within that domain which may cause an
operational hardship.

5.4 Requirement for the Loosening of Security on
Protected Objects
Although the purpose of the SDProp process is to specifically tighten
security on the most powerful objects in the domain, not all of the security
that is applied to normal user objects can be specified for the protected
objects (see Differing Object Type Issue section of this paper for an
explanation of why this is true). Therefore, the only way to assign the
necessary accesses is to give the same level of access to all of the user
attributes rather than specific ones. This issue is specifically relevant in
regards to the Authenticated Users group having read access to all
protected user objects rather than just the general information, public
information, personal information, and web information property sets that is
assigned by default on user objects.

Although read access is generally not considered to be an active
vulnerability because it does not give you the ability to manipulate anything
directly, it does represent access to information that could be utilized as
part of the planning of an attack. Specifically, the fact that there is more
information available to an attacker about an administrative level user
object than a normal one is a cause for alarm. In addition, the ability to
read different information on “protected” user objects versus a normal user
object gives an attacker a way to identify these protected accounts21.

User objects are the only example that I know of within the Active Directory
environment where read access is limited to specific attributes rather than
the entire object. I would guess that this heightened level of security for
user objects would specifically mean that Microsoft felt that allowing read
access to the entire user object represented a security concern. The basis
for this concern may be that providing too much information about user
objects to anyone who is authenticated by the domain (or any domain that
is trusted by the domain) may leave users vulnerable to social engineering.
Therefore, the developers may have specifically designed the security so
that authenticated users would not have read access to all of the
information contained in the user object22. However, this extra precaution is

21 There are actually much easier ways to figure out high value targets in the default security
environment for Active Directory, such as querying Domain Admins for its membership since
authenticated users have read access to the all properties of both the normal and protected
groups by default, but these design failures are the subject for a completely different paper.
22 This is pure speculation as to their motives for the tighter security in this area, I have no
specific reference or confirmation from Microsoft for these statements but it is the only motive that
I can come up with for why this was done.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 20

absent for the most important user objects in the domain. Because the
base reason for this vulnerability is the same as the Differing Object Type
issue, the possible solutions and workarounds for this issue are detailed in
that section.

5.5 Tattooing of Permissions on Protected Objects
The SDProp process is a standalone mechanism that permanently changes
both the adminCount property and the security of the object that it is applied
to. The SDProp process also keeps no internal record of the changes that
it makes. Therefore, once the SDProp process has been run against an
object because it is a member of a protected group, there is no way to
reverse either the adminCount value or the security descriptor that was
overwritten within the SDProp process itself. Permanently changing the
security of an object through a process that cannot be reversed by that
process is referred to as “tattooing” the object security23.

This tattooing of permissions has important ongoing support implications for
the administrators of a network since the security will remain in place even
if the object is no longer part of a protected group. In addition, if the
SDProp process no longer applies to the object, but the security on the
object has not been reversed or inheritance enabled, then neither changes
to the security at the OU level nor changes to the AdminSDHolder will be
applied to the object.

Microsoft recognizes this problem and provides a “solution” for it through a
script that can be run against the domain that resets the adminCount
property to zero for all user objects they have a value of one when the script
is run24. Additionally, this script re-enables inheritance on these user
objects in order to allow management from an OU rather than just at the
object level. Unfortunately, the script stops short of actually resetting the
object level permissions so this solution does not address the fact that the
tattooing has occurred within the object level security.

Microsoft may not consider the fact that the permissioning on the object is
still that of the AdminSDHolder container to be an issue; however it
definitely could be from a security management and operational standpoint.
Remember that the stated purpose of the SDProp process is to limit who
can manage the object. This is a good thing in order to prevent an
escalation of privileges, however in real world terms this means that only a

23 This term is also utilized in the Microsoft lexicon when discussing applying certain permissions
onto objects through GPO such as NTFS, Registry Key, or Service objects.
24 See KB article 817433 - “Delegated permissions are not available and inheritance is
automatically disabled” (http://support.microsoft.com/default.aspx?kbid=817433) for details on the
script.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 21

limited number of people can manage these accounts. If a user is no
longer part of the protected group, and therefore there is no longer a risk for
escalation of privileges, it should be managed by the normal security
processes of the environment in order to limit the total cost of operations
(TCO) of the network. In addition, the script is only applicable to user
objects rather than all types of objects that may have had their security
replaced by the SDProp process.

