
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SECURITY IN SCRIPTING:
SIGNIFICANT THREATS IN INSIGNIFICANT SCRIPTS

GIAC Security Essentials Certification (GSEC)
Practical Assignment, Option 1

June 27, 2004

Fred Chagnon

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ABSTRACT
“Security is everybody’s business. You may ask yourself, “Why should I take
security seriously? I don’t have anything on my system that’s worth exploiting.”
Well, that’s exactly what the bad guys want you to believe.”

-- Randal L. Schwartz

There is a scary reality that’s becoming ever more prominent as we continue to
see an increasing amount of software vulnerabilities, and the worms and Trojan
programs that exploit them. That reality is that most programmers do not possess
the necessary awareness to program securely. Security, and security awareness
is a mindset that has not been commonly adopted in the world of software
development. Having spent the last few years of my life scanning multiple
security awareness mailing lists by day (part of a UNIX system administrator’s
duties) while being schooled in system and application programming at night, this
gap in knowledge and education has been made very clear to me. Programmers
are not taught rudimentary principles of security surrounding programming at
university or college, and many of them may go their entire development careers
without so much as a thought on what really happens behind that innocent
printf() statement.

The good news is that a quick search on the Web for information on buffer
overflows, format string overflows, adjacent memory attacks, and other stack
smashing tactics will return a plethora of information on the subject. This is no
surprise when you consider all the hype surrounding these types of attacks lately.
However, most of these problems deal specifically with large applications written
in C or C++. The purpose of this paper, however, is to look at the security issues
surrounding the more overlooked, under-rated and innocent programs that are
often the wrappers or glue that keep the large applications running; those humble
scripts written in the Bourne shell or Perl.

Script authors (usually software developers, or system administrators) often pride
themselves on their unique ability to craft a fancy script to do a simple or
complicated task before it’s time for lunch. However, more often than not, that
undocumented, obscure one or two liner’s function has impressed someone in
management, and the script ends up as a frequently scheduled task (a cron job)
without a further shred of effort to check for potential risks. It is for this reason
that secure scripting practices be given the attention they deserve, for the
potential damage of exploitation in a small script can be just as severe as that of
a largely commercial application.

Below we will discuss the most common security concerns that present
themselves in simple scripts, using as examples, both a low-level scripting
language (the Bourne Shell) and a high level scripting language (Perl).
Comparing these two very common scripting languages side by side allows us to
focus on the implications of the security issues at hand, rather than get too
wrapped up in the inner workings of a single scripting language. Furthermore,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

this comparison should give the reader some ideas to consider when deciding
which of the two languages is more appropriate for the task at hand.

The ideal audience should boast a working knowledge of both the Bourne shell
and Perl, and knowledge of a basic UNIX environment is assumed.

SECTION A -- INPUT BASED VULNERABILITIES

Input is essentially the user’s keyto controlling a program in execution. Input to
programs can be directly prompted, can be supplied as an argument, read from a
configuration file, or even come in more subtle forms such as environment
variables. Exploits relating to input vulnerabilities, such as the famous buffer
overflow, occur because the program assumed the data to be of a certain type,
and the attacker supplied something unexpectedly different. These types of
vulnerabilities are the single most common types of exploits being used today
and can lead to all kinds of problems, most commonly the execution of other
programs in memory at escalated privilege levels (i.e. super user).

While it’s enough to say that input data should always be validated before used,
let’s look at few ways thatscripts can be better structured to not fall victim to
these types of attacks in the first place.

Avoid‘Shelling Out’unnecessarily
Scripting language like the Bourne shell and Perl are often used to batch a series
of other programs together. This is what makes them incredibly useful as glue
languages. However, in many cases, this involves spawning a shell, which can
leave the program open to an unforeseen input vulnerability. Both of these
scripting languages have multiple ways in which external programs can be
called. In the case of the Bourne shell, where there aren’t high level alternatives
to shell spawning, we’ll explore some of the safety measures that can be put in
place to prevent unforeseen behaviour. On the other hand, we’ll be less forgiving
with Perl and demonstrate the alternatives to ‘shelling out’.

