
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Internet Application
Security

GIAC Security Essentials

Practical Assignment

Version 1.4b

Option 1

Andy Charles
07/15/2004

Deleted: [An

Deleted: Handbook]

Deleted: [

Deleted: ]

Deleted: [

Deleted: ]

Deleted: [

Deleted: ]

Deleted: 01



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- i -

Table of Contents

Abstract ................................................................................................................ 2
Introduction / Executive Summary........................................................................ 2
SOAP Security ..................................................................................................... 2
IIS Security........................................................................................................... 5
Authentication ...................................................................................................... 7
COM+ Security..................................................................................................... 8
Summary............................................................................................................ 10
References......................................................................................................... 12

Deleted: Abstract 2¶
Introduction / Executive Summary 2¶
SOAP Security 3¶
IIS Security 5¶
COM + Security 7¶
Summary 8¶
Section Two Title Here 9¶
Section Three Title 10¶
Section Four Title Here 11¶
References 12¶

Deleted: List of Figures¶
¶
Figure 1: Sample Drawing 3¶
Figure 2: Second drawing sample 3¶
¶
¶
¶



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 2 -

Abstract

This paper will discuss the different options available to a security analyst tasked
with securing an Internet application. Benefits and pitfalls of each technology will
be discussed to support the importance of risk mitigation. Topics highlighted
include SOAP, IIS and COM+ security techniques.

Introduction / Executive Summary

The birth of the internet has empowered the consumer; WWW addresses have
enhanced the way we live and changed the way we conduct business. Gone are
Friday paydays standing in line at that bank - now we find the nearest MAC.
Gone are the often misplaced department store catalogues - now we browse the
latest fashions from our laptop. We have become so accustomed toonline “on
my time” services that we take them for granted.  As our dependence on web
services increases, our patience for system unavailability decreases.
Expectations are approaching one hundred percent. While near perfect
availability may seem absurd, the technology industry expects this exceptional
level of service.

Some appreciate the application architecture that keep these systems flexible
and up-to-date, while most overlook the importance that security plays in the
symbiotic web environment. Just think about this when you demand one hundred
percent availability; your organization is constantly under attack internally and
externally. The intruder has all the cards, desire, a challenge, almost infinite time
and with todays peer-to-peer drone networks nearly infinite computing power.
Now it becomes a waiting game. It is only a matter of time before the forthcoming
of your favorite Murphy’s Law. To avoid these uncomfortable situations it is
important to understand the technologies available within the internet space, the
exposures they introduce and the appropriate ways to mitigate the risks.

SOAP Security

Secure communication from the DMZ (demilitarized or un-trusted zone) to the
trusted zone (internal network) is essential. However, until Simple Object Access
Protocol (SOAP) came along secure remote procedure calls were, at best,
difficult to construct.  For example, Microsoft’s Distributed Component Model 
(DCOM) technology is great for development purposes, coming equipped with
intelli-sense and the capabilities of a role-based security model. DCOM seemed
so promising, incorporating the ease of rapid development with built-in security
controls. This was great news for development teams. That is until the firewall
analysts were consulted. Unfortunately, DCOM relies on dynamically assigned

Deleted: <your name>

Deleted: References

Deleted: ,

Deleted: ,

Deleted: ,

Deleted:

Deleted: for

Deleted: ,

Deleted: w

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ,

Deleted: i

Deleted:

Deleted: Everything

Deleted: ,

Deleted:



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 3 -

ports for method instantiation. It is impossible to configure DCOM for single port
communication. While DCOM is a great technology for an Intranet application,
you will be hard pressed to find a border protection analyst willing to open up an
external firewall to any and all traffic. As you can imagine, it quickly became
apparent that that there needed to be a secure and standardized way to leverage
the positives of DCOM (Schneier). It was time to start perfecting SOAP.

Secure SOAP was once considered an oxymoron. That perception has
changed. When configured and implemented properly, SOAP can be a viable
technology for implementing secure Remote Procedure Call (RPC) solutions. To
make the claim that a SOAP message is secure, the integrity and the
confidentiality of the message must be guaranteed. The receiver must be able to
identify the sender while trusting that the message contents have not been
altered. In addition, if the message body contains information that is sensitive,
the sender and the receiver must be able to trust that the message has been
masked from those without the appropriate credentials.