Since the object level permissions are not reversed by the script, any
environment that is following Microsoft recommendations (relying on default
mechanisms and groups) will not actually have the rights that are
necessary. This is true in relation to the Account Operators group not
having the right to manage the user since its rights come from the default
object level security rather than being inherited from the Active Directory
structures. In addition,the “RAS and IAS Servers” group is given specific
object level permissions through the default user object security in order to
authenticate domain users who remotely access the network, but these
permissions are not assigned to the AdminSDHolder for application to
protected users. Therefore, a user account that has previously been a
protected object does not have the ability to be authenticated through an
IAS server for remote access to the network even after the script provided
by Microsoft has been run.

Microsoft can correct this issue by changing the SDProp process (or
creating a different process entirely) so that it actually queries to see if an
account has an adminCount that is higher than zero, but is not currently
part of a protected group. When it finds one it could reset the adminCount
property to zero on the object and temporarily hold the names of the
accounts that it changed in memory. Once the querying portion of the
SDProp process is completed, the process could then utilize the value of
the defaultSecurityDescriptor for the object type to re-assign default object
level security to the objects that were stored in memory. This would make
the SDProp process totally reversible for user and computer objects and
completely remove this issue for all but the mistakenly protected group
objects.

As a current workaround for correcting this problem with user objects, I
would propose utilizing the script to identify all of the users that need to be
reversed (the script includes pop-ups showing the names of the user
accounts that are having their settings changed) and then changing the
object level security on those user objects back to the default25. In a
Windows 2003 environment, this can be done by clicking the “Default”
button on the “Advanced Security Settings” screen for the user object itself.

25 For a full listing of default user object security descriptor settings and the default permissions
on the AdminSDHolder see the Default Object Level Security Settings appendix of this document.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 22

In a Windows 2000 environment, this would either have to be done by
hand, through a tool (such as DSAcls), or through a specially written script.

5.6 Lack of Control over SDProp Process
While I agree that the idea behind the creation of the SDProp Process is a
very good one given the way that default security within Windows works, I
also believe that there is a large difference between specifying a default
configuration that can be changed to meet the specific needs of an
environment and building in a process that changes basic security
functionality based on group membership. Unfortunately, the SDProp
process does the latter and this can create havoc within a network at times.
To make matters worse some of this havoc has been created by Microsoft
itself because of how it has constantly changed the SDProp process.

According to Microsoft documentation, the scope of the SDProp process
has been continually altered since it was first designed. During the release
candidate phase of Windows 2000, the SDProp process only applied to the
Domain Admins and Administrators groups26. This was apparently changed
when Windows 2000 was released to include the Enterprise Admins and
Schema Admins as well as the original Administrators and Domain Admins
member user and group objects.

Microsoft later extended the scope of the process without any real notice27

to include the following groups as well as the four listed above: Account
Operators; Backup Operators; Cert Publishers; Domain Controllers; Print
Operators; Replicator; and Server Operators28. The process also
specifically controls the security on the default domain administrator
account as well as the “Krbtgt” account, however it is unclearfrom the
documentation whether this change was also imposed as part of a change
in scope or if it always existed. The groups listed above also reflect the
groups managed by the SDProp process in Windows 2003.

The changing of the basic security structure of Active Directory without
notice doesn’t really constitute a vulnerability (especially when the change
actually tightened the security) or is specifically limited to the SDProp

26 Listing from KB article 232199– “Description and Update of the Active Directory
AdminSDHolder Object” (http://support.microsoft.com/default.aspx?kbid=232199).
27 Microsoft did this with no notice or documentation about the change to the SDProp process in a
hotfix for an issue surrounding MaxTokenSize (KB 327825). This hotfix was included in the
release of SP4 and very little notice or documentation was provided to explain the implications of
this upgrade to customers at that point either, however searching at that point would allow you to
find specific KB articles explaining the issues after they occurred.
28 Listing from KB article 817433– “Delegated permissions are not available and inheritance is
automatically disabled” (http://support.microsoft.com/default.aspx?kbid=817433).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 23

process. However, changing basic object level security in Active Directory
with very little notice of the change does constitute a very important general
issue in my opinion and does exacerbate the “Lack of Control” issue with
the SDProp and other processes. This larger issue actually also applies to
other changes that were made with little mention in SP4 such as how
restricted group policy worked before and after the upgrade.