Both Bourne shell and Perl support the syntax of launching a program by
enclosing the command in backticks. A command enclosed in backticks spawns
an separate system shell (usually the Bourne shell, but can vary depending on
the underlying platform) to launch its program, and the output can be captured in
a variable, a pipe, or simply output to the screen. A savvy user can take
advantage of this spawned shell process to gather data the programmer might
not have expected. Take this innocent line of code for example.

$data=`cat /usr/prog/$datasource`

This line of Perl code looks like an innocent way of storing the contents of a file
into a variable (the equivalent Bourne shell code would lack the first $). However,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

suppose an attacker knew of the quick and dirty way in which this task was done,
and managed to supply this as the value to the $datasource string:

“foo; cat /etc/passwd”

This value will be passed verbatim to the shell being spawned. The effect: The
attacker has now populated the $data variable with the contents of the file
/usr/prog/foo as well as /etc/passwd, the systems’password file, because
this is what the spawned shell will have executed:

cat /usr/prog/foo; cat /etc/passwd

Truthfully, in most cases, gaining access to the password file of a system isn’t
always serious enough to be considered an attack (account passwords are
typically stored in less accessible locations), especially if the user running a shell
script on the local machine and has read access to the file anyway. However,
suppose this was a CGI script running on a web server? Causing a CGI script to
output the contents of the web server’s password file in a browser should be
serious enough to keep an administrator up at night.

Bourne shell script authors can prevent the unexpected processing of meta-
characters (such as the semi-colon illustrated above) when launching commands
by suffixing the command with the double-dash switch (--). This switch is a way
to explicitly divide a program’s switches from its arguments. This prevents an
attacker from being able to supply the command with a bogus argument, such as
a file beginning with a dash, in an attempt to trick the program into using an
unexpected switch.Let’s look at the implication.

rm –i $somefile

This command would serve to remove $somefile but the –i switch tells the
command to prompt the user first. What if the value $somefile began with a
-f before supplying a file name, effectively causing our script to launch into an
‘rm –i –f filename’? This force switch would override the interactive
switch (expected behaviour described in the rm man page) and indeed not
prompt the user before deleting any files. This exploit can be averted with this
small modification:

rm –i -- $somefile

Now the shell is aware of the clear delineation between the switch (–i) and the
argument ($somefile) and will not be convinced differently with creatively
crafted input. If the above exploit is attempted again, it will correctly expect that ‘-
f’ is actually the name of a file being supplied to the rm command.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Perl programmers have the alternative of using the system() function to launch
external programs, rather than resort to backticks, however this method, when
not implemented properly, can still spawn a shell and thus be susceptible to all
the problems we illustrated above. (with Perl, the shell invoked is that from the
$ENV{SHELL} environment variable). However, unlike the backticks, the
system() function boasts a bit more intelligence. It accepts, as arguments, a list
starting with the name of the program, followed by any command line arguments.
It will spawn a shell only if its first argument contains any special meta-characters
that require a shell for interpretation. If no such character exists, Perl uses the
safer, more efficient execvp()call to handle the process. Let’s look at how the
same command could be executed in different ways, and explore the
implications.

system (“ls –al”);

Here we’re giving Perl the well-known command of listing the contents of the
current working directory. However, because, in our first and only argument,
we’ve used meta-characters that only a shell can deal with, Perl will pass the
command to a spawned shell to do the work. This can lead to the same problem
we explored above using backticks. Instead, we can achieve the same goal by
doing this:

system (“ls”, “–al”);

Now we’ve avoided shelling out, because our first argument does not contain any
meta-characters, and the rest of the arguments can safely be handled by the
execvp() library.