To avoid confusion it is important to make the separation between Extensible
Markup Language (XML) documents and SOAP messages. A strong definition
of SOAP can be found at the website Business Computing. SOAP is a platform
and protocol independent light weight messaging protocol used to encode web
services requests and responses prior to network transmission (SOAP). A SOAP
message consists of header and body information (that information is commonly
in XML). The header portion of a SOAP message holds metadata, the
description of the data. The header is an ideal location for digital signature
information and session keys storage. The SOAP body contains the data being
passed; a likely requirement would be to encrypt this data (Powell).

To implement secure SOAP there are several techniques that should be
exercised, many of which revolve around understanding and correctly
implementing properties of XML documents. Taking advantage of the
functionality made available by XML is an excellent way to deploy a reusable
application. XML is a standard supported by the World Wide Web consortium.
A property especially important to secure SOAP messaging is XML-Signature
Syntax and Processing. This is a technique that should be used for tying an
individual SOAP envelope to a creator and/or a sender. As described by Powell,
the XML-Signature syntax works by creating and verifying digital signatures for
all or part of an XML message. It also indicates an XML-compliant mechanism for
holding a digital signature within an XML document. This mechanism works by
passing an XML document with a digitally signed node, KeyInfo. KeyInfo is used
to validate the digital signature using the client’s public key, and a unique 
identifier to eliminate the chance of replay attacks (Powell).

While the KeyInfo property will guarantee that the sender sent this message it
does not do anything as far as encryption is concerned. If the message contains
sensitive information, XML encryption should be used. Malicious activity such as

Deleted: <your name>

Deleted: References

Formatted: Underline

Deleted: the

Deleted: C

Deleted: ,

Deleted: [http://sbc.webopedia.com/
TERM/S/SOAP.html]

Deleted: a



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 4 -

copying another client’s certificate and using it as their own can be avoided by
utilizing the XML signature capability. Whenever encryption is brought into the
mix of application development, application performance analysts cringe. Luckily
it is possible to only encrypt parts of an XML message. Powell describes three
situations where partial encryption is beneficial.

 Sensitive data is hidden from users and applications not authorized to
view it.

 Unencrypted portions of information can be shared with services without
having to worry about compromising sensitive information.

 Services can obtain needed information without encrypting and decrypting
the entire message over and over (Powell).

Even though the functionality for secure SOAP is available through the properties
of XML, this type of implementation may not fit the architecture of an
organization. The development team’s knowledge of XML encryption and digital
signing may not be robust enough or maybe the application is being plugging into
current “legacy components” that do not have the functionality of parsing through 
encrypted messages. If problems like this exist it does not mean that an
insecure application will have to be implemented (Powell).

SOAP is platform and transport layer independent; that flexibility opens up a
huge door of opportunity. Encryption at the transport layer is a great way to
leverage existing DMZ technology. SOAP calls over an SSL (secure sockets
layer) connection will guarantee that the message and the contents of the
message are masked during the transmission from the client to the server.
Additional security features can be included if message integrity is an issue. The
integrity of the message and the sender can be guaranteed by utilizing symmetric
or an asymmetric key exchange. To take things a step further authentication
could easily be added to the mix for another layer of abstraction. An SSL
connection utilizing key exchange and authentication creates a very secure
communication with very little need for technical education, these technologies
are well with in the comfort zones of most analysts and their effectiveness is tried
and proven.

A file essential to the communication capabilities of SOAP is the Web Services
Description Language or WSDL file. A WSDL is a standard XML document
supported by the World Wide Web Consortium. WSDL files describe network
services and the capabilities of the web service as a set of network endpoints
(WSDL). They are commonly used to exchange interface information between
services. WSDL files also contain information such as URL locations of needed
web services, protocols, method definitions and data types required during a
procedure call. This information can be extremely sensitive. If the file is
compromised and definitions are changed bad things will happen (Christensen).

Deleted: <your name>

Deleted: References

Deleted: . M

Deleted: L

Deleted: ¶

Deleted: ,

Deleted: WSLD

Deleted: Containing

Deleted:

Deleted: url

Deleted: l

Deleted: .
http://www.w3.org/TR/wsdl#_service



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 5 -

Unrestricted WSDL files may be available for download from the Web server.
These files contain network endpoint information. It is important to restrict
access to WSDL files. The following provided by MSDN are good preventive
measures to follow.