The reason whythe “Lack of Control”issue is applicable to the SDProp
process actually isn’t this larger issue of notice, it’s that Microsoft decided to
specify what will be managed by the SDProp process in the first place
rather than giving administrators the ability to choose how and what this
process applies to. I have discussed this issue with Microsoft personnel
and apparently the discontent over this particular issue is widespread since
the expansion of scope occurred with the introduction of Windows 2000
SP4. According to my conversations, Microsoft is currently working on a fix
for this particular issue that would allow security administrators to choose
which particular groups the SDProp process applies to. However, it is
unclear whether Microsoft will be providing the ability to manage all of the
groups that the SDProp process will apply to; give administrators the ability
to manage all groups that they wish to through SDProp (including customer
created groups with“administrative”rights, but not membership in the
default groups that are currently protected); or only the groups that were
newly included in the latest expansion of scope.

My suggestion for dealing with this issue is more radical than what
Microsoft will probably be providing as a solution (although it has been
passed to Microsoft personnel). This suggestion would be to provide
security administrators with the ability to completely manage the groups that
the SDProp process applies to by allowing the creation of “AdminSDHolder”
objects with specific object level security settings for different adminCount
levels (if a user object was a member of multiple protected groups with
different adminCount values, then the lowest/highest setting would be
applied to the adminCount for that user and the appropriate source object
would be utilized for specifying the security). Doing this would allow an
administrator to specify differing object level security for any and all groups
that they wished or just leave it at the default settings that Microsoft
currently is providing as a requirement. Currently, however, there is no
workaround that will allow you to specify which groups are managed by the
SDProp process that I know of.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 24

6 Appendix A - Default Object Level Security
Settings

Because of how Windows manages explicit versus inherited security, it is
important to understand the default object level security settings for the
different object types in order to understand the issues surrounding the
SDProp process. Although administrators are allowed to explicitly define
security on an object, it is a security management best practice that
administrators utilize containers or OUs to manage security rather than
trying to do so through the objects themselves. Therefore, the security that
is placed on an object at creation is generally the only explicit permissions
that are set and they cannot be overridden from above29.

The tables in the following sub-sections describe the security that is placed
directly on the objects and object types that are relevant to understanding
the SDProp issues. There are a couple of caveats to keep in mind in
regards to the tables of default rights:

The permissions listed in the tables only represent the permissions that
are explicitly set on an object during creation. However, some additional
permissions are assumed to be applicable to the objects that allow
inheritance by Microsoft and other vendors because they are set to inherit
to all child objects from the root of the domain. These would include (but
are not limited to) permissions for the Administrators, Enterprise Admins,
and Pre-Windows 2000 Compatible Access groups on standard user,
group and computer objects.

Unless inheritance to other objects is specifically mentioned the rights
assigned by the default security only applies to the object itself and is not
inherited by any child objects that may be contained within the object type
specified.

Full control permissions in the listings below actually refer to setting all of
the bits that are currently assigned value within the security descriptor of
active directory objects. This is not to be confused with the “full access”
setting that can be conferred through the SDDL, which actually sets a
special bit inside the descriptor. The term full control is utilized to describe
the access rights for different groups because there is effectively no
difference between the actual settings applied and “full access”.

29 Explicit access for an object can be superceded at a higher level by denying a user the ability
to traverse the path to the object (denying full control to a user for an OU that contains the
object). However, this is part of the parent object’s security (rather than the object itself) and
cannot be utilized if that user needs access to any part of the object.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 25

The “Read Control” permission refers to the ability to read the DACL,
group and owner properties of the security descriptor but not the SACL.30

This means that a user with this right is allowed to view the security
settings, the owner and the primary group that are assigned to the object,
but not the auditing settings.