There are several other ways in which Perl programmers can avoid using the
shell is which mainly demands familiarity with the language’s library of built-in
functions. It’s unnecessary to launch a call to date when Perl’s
localtime()function can provide the same data. Similarly, the above example
of using cat to store the contents of a file in a variable would have been better
handled using Perl’s built-in file handling functions. Failing Perl’s library routines,
there’s the possibility that a perl module can be used in place of a shell tool. The
Comprehensive Perl Archive Network (http://www.cpan.org) contains a plethora
of modules whose functionality may serve to replace that of a common UNIX
cool. It’s safer to build a program dependant on the Net::Whois perl module
rather than risk spawning a shell to gather and parse the output of a whois
command.

Sanitize your Environment
Looking back at our previous example of launching the ls –al command, one
aspect remains unclear: Just which ls are we calling? Is it /bin/ls or possibly
/usr/bin/ls? Since it’s not explicitly set, the system looks at the program
owner’s $PATH environment variable to determine where to find the ls

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

program. If an attacker has altered the $PATH environment to point to a directory
containing a rogue ls binary, the system can be compromised. This is known as
a PATH exploit.

Programmers should never assume where a program being will be executed
from. Rather the $PATH environment variable should be explicitly set very early
on in the script when external programs are going to be used.

In Bourne Shell, something like this will suffice:

PATH=”/bin:/usr/bin:/usr/local/bin:/opt/bin”
export $PATH

or alternatively in Perl:

$ENV{PATH} = “/bin:/usr/bin:/usr/local/bin:/opt/bin”

However, one could simply refer to programs by their absolute paths.
Alternatively if there are several references to several programs, store the
absolute paths in variables at the top of the script and refer the binary by its
variable name.

Furthermore, script authors should also take care to explicitly define the $IFS
environment variable. This less familiar variable defines the characters
considered as white space characters when expanding an expression into a list.
If an attacker sets this variable to something sneaky, the shell can drastically
misinterpret its commands. Even unsetting it as done below will suffice.

IFS=””; export $IFS

While this is mostly applicable to the Bourne shell, remember that a perl script
running out of a crontab will inherit it’s user’s environment which includes
variables like $ENV{PATH}, $ENV{IFS}, and $ENV{SHELL}. Therefore, perl
scripts running out of cron should have these variables defined explicitly. In fact,
the perlsec man page suggests the following environment cleansing line of code:

delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

Perl users need to be weary of the @INC array for reasons similar to those
discussed above with PATH exploits. The @INC array contains the list of
directories that perl will search through when it encounters a require or use
command; these directories are typically the locations of your perl bases as well
as any modules that may be installed. If an attacker alters this list, one can not
be sure which modules is being loaded. Manipulation of the @INC array is done
with the use of the lib module which ships with is part of the perl base system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Validate your input
By now the reader should be convinced that any and all externally influenced
input should be validated before it is used. However, the science of proper input
validation techniques is quite a vast topic, and is could be the focal point of an
entirely different research paper. Consider this though: If input validation is even
a faint concern for the task at hand, Perl’s taint mode may be the answer.

Perl’s taint mode is invoked when Perl is called with the –T switch (either from
the command shell or in the script’s shebang line). It is also invoked
automatically when the script’s real user or group ID differ from their effective
user or group ID. This is covered in greater detail later when we discuss setuid
scripts.

The purpose of taint mode is to ensure that foreign data derived (input from the
user, the environment or other sources) be considered tainted, and therefore not
be permitted to affect anything else outside the program. Essentially, before
tainted data can be used, it must be validated, or else an error is generated at
compile time. For example, if one still relied on their derived $PATH environment,
despite everything covered above, taint mode would provide the appropriate wrist
slap by failing to execute the insecure code:

Insure $ENV{PATH} while running with –T switch at
./tainted_env.pl line 2, <STDIN> chunk 1.

Explicitly setting the $ENV{PATH} would fix this because the variable data would
be no longer considered foreign to the program. Validation occurs when a
substring is extracted from the tainted data, which could be the result of a regular
expression or other validation mechanism.

SECTION B–OTHER SECURITY CONCERNS

While input based attacks are clearly the most common exploits used on
programs today we can’t neglect the importance of two other glaring security
holes often found on our innocent scripts. They are the race condition, and the
setuid bit.