 Authorize access to WSDL files using NTFS permissions.
 Remove WSDL files from Web servers.
 Disable the documentation protocols to prevent the dynamic generation of

WSDL.
 Capture exceptions and throw a SoapException or SoapHeaderException
— that returns only minimal and harmless information— back to the client
(Meier).

IIS Security

IIS (Microsoft's Internet Information Services) or any web server is a component
of web application design where security must not be overlooked. The
configuration of a web application includes application design, physical security
and the configuration of IIS properties. While physical security and the
configuration settings of the entire website may not be within the scope of your
application there are several controls that are manageable and will require
attention. Virtual directory properties, auditing, error messages, file permissions
and client/server authentication are aspects of a web application that should not
be overlooked. Web servers are out there and available for attack twenty-four
hours a day, seven days a week, and users expect a functional application. To
mitigate the risk of application failure strict security policies must be in the works
from the planning phase of an application.

A strong security design includes physically separating application components
into logical groups. Each application should have a dedicated physical system
file folder.  The physical application folder or “root application folder” should be 
separated into several other sub folders. Typical divisions are application script
content, display content and compiled content. Depending on the nature of the
application this list can become very granular. Segmenting the application is
important because it aids the implementation of the least privilege model. The
least privilege model, simply put, means that if a resource does not have a
justified purpose for accessing another resource it should not be authorized to do
so.

When creating the virtual directory for an application it is good practice to disable
directory browsing and write permissions. A good mindset from a security
perspective is that if something is not needed remove it. For example, by default,
a virtual directory is created with several different extension mappings; if you
know that your application only uses .asp extensions remove everything but the
.asp extension. Logging visits is an auditing technique available within IIS and

Deleted: <your name>

Deleted: References

Deleted: http://sbc.webopedia.com/T
ERM/W/WSDL.html¶

Deleted: http://msdn.microsoft.com/li
brary/default.asp?url=/library/en-
us/dnnetsec/html/THCMCh12.asp¶

Deleted: ¶

Deleted:

Deleted:



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 6 -

implementing it should be discussed. An audit log can be beneficial for future
incident prevention and post incident reenactment. Unfortunately, there will be
maintenance required. If the application is a heavily used application the log files
will need to be monitored, possibly even moved or purged to save disk space
(Meier).

When an application virtual directory is created a mapping to a physical system
file folder occurs. The physical file folder contains all the content that will be
made available to web users. If the content is changed in the physical file folder
those changes are published once the virtual directory or website is refreshed. It
is vital to ensure that only authorized users have the capability to make
production file changes. Only a defined number of authorized users should have
access to the physical folder. DMZ environment standards should be consulted
for core access requirements. When changing default system access to physical
file folders it is important to review existing environment documentation. It would
be undesirable to either lock service accounts needed for web server
maintenance or grant access that is not necessary.

Important and often overlooked implementation techniques are custom error
messages. Error messages that will be displayed to the end user should never
reveal information about the application. Only provide the bare minimum
information to the user, detailed error information can easily reveal intrinsic core
application knowledge that will help reverse engineer an application. If a proper
support channel exists, refer users to the channel. Error messages should be
reviewed by both the application support area and security analysts prior to
implementation.

Application of the least privilege model is essential to DMZ security because of
the inherent threats. Because local accounts and groups can be tailored
specifically to an application, having well named groups and accounts makes
support for the application less complicated. A good practice for account
management and implementing the least privilege model is creating local group,
user, service and application accounts then nesting the appropriated user,
service or application account within the application specific local group. Once
the local group is created it is then applied to the physical application folders or
files. This will help prevent unauthorized access while logically grouping
accounts. For auditing purposes, naming conventions for the different types of
accounts should be discussed. The naming convention can be a simple prefix.
Local user accounts could begin with the prefix USR_ while service accounts
could be prefixed with SVC_ and so on. The options are endless; having a
distinct pattern for naming accounts can be a huge time saver when reviewing
audit logs.