6.1 Computer Objects

Table 1 –Computer Object Default Settings

Assigned to: Permissions

Domain Admins Full Control

Account Operators Full Control

System Full Control

Authenticated Users Read (specifically read all properties, list contents, list
object, and read control)

Cert Publishers Read/Write userCertificate property

Creator Owner Self for service principal name and DNS host name
attributes; Write user account restrictions property;
Control Access to all extended properties; Read
(specifically read all properties, list contents, list object,
and read control); Delete; and Delete Tree

Everyone Control Access for user-change-password property

Print Operators Create/Delete Printers

Self Self for service principal name and DNS host name
attributes; Read/Write to values stored in the Personal
Information property set; and Create Child/Delete Child
for all objects

Windows
Authorization Access
Group

Read tokenGroupsGlobalAndUniversal property
(Windows 2003 Only)

30 This information comes from the Read_Control definition on the standard access rights page of
the MSDN Platform SDK Security (http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/standard_access_rights.asp).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 26

6.2 Group Objects

Table 2 –Group Object Default Settings

Assigned to: Permissions

Domain Admins Full Control

Account Operators Full Control

System Full Control

Authenticated Users Read (specifically read all properties, list contents, list
object, and read control); Control Access to send-to
property

Self Read (specifically read all properties, list contents, list
object, and read control)

Windows
Authorization Access
Group

Read tokenGroupsGlobalAndUniversal property
(Windows 2003 Only)

6.3 User Objects

Table 3 –User Object Default Settings

Assigned to: Permissions

Domain Admins Full Control

Account Operators Full Control

System Full Control

Authenticated Users Read Control; Read for general information, public
information, personal information, and web information
property sets

Cert Publishers Read/Write userCertificate property

Everyone Control Access for user-change-password property

RAS and IAS
Servers

Read for membership, RAS information, user account
restrictions, and user logon property sets

Self Read (specifically read all properties, list contents, list
object, and read control); Control Access for receive as,
send as, and user change password properties;
Read/Write for the email information and web information
property sets

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 27

Assigned to: Permissions

Windows
Authorization Access
Group

Read tokenGroupsGlobalAndUniversal property

(Windows 2003 Only)

Terminal Server
License Servers

Read/Write terminalServer property

(Windows 2003 Only)

6.4 Default AdminSDHolder Security Settings
Inheritance is blocked on the AdminSDHolder object, so the following
explicit settings are the only security that is applicable to the administrative
user objects. For this reason, some items are explicitly set on this object
whereas they are normally inherited from the domain security.

Table 4 –AdminSDHolder Container Default Settings

Assigned to: Permissions

System Full Control

Administrators Full Control minus delete

Domain Admins Full Control minus delete and delete subtree

Enterprise Admins Full Control minus delete and delete subtree

Authenticated Users Read (specifically read all properties, list contents, list
object, and read control)

Everyone Control Access for user-change-password property

Personal Self Control Access for user-change-password property

Cert Publishers Read/Write userCertificate property

Windows
Authorization Access
Group

Read tokenGroupsGlobalAndUniversal property

(Windows 2003 Only)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 28

Assigned to: Permissions

Terminal Server
License Servers

Read/Write terminalServer property

(Windows 2003 Only)

Pre-Windows 2000
Compatible Access

These permissions are inherited to all user and
inetOrgPerson objects that are children of the object31.

Read (specifically read all properties, list contents, list
object, and read control) and Read Property for the
remote access information, general information, group
membership, account restrictions, and logon information
property sets.

31 These permissions are effective for any user or inetOrgPerson objects that are stored within
the AdminSDHolder container itself, but are non-effective when applied directly to user or group
objects. See the Differing Object Type Issue section of this paper for a full explanation. Also, the
inetOrgPerson object type is only available in Windows 2003 and later domains.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 29

7 Appendix B - Discussion of Technical Issues
Surrounding Adjusting the Schema
I want to note that this appendix is not a technical discussion of all issues
surrounding the schema, but rather it is only a discussion of the ramifications
of utilizing a temporary schema adjustment to allow the assignment of
permissions to attributes on the AdminSDHolder container. Regrettably,
Microsoft has so thoroughly convinced people of the power and danger of the
schema that even the mere mention of editing or changing values within it
sends otherwise thoughtful administrators running in panic. Sadly, I am old
enough to remember way back in the days of NT 4.0 when the thought of
editing the registry did the exact same thing (mostly because Microsoft
constantly screamed that editing the registry could cause system wide
issues). This does not mean you shouldn’t have a healthy amount of respect
for the schema or that you should randomly change things without knowing
what you are doing, however the thought of utilizing the schema to improve
your environment should not be something that is immediately rejected out of
blind fear and ignorance.