While any budding young programmer is most likely able to define a race
condition, even veteran programmers overlook these security bugs in their code.
Race conditions remain a pretty popular and serious security concern, and
unfortunately, are not limited to C/C++ applications.

Though race conditions can manifest themselves in various situations, the type
most applicable to our discussion is the Time-Of-Check-Time-Of-Use (TOCTOU)
scenario. This type of race condition exists when there is the possibility that a
change can occur between a pair of non-atomic operations. The most common
occurrence of this is accessing files for input or output.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The setuid bit isn’t seen as a vulnerability because the setuid bit is activated
explicitly by the programmer or system administrator. However, if a script running
setuid is vulnerable to other forms of attack, specifically those mentioned above,
a setuid program is in a far worse position to do damage to the system. We
discuss methods of avoiding setuid below.

The Symlink Bug
Often dismissed as a non-critical bug, the symlink bug is quite a low-tech that
takes advantage of a TOCTOU race condition, or the complete failure to check
for the existence of a file before opening it for writing. Consider the following:

1. #!/bin/sh
2. if [-x /tmp/tempfile]; then
3. echo “This is a temp file.” > /tmp/tempfile
4. fi

Although, we can applaud the script author’s effort to at least check for the
existence of a file, the above code is still susceptible to a symlink bug. Suppose
an attacker was able to execute this line on the shell between the time that line 3
and line 4 were executed by the system.

ln –s /bin/sh /tmp/tempfile

Now the attacker will have linked /tmp/tempfile to /bin/sh. If the script was running
with sufficient privileges to overwrite to this file (i.e. as root), the Bourne shell
program would be effectively deleted from the system, making shell script
execution impossible. Furthermore, any user with this shell in the system
password file (the default shell for root on BSD and some Linux systems) would
be unable to login at all.

Of course, this is just a theoretical example, and the attacker would have to
possess the timing of a modern-day Houdini to exploit it. In practice however,
hackers will typically bog the system down with resource hogging processes and
Denial of Service attacks before attempting to launch a timing attack like the one
above. So it’s not as far fetched as one might think.

The theoretical solution to this bug is to check for a file’s existence and open it for
writing in one system call, so the processor doesn’t have time to execute another
operation. Unfortunately, this isn’t always possible in shell or perl scripts.
However, script authors can take precautions with their temporary data by
arranging for a safe place to do the work, and by using unpredictable filenames.
Best practices for playing with temp files are covered in the next section.

Create Secure Temp Files
Temp files are used very often in scripting practice; perhaps too often. The vast
majority of the time, temp files are blindly written to without even so much as a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

check to see if the file even exists. We’ve already seen the dangers that can
happen with TOCTOU race conditions even when such a check is made. It
should also be evident in the above example that the filename /tmp/tempfile
isn’t exactly what we’d call unpredictable. A symlink trap could have been setup
on this predictable filename long before it is ever accessed, just begging to be
accessed by the next insecure script. Given all these concerns, what steps can
we take to ensure that our tempfiles aren’t vulnerable to symlink attacks?

A start would be to avoid using tempfiles in the first place. We’ve already
mentioned that tempfiles are used more frequently then they should be. The
programmer is encouraged to consider alternatives to storing data in a file if
possible. Data can be stored in a local variable or exported in an environment
variable. Output could be left write to STDOUT, which is usually the terminal, but
this option also leaves the data able to be sent through a pipe as well. For
example, if the purpose is to produce some output in a file, and then print the file,
why not just pipe the output right to the lpr command, and remove the middle-
man?