Deleted: <your name>

Deleted: References

Deleted:

Deleted:

Deleted:

Deleted: ¶



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 7 -

Authentication

Depending on the content of the application, eliminating the default setting of
anonymous access may be necessary. If anonymous access is removed, the
application will not function unless another authentication method is selected.

Secure communication between the client and server is vital. IIS offers several
ways to secure communications; basic authentication, digest authentication,
Windows Integrated Authentication (NTLM), and Kerberos. Before an
authentication method is selected it is important to understand what each offers.

Basic authentication is very insecure. The user name and password are sent
Base64-encoded over the wire without encryption. Because this information is
sent in the clear, sniffing the traffic will easily reveal the user name and password
the application is using to authenticate. This is a serious threat because the
account information being passed could be an elevated access level account.
Either way the threat of more valuable resources being compromised exists.
One way to mitigate this is to use encryption. Basic authentication coupled with
an SSL connection is a very secure approach. The SSL handshake happens
before the authentication handshake. Therefore the user name and password are
passed over a secure connection (Gavrylyuk).

Digest authentication is easy to use and does not reveal user name and
password. The digest mechanism allows a client to authenticate itself by
presenting credentials consisting of an MD5 digest transmitted in a request
message. It is based on the principle that the client and server are in possession
of a shared secret, a password string. The advantage of this method is that the
client password is only used in calculating the digest, so it remains safe from
network exposure. If not coupled with SSL the digest is susceptible to replay
attacks. Since digest authentication requires an SSL tunnel it is better to use
basic authentication and take advantage of the performance gain (Cunnings).

Windows Integrated Authentication (NTLM) is the native Windows authentication
scheme. Like digest authentication, hashes are exchanged instead of user name
and password. NTLM is great for intranet applications where the platform is a
known factor. If a username and password combination is not specified, the
current user logon credentials are used. The major problem is that if the client
and server are not Windows based machines, NTLM will not work. However,
NTLM is very secure and it is not susceptible to replay attacks and it is very fast
in a Windows environment (Gavrylyuk).

Kerberos is another network authentication protocol. It is designed to provide
strong authentication for client/server applications by utilizing secret-key
cryptography. The first Microsoft operating system to support Kerberos is the

Deleted: <your name>

Deleted: References

Formatted: Font: Arial

Deleted: a

Deleted: Au

Deleted: This combination is some
type of account

Deleted: whether local or at the
domain

Deleted: Therefore,

Deleted: T

Deleted: Au

Deleted: ,

Deleted: Au

Deleted: a

Deleted: fairly

Deleted: ,

Deleted: D

Deleted: ,

Deleted: http://www.whitemesa.com/
soapauth.html#S4

Deleted: a B

Deleted: a

Deleted: A

Deleted: S

Deleted: s

Deleted: T

Deleted: .



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 8 -

Windows 2000 platform. Kerberos requires a KDC (key distribution center) server
to request a service ticket from. It is not recommended to expose your KDC
server on the Internet, so Kerberos is normally restricted to intranet applications.

COM+ Security

To enforce security at the mid-tier level of a multi-tier application or on the DMZ
server directly, a combination of strategies defined in the COM+ security model,
along with file and registry permissions, should be implemented. The COM+
security model encompasses four primary goals; activation control, access
control, authentication control and identity control. Activation control is used for
determining who is permitted to launch COM+ components. Access control
determines who can touch the components objects or methods. Authentication
control is used to verify that the network transmission is valid and that only
authorized viewers can see the data. Identity control refers to the set of
credentials which the COM+ component will execute under (Eddon). Each of
these strategies are independently important exposure reduction controls.

Most Microsoft-centric web applications include some type of compiled code,
usually in the form of an application controller. An application controller can
serve many purposes. The most general is a home for thin business logic. Thin
business logic is classified as non-strategic application logic. A good example
that helps delineate between thin business logic and business logic is the
customizable portal or “one stop shop” applications we are all familiar with.  The 
thin business logic of a portal application consists of the logic that helps the user
change the colors and layout, while the business logic consists of the logic that
determines what account information to retrieve and display. An important
difference between thin business logic and business logic is where each lies
within a web application. The natural home for thin business logic is the web-tier
while business logic resides in the internal network. Thin logic and business
logic are dependant on each other. Without the thin logic, the business logic
would not mean much to the user, something like an XML blob of information.
The reverse also holds true; thin logic without the core displayable information is
basically useless. Because thin business logic resides in the DMZ surrounded
by firewall rules, a defined way to call the mid-tier to get the information the user
requests is needed. This is where SOAP comes in handy, as discussed
previously. SOAP has the ability to make secure remote procedure calls
(method instantiation) from the DMZ to a destination on the trusted side.