One of the biggest misconceptions about the schema is that you cannot
reverse any changes you make to it. This is based on the fact that you
cannot remove any schema extensions, but this is very different from the
schema adjustment that I am referring to in this paper. An extension is the
addition of a new attribute or object type to the schema partition. Once this
addition is made to the environment, Microsoft will not allow you to remove
these extensions because there is no way to know whether any objects are
actually utilizing and/or storing information about the extended attributes or
objects within Active Directory. Since leaving this information within Active
Directory is the equivalent of having some old and useless information within
a database (we all know that would never happen), and removing the
attribute or object type does constitute a risk, Microsoft believes that it just
isn’t worth it to remove this extra information and I agree with them.

Although most people utilize the terms schema modification, change, or
adjustment interchangeably with schema extension, you should realize that
very few changes to the schema actually represent an extension. This is
specifically the case in the adjustment that I proposed as part of the
workaround to the Differing Object Type issue. This adjustment would
temporarily relate the attribute to the container class. This relation would
allow you to assign permissions for a user or group to have read or write
access to the property on the AdminSDHolder, but has almost no real
implications from an Active Directory perspective.

A schema extension, on the other hand, can have performance and storage
implications. This is not because of what the extension actually does to the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 30

data table within the NTDS.dit file that acts as the storage mechanism for the
Active Directory database, but rather because of the additional data that
could be stored there. Microsoft describes how the data table works in the
following way:

“The data table can be thought of as having rows (each representing an
instance of an object, such as a user) and columns (each representing
an attribute in the schema, such as GivenName). For each attribute in
the schema, the table contains a column, also called a field. Field sizes
can be fixed or variable. Fixed-size fields contain an integer or long
integer as data type; variable-size fields typically hold string types (for
example, Unicode strings). The database allocates only as much space
as a variable-size field needs: 16 bits for a 1-character Unicode string,
160 bits for a 10-character Unicode string, and so on.”32

Therefore, the extension of the schema to add a new attribute to the
environment does not necessarily grow the database very much, but it does
allow the data table (and thus the NTDS.dit database) to grow exponentially
if the new attribute is utilized to store data. Nevertheless, this new field
within the data table is created during the extension and is only utilized when
data is stored in the attribute for an object.

Usually, an adjustment to the schema consisting of relating an optional
attribute to an existing object class also would have this same kind of impact.
The relation of an existing attribute to a class actually occurs within the
schema table of the NTDS.dit database, rather than the data table, and
consists of a single additional entry in the object class’ “row”. However, the
implications of making this kind of change on a permanent basis would be
that the attribute would be available for storage of data for all objects of that
class, and the storage of that data would grow the data table in the same
way that the original extension would have.

Fortunately, the temporary schema adjustment that is relevant to this issue
would not require the storage of any data against the related attribute of the
AdminSDHolder or any other container object. This adjustment would only
be utilized to assign the permission to the AdminSDHolder, and then the
attribute would be unrelated from the class thus allowing no storage of
information against that attribute to occur. Therefore, the only actual impact
to the NTDS.dit file during this procedure would be a temporary increase in
the size of the schema table for the assignment of the optional attribute to the
class, and an increase in the data table equivalent to the size of a single ACE
being added to the ntSecurityDescriptor attribute for the AdminSDHolder
object.

32 Quoted from “Optimizing Size Requirements for Growth in Directory Service”
(http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/activedirectory/ma
intain/adsize.mspx).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 31

8 Appendix C –How to Assign Permissions to
User Attributes Through the AdminSDHolder
The following are the step-by-step instructions for assigning permissions for
an account or group to write to a specific attribute on the AdminSDHolder
container so that these permissions can be replicated to the user objects
protected by the SDProp process. Before beginning, the following must be
true:

 The User must be utilizing the server that holds the Schema Master
FSMO Role for the Forest (this is not necessarily a requirement for
editing the schema, but the steps assume that the operation is being
done locally).