Consider the /tmp directory on a system The Badlands. Any user can read it, and
more importantly, any user can write to it. If the script must use the /tmp directory
at all, have the script create a directory first, with secure permissions to do all it’s
work within. The reason a directory is favourable to a simple file is because the
mkdir command will fail if the directory already exists, even as a symlink. Also,
both the Bourne shell and Perl use the $$ variable to signify the script’s current
process ID. We can use this to assist in making the directory name unique by
having our script execute the following command:

(umask 077 && mkdir /tmp/somename.$$/) ||
 echo “Could not create directory!” 1>&2; exit 1

Perl programmers who are considering having their script invoke a shell to
perform the above command had better hang their heads in shame.

my $tmpdir=”/tmp/somename.$$.$̂T”;
mkdir ($tmpdir, 0700) or

die “Could not create directory: $!\n”;

Note in the Perl example, we’ve also used the BASETIME variable ($^T) as a
way to further randomize the directory name.

With the above checks and bounds in place, we’ve created a safe haven for data
manipulation that is not susceptible to sym link bugs or other race conditions.
There are however, utilities built specifically for this problem. We’ll take a look at
them, and compare their features to our own homegrown solution.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The mktemp utility
A good solution for Bourne shell programmers is the use of mktemp. mktemp is a
program written by Todd Miller specifically designed for the proper handling of
tempfiles and directories. It is available for free at http://www.mktemp.org/.
mktemp’s main purpose is to add an element of chaos to the user’s selected file
name by suffixing random characters to the filename (or directory name given the
–d option). Our previous exercise could have been emulated by mktemp in the
following manner:

(umask 077 &&
directory = `mktemp –d /tmp/somename.XXXXXXX`)

mktemp replaces our given X’s with it’s randomness, thus generating a nicely
unpredictable string, which it then outputs to STDOUT.

The only real downside to mktemp is that it doesn’t ship with someolder versions
of Linux or FreeBSD, and isn’t currently present at all on a default install of
Solaris. If portability is your concern, mktemp may not be a dependency you want
to introduce to your script. In this case, the exercise with mkdir should suffice.

The File::Temp perl module
Perl programmers have an elegant way to manage tempfiles securely.
File::Temp is a module that ships with a base perl install, thus negating the need
to ensure it is installed separately. Among its many features, it can be used to
create a single random tempfile (the filename and file descriptor are returned at
the same time to prevent further race conditions) or, as we’ve done above, it can
also be used to generate a random directory. Let’s have another crack at the
above exercise to see how File::Temp would handle it.

use File::Temp qw/ tempdir /;

my $dir = "/tmp/somename.XXXXXXXX";
$tempdir = tempdir ($dir);

Notice that File::Temp uses a very similar input method to mktemp, in that it uses
the X’sas a template to determine where to place the randomized characters.

Both mktemp and File::Temp are highly recommended when dealing with the
creation of temporary directories. However, in the event that the script will be
used in an environment where the presence of these utilities cannot be
guaranteed, the fallback method of using mkdir with a suffixed PID tag will
suffice.

Avoid setuid scripts like the plague.
A script in execution runs with the privileges of the user who executed it. These
privileges are also known as the real UID and the real GID. CGI scripts running

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

on a webserver will be owned by the user who owns the webserver process (this
is why webservers should never be run as root, but rather by a non-privileged
user like nobody). However, scripts can be setuid which imbues them with the
ability to exceed the privileges of the real UID. These privileges are also known
as the effective UID and the effective GID. The UNIX passwd program is the
most commonly referred to example of a setuid program; it allows an
unprivileged user to change data reserved only for the root user (the user’s
password).

While having this kind of access can be handy, it is extremely dangerous. Shell
scripts should never ever be setuid. In fact, some Linux and BSD systems
completely disable the ability for shell scripts to run setuid in the first place. In
most cases, making a script run setuid is an ad-hoc workaround put in place to
avoid a more complicated solution. Up to this point we’ve already seen several
security problems that could plague a shell or perl script, but operating systems
in the past have dealt with bugs at the kernel level which exploited setuid scripts.

As we discussed before, a perl script is automatically running in taint mode when
it runs setuid. This provides us with a bit of relief as it ensures that malicious
input or a poisoned environment has less of a chance of leading to exploitation,
but it’s not perfect. Unfortunately not all perl function calls acknowledge the
presence of taint mode, so the programmer isn’t absolved of all secure
responsibility.