If the thin business objects require information from the trusted side,
confidentiality items need discussion. How will the application handle the
destination server address and user name and password for authentication? If
the device requires an authenticated call then the call will have to include a set of
credentials that the destination server understands. Both the server address and
the credentials are pieces of information that can not be revealed, these are keys

Deleted: <your name>

Deleted: References

Deleted: ¶
¶
¶
http://msdn.microsoft.com/library/defa
ult.asp?url=/library/en-
us/dnsoap/html/soapsecurity.asp¶

Deleted:

Deleted: permissions

Deleted: .
http://www.microsoft.com/msj/1199/co
msecurity/comsecurity.aspx

Deleted: is

Deleted: ,

Deleted: xml

Deleted:



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 9 -

to internal network security. To mitigate the risk of credential theft, consider
implementing the strategy of compiling thin business logic. Retrieving source
code from a compiled object is much more difficult than simply viewing the
source of an .asp page. To take things a step further, consider creating a
credential storage strategy.

Essential components of a credential storage strategy include the physical
storage of the credentials and the reusability of the solution. To avoid losing
control of key-pairs, the reusable component should contain a common key used
for encrypting and decrypting information. Once a common component for
encryption and decryption has been created, it will be beneficial to determine a
central storage location for the encrypted data. The location could be a central
database or if a database is unavailable, like in the DMZ, use a local database or
registry. Do not forget to secure the storage repositories, forgetting to do so
negates the effort. Having all credentials stored in a central location makes
restricting and monitoring access more manageable. Now that your enterprise
has a reusable component to retrieve credential information, the thin business
logic can make remote procedure calls without having to know a server name, a
user name or a password.

To recap, we have a secure call coming into our DMZ via an SSL connection and
then to an .asp page. That .asp page understands that in order to display
information, it needs to consult the application controller. The .asp page calls a
compiled application controller; the application controller is invoked to retrieve the
display information. To get the information from the trusted zone a SOAP call
must be made. The SOAP call requires certain parameters; the destination
server, the service to invoke, a user name and a password to authenticate to the
destination. The application controller calls the referenced reusable component
to retrieve the required information from the registry, the sensitive information is
retrieved, the call is made and data is retrieved. The thin business object has the
data it needs to finish the display logic. Now the customized page can be
constructed for the customer.

Sounds like a secure approach, right? Well it is a good start. One vital
component has been left out. COM+ security has not been implemented yet.
The application never determined whether the calling .asp is actually authorized
to invoke the application controller. With the absence of role-based security and
activation control, any application can call any service from any application as
long as the component name and required values are presented. This inherent
insecurity exposes the need for another level of security. COM+ security is
essential for marshalling these scenarios. A COM+ package must be
constructed to house the application controller and to associate an identity to the
application.

Assigning an identity to a package defines the system account used when the
application is invoked. While it is possible to use the interactive user setting,

Deleted: <your name>

Deleted: References

Deleted: ¶

Deleted: ,



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 10 -

which can be beneficial during code development and debugging sessions, not
assigning a defined account to a COM+ package has its pitfalls. By nature a
COM+ application is built by leveraging other reusable services; if those services
reside in other COM+ packages the component being launched may not have
access to launch the reusable services. If a component is not authorized to
launch a referenced component the entire call stack fails. The resolution is not to
allow all authenticated accounts across the board access to every COM+
package. That would not be secure at all, especially in a shared environment.
Instead, map out the entire application flow. Include all new components and all
existing components being referenced; add registry stores, databases and
physical file locations. With your map in hand, pencil in the call chain. The chain
must include all incoming and out-going identities. Verify that each authorization
check has the appropriate list of users authorized to call the needed resource. If
the components of your application are all contained in the same COM+
package, the mapping is fairly straightforward. When an application spans
multiple packages remember to add the identity of your package to a role of the
package being called. This is not necessary if the package is set as a library
package.  A library package assumes the caller’s identity. Remember that once
security is enabled and a package identity is set, the identity of the component
being invoked changes to the identity of the COM+ package in which the
component resides (COM+ Security Concepts).