 The Active Directory Schema MMC must be available (this requires
that the schmmgmt.dll is registered as a service on the server, see
knowledge base article 285172 for detailed instructions)

 The ability for the schema to be updated from the server must be
turned on (see knowledge base article 285172 for detailed instructions)

 The User must be a member of the Schema Admins group

8.1 Step 1 –Relating the Attribute to the Container Class
Utilize the following steps to relate the necessary attribute to the container
class:

1. Open the Active Directory Schema MMC by doing the following:
a. Start an MMC from the start menu by choosing Start Run
and typing “MMC” in the command box

b. Select the CTRL + M key combination
c. Click the “Add” button in the “Add/Remove Snap-in” window
d. Double-click the “Active Directory Schema” entry in the “Add

Standalone Snap-ins” window
e. Clickthe “Close” button in the “Add Standalone Snap-ins”

window
f. Click “OK” in the “Add/Remove Snap-in”window

2. Navigate to the container class in the left hand pane by
expanding “Active Directory Schema [%Domain%]” and
“Classes”

3. Right-click “container” in the left-hand pane and choose
“Properties” from the pop-up menu

4. Select the “Attributes” tab

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 32

5. Click the “Add…” button next to the Optional window
6. Within the “Select Schema Object” window, select the attribute

that you wish to secure through the AdminSDHolder container
7. Click the “OK” button in the “Select Schema Object” window
8. Click “Apply” and confirm that the attribute that was selected
appears in the “Optional” attribute window

 Repeat the previous six instructions to add additional
attributes to the container class

9. Click “OK” to closethe“container Properties” window
10. Close the MMC (I suggest saving it as this point, because you

will need it again later)

8.2 Step 2 –Make Attribute Viewable
Utilize the following steps to make the new attribute available through the
Active Directory Users and Computers MMC:

1. Open the dssec.dat33 file utilizing notepad by choosing Start 
Run,typing “dssec.dat” in the command box, and selecting
notepad from the available programs (if necessary). If this does
not work because the path statement has been modified use the
following procedure:
a. Open Windows Explorer by right-clicking on the start menu
and choosing “Explore”

b. Navigate to the %SystemRoot% and choose the “System32”
directory in the left hand pane

 By default the %SystemRoot% in Windows 2000 is the
C:\Winnt directory, in Windows 2003 it is C:\Windows

c. Double-click the “dssec.dat” file and select notepad from the
available programs (if necessary)

2. Save the original file as dssec.bak by using the “File”  “Save
as…” command before continuing

3. Search for the user section of the data file, it should begin like
the following string:

33 For information about the role of the dssec.dat file and how to manipulate the viewable
attributes for the Active Directory Users and Computers MMC see webpage #3 from the “Security
Active Directory” chapter of the Inside Active Directory: A System Administrator's Guide available
online at the Windows IT Library website
(http://www.windowsitlibrary.com/Content/667/04/3.html).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 33

[user]

4. Find the attribute that you assigned to the container class in
Step1 and copy the string to memory by highlighting it and using
the CTRL + C key combination

5. Search for the container section of the data file, it should begin
like the following string:

[container]

6. Under the container section, paste the attribute string to the
proper place in alphabetical order making sure that each
attribute is on its own line inside the file

7. If necessary, change the value that the attribute is equal to from
“7” to “0” so that it appears as the following: %Attribute%=0

8. Save the edited file as dssec.dat by using the File  Save as…
command

9. Close and then Re-open the dssec.dat file to confirm that your
edit saved properly.

8.3 Step 3 –Reboot
In order for both the change in the container class and the edit of the
dssec.dat file to be incorporated into memory, the server must be rebooted
before continuing.

8.4 Step 4 –Assign Permissions
Once the server has rebooted and you have logged on with rights that
would allow you to edit the security on the AdminSDHolder container it is
possible to utilize one of the two following methods to assign the
permissions. If you are only adding a single ACE, I recommend utilizing the
first method. However, the second is more useful if you have many
changes that need to be made; you need to specify these changes for
someone else to apply; or you want some type of repeatable action that can
be tested in a lab and then applied to different environments.