On the other hand, astute programmers should recognize the benefit in Perl’s
ability to ensure that a script is not running setuid when a critical task is about to
be performed (most notably file handling). Since the real and effective UID and
GID are stored in special variables, they can (and should) be explicitly defined.

$> = $< # sets the effective UID to the real UID
$) = $(# sets the effective GID to the real GID

Regardless of some of the advantages that Perl may have over the Bourne shell
with respects to setuid scripts, making a perl script setuid should be avoided just
the same. Script authors should leave setuid business to C/C++ applications.

CONCLUSION

We focused on the scripts in this discussion to show that it doesn’t take a large
enterprise class application to create a vulnerability serious enough to
compromise an entire system. That even a tiny one line script, when not
implemented properly, can lead to serious damage.

Shell scripts have their place. They’re great in an environment where the users
and the data can be trusted. (i.e. startup/shutdown scripts, batch jobs). The
shell’s design as an interactive language, however, make it inherently flawed for

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

defending against input based attacks and therefore should be avoided in
circumstances where data is being read from untrusted sources. However, even
if shell scripts aren’t being used for ‘secure tasks’, they should still be
programmed with the techniques discussed here, and elsewhere. Avoid
spawning a shell involving user input, watch out for poisoned environment
variables, be sure to make secure temp files, never ever make a shell script
setuid.

Perl has proved a more capable solution for secure programs with its vast array
of input validation techniques and its ability to avoid the shell through the use of
high level function calls and imported modules. Nevertheless, all of the
advantages can be nullified if the techniques are not implemented properly. Make
use of Perl’s strict module and invoke Perl with the –w flag to provide extra
warnings on unsafe errors in the script’s code. When dealing with external data,
enable taint mode (by invoking Perl with the –T flag) to ensure your program isn’t
used as a conduit for destruction. Read the perlsec man page as well as the
plethora of other articles in publication and on the Internet about Perl security.

A quick scan of security awareness mailing lists like BugTraq and CERT will
show that computer applications are being exploited just as quickly as they are
being patched. Now, more than before, the accountability is being left on the
shoulders of the programmers responsible for the vulnerable code. Therefore
security awareness should be a priority for all programmers. We won’t all be
security gurus, but we should all be aware of common threats, and write our
programs with security in mind.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

REFERENCES.

COLLEY, Shaun. “Crafting Symlinks for fun and profit.” April 12, 2004
URL: http://www.infosecwriters.com/texts.php?op=display&id=159 (February
2004)

DIMOV, Jordan. “Security Issues in Perl Scripts.”
URL: http://www.developer.com/lang/other/article.php/631321 (May 2004)

DIMOV, Jordan. “Security Issues in Perl Scripts: Perl Taint Mode.”
URL: http://www.developer.com/open/article.php/631331 (May 2004)

DIMOV, Jordan. “Introduction to input validation with Perl.”
URL: http://www.developer.com/net/cplus/article.php/861781 (May 2004)

HUSSEIN, Kamran and Robert Breedlove. “Perl 5 Unleashed.” Sams
Publishing, September 1996.

NORDHAUSEN, Stefan.“Safely Creating Temporary Files in Shell Scripts.”,
February 10, 2004.
URL: http://www.linuxsecurity.com/articles/documentation_article-8886.html
(March 2004)

SCHWARTZ, Randal L. “Perl Advisor: Computing Securely”, September 2003.
URL: http://www.samag.com/documents/s=8859/sam0309k/sam0309k.htm
(March 2004)

WALL, Larry, Tom Christiansen and Randal L. Schwartz. “Programming Perl,
2nd Edition”. O’Reilly & Associates, September 1996.

WHEELER, David A. “Secure Programming for UNIX and Linux HOWTO”,
March 3, 2003.
URL: http://www.dwheeler.com/secure-programs/Secure-Programs-
HOWTO/index.html (April 2004)

WHEELER, David A. “Secure Programmer: Keep an eye on inputs.”, December
19, 2003.
URL: http://www-106.ibm.com/developerworks/linux/library/l-sp3.html (March
2004)