8.4.1 Active Directory Users and Computers Method
Utilize the following steps to assign the permissions to the attribute
through the MMC:

1. Open the Active Directory Users and Computers MMC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 34

 These steps require that the MMC has “advanced
features” enabled. If there is not a checkmark next to
“advanced features”in the view menu of the MMC then
select this option before continuing.

2. Navigate to the AdminSDHolder container in the left hand pane
by expanding “Active Directory Users and Computers
[%DomainController%]”; “%Domain%”; and “System”

3. Right-click the AdminSDHolder container and choose
“Properties” from the pop-up window

4. Select the “Security” tab in the “AdminSDHolder Properties”
window

5. Click the “Advanced” button within the “Security” tab
6. Click the “Add” button on the “Permissions” tab of the
“Advanced Security Settings for AdminSDHolder”window

7. Type or select the name of the user or group that you wish to
have access to the user attribute and click “OK” to bring up the
“Permission Entry for AdminSDHolder” window

8. Select the “Properties” tab in the “Permission Entry for
AdminSDHolder” window

9. In the “Permissions” control area of the “Permission Entry for
AdminSDHolder” window, find the attribute that you wish to
assign permissions for and check the appropriate boxes

 If the attribute does not show in the window, and you
are setting this permission for a domain other than the
forest root, then you may have to wait for the global
catalog to replicate the schema change before being
able to complete the previous step. If you are doing
this for the forest root, or you have waited long enough
for the Global Catalog to replicate, then go back to
Steps 1 and 2 of the procedure to make sure that the
changes you made are still intact.

10.Click “OK” and check the “Permissions Entry” window to make
sure that the permission was assigned correctly

11.Click “Apply” on the “Advanced Security Settings for
AdminSDHolder” window to make the change permanent

 Repeat the previous six instructions to add permissions
for additional groups or users.

12.Close the “Advanced Security Settings for AdminSDHolder”
window and insure that all settings are applied by clicking “OK”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 35

13.Close the “AdminSDHolder Properties” window and insure that
all settings are applied by clicking “OK”

8.4.2 DSAcls Method
DSAcls34 is a very powerful command line tool that is available as part of
the support tools for both Windows 2000 and Windows 2003 Servers. In
order for you to use these instructions, the support tools must be loaded
on the server that you are making the changes from. Also, a simple
batch script with multiple commands can be easily created to cycle
through the setting of multiple ACEs. The following command should be
used to assign a permission to the attribute through the command
prompt or script (the specific separators in the command must be exact
in order for the command to work):

dsacls "%Path%" /G "%Domain%\%SecurityPrincipal%:RPWP;%Attribute%"

Table 5 –DSAcls Key

Variable Explanation

dsacls The command for calling the dsacls.exe program from
the support tools folder.

%Path% The full path to the object. An example of a path for the
“test.domain.com” domainwould be
“CN=AdminSDHolder, CN=System, DC=test,
DC=domain, DC=com”.

/G Grant Access

%Domain% The NT style name of the domain. An example would be
“Test” rather than “test.domain.com”.

%SecurityPrincipal% The name of the user or group that you want to provide
access to. An example would be“Backup Operators”.

RP Read Property

WP Write Property

%Attribute% The name of the attribute that you are specifically trying
to add the access to.

34 The information about DSAcls provided here is specific for this process, however DSAcls is a
general tool that can be utilized to secure any object within active directory through a script or
from a command line. For more information, see knowledge base article 281146 - How to Use
Dsacls.exe in Windows 2000 (http://support.microsoft.com/default.aspx?scid=kb;en-us;281146)
or use the “DSAcls /?” command for the help menu.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 36

8.5 Step 5 –Wait for SDProp Process to Replicate
Security
The SDProp process replicates the security from the AdminSDHolder to the
protected user objects on an hourly basis. According to knowledge base
article 251343 - Manually Initializing the SD Propagator Thread to Evaluate
Inherited Permissions for Objects in Active Directory
(http://support.microsoft.com/default.aspx?scid=kb;en-us;251343) it is
possible to initiate the SDProp process in a Windows 2000 environment,
however I have not been successful utilizing the instructions in this article
against Windows 2003. In either case, you should confirm that the new
ACE is applied to a protected object (such as the default domain
administrator account) before declaring that the assignment of rights was
successful.

8.6 Step 6 –Unrelating the Attribute from the Container
Class

Utilize the following steps to unrelate the attribute from the container class:

1. Open the Active Directory Schema MMC that you saved earlier
or go back to step one and follow the instructions to create an
Active Directory Schema MMC.

2. Navigate to the container class in the left hand pane by
expanding “Active Directory Schema [%Domain%]” and
“Classes”

3. Right-click “container” in the left-hand pane and choose
“Properties” from the pop-up menu

4. Select the “Attributes” tab
5. In the Optional window of the “Attributes” tab, select the attribute

that was added to the container class earlier and click the
“Remove” button (repeat for all attributes that were added in
step 1)

6. Click “Apply” and confirm that the attributethat was selected no
longer appears in the “Optional” attribute window

7. Click “OK” to close the “container Properties” window
8. Close the MMC

8.7 Step 7 –Reboot
In order for both the change in the container class to be incorporated into
memory, the server must be rebooted. It is not necessary to change the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 37

dssec.dat file back to its original form because the attribute will not show in
the MMC if it is not related to the object type. In addition, leaving the
dssec.dat file as it is allows you to skip that step if you ever have to change
the attribute security again. Once the server has rebooted, the process is
completed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 38

9 References Section
The following sources were utilized for both background and specific
references within this paper:

“Best Practice Active Directory Design for Managing Windows Networks: The
Best Practices OU Model.” 2004. URL:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologie
s/activedirectory/plan/bpaddsgn.mspx (29 June 2004).

“Knowledge Base Article 232199: Description and Update of the Active
Directory AdminSDHolder Object.” 8 April 2004. URL:
http://support.microsoft.com/default.aspx?kbid=232199 (14 May 2004).

“Knowledge Base Article 251343: Manually Initializing the SD Propagator
Thread to Evaluate Inherited Permissions for Objects in Active Directory.” 24
Sept. 2003. URL: http://support.microsoft.com/default.aspx?scid=kb;EN-
US;251343 (14 May 2004).

“Knowledge Base Article 281146: How to Use Dsacls.exe in Windows 2000.”
18 Dec. 2003. URL: http://support.microsoft.com/default.aspx?scid=kb;en-
us;281146 (14 May 2004).

“Knowledge Base Article 318180: AdminSDHolder Thread Affects Transitive
Members of Distribution Groups.” 8 April 2004. URL:
http://support.microsoft.com/default.aspx?scid=kb;en-us;318180 (14 May
2004).

“Knowledge Base Article 327825: New Resolution for Problems That Occur
When Users Belong to Many Groups.” 26 Sept. 2003. URL:
http://support.microsoft.com/default.aspx?kbid=327825 (14 May 2004).

“Knowledge Base Article 817433: Delegated Permissions are not Available
and Inheritance is Automatically Disabled.” 20 May 2004. URL:
http://support.microsoft.com/default.aspx?kbid=817433 (29 May 2004).

Kouti, Sakari, and Mika Seitsonen.“Securing Active Directory.” Inside Active
Directory: A System Administrator's Guide. Boston: Addison Wesley
Professional, 2001. Windows IT Library. URL:
http://www.windowsitlibrary.com/Content/667/04/3.html (29 June 2004).

“MSDN Platform SDK Security: Order of ACEs in a DACL.” May 2004. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/order_of_aces_in_a_dacl.asp (20 May 2004).

“MSDN Platform SDK Security: Read_Control Definition.”Feb. 2004. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/standard_access_rights.asp (7 March 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Protecting Administrative User Objects: How Microsoft Got It Wrong Mike Borkin

Page 39

“MSDN Platform SDK Security: Security Glossary.” Feb.2004. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/s_gly.asp (7 March 2004).

“Optimizing Size Requirements for Growth in Directory Service.” 2004. URL:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologie
s/activedirectory/maintain/adsize.mspx (29 June 2004).