If security is enabled at the package level, role-based security will also be
necessary. Role-based security works by mapping out a logical set of application
users then creating corresponding system or domain accounts. Once the
mapping is complete, roles are created for the COM+ package. These roles are
then populated with accounts then applied to the package, component, interface
or method of the application. Performance considerations should be discussed
before implementing the most granular level of role-based security. Depending
on the authentication control setting of the package, each and every call may be
authenticated, verified and encrypted. As you know, performance numbers get
worse with every step added to a call process. Also, keep in mind when enabling
package level security that calling components will require physical access to the
files in the call chain. Windows file permissions can also conflict with role-based
security (Eddon).

Summary

The threats are overwhelming; unauthorized access, parameter manipulation,
network eavesdropping, disclosure of configuration data, message replay,
profiling, denial of service, arbitrary code execution, elevation of privileges,
viruses, worms, Trojan horses and so on and so forth. With all of these threats
the challenge of protecting our assets and keeping them available becomes
apparent. It is important for each employee to apply diligence and the essential
security philosophies; authentication, authorization, auditing, privacy, integrity,

Deleted: <your name>

Deleted: References

Deleted:

Deleted: is

Deleted: to

Deleted:

Deleted: If the security set is more
granular than package level, apply
your identity to a role at the
appropriate level.

Deleted: may not be

Deleted: (unless specified
otherwise).

Deleted: ,

Deleted: t

Deleted: :

Deleted: U

Deleted: P

Deleted: N

Deleted: D

Deleted: M

Deleted: P

Deleted: D

Deleted: A

Deleted: E

Deleted: V

Deleted: Trojan

Deleted: :

Deleted: Au

Deleted: Au

Deleted: Au

Deleted: P

Deleted: I



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 11 -

availability, and non-repudiation. It is as important to understand the risks
involved as it is the technology used. Creating secure solutions encompasses
protocol decisions, hardware requirements, software selection, code assurance,
quality control, and access requirements. New applications often bring
unknowns and uncertainties, none of which may be simply “skirted”. Each risk
must be identified and assessed. Appropriately identifying and mitigating risks
up front will help avoid embarrassing situations. The importance of applying
strong security architecture can not be stressed enough.

An analogy for defense in depth helps emphasize the necessity for well defined
security architecture. Imagine a king’s castle. He builds his humble dwelling with
heavy bricks and stacks them high to make walls. He digs as deep as he can all
the way around his house, then he floods the ditch to create a moat. Finally, for
kicks, he assembles everyone he knows, not for a party, but to fill the interior and
surround the perimeter. Now this may seem a little excessive, but an important
question should be asked. Why would a king be willing to go through all this
trouble? For the very same reason an internet application should be secured,
things we treasure should be kept safe.

Deleted: <your name>

Deleted: References

Deleted: A

Deleted: N

Deleted: ,

Deleted: e

Deleted: K

Deleted: ,

Deleted: h

Deleted: K



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew T. Charles

- 12 -

References

Christensen, Erik.  “Web Services Description Language (WSDL) 1.1.”15 March
2001. W3C. http://www.w3.org/TR/wsdl#_service.

“COM+ Security Concepts.”  MSDN.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cossdk/htm/pgservices_security_4fw3.asp.

Cunnings, Robert.Salz, Rich.  “SOAP Extensions: Basic and Digest 
Authentication.”October 2001.
http://www.whitemesa.com/soapauth.html#S4.

Eddon, Guy.  “The COM+ Security Model Gets You out of the Security
Programming Business.”November 1999. MSDN.
http://www.microsoft.com/msj/1199/comsecurity/comsecurity.aspx.

Gavrylyuk, Kirill. “Building Secure Web Services with Microsoft SOAP
Toolkit 2.0”. July 2001.  MSDN.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsoap/html/soapsecurity.asp.

Meier, J. D.  “Improving Web Application Security: Threats and 
Countermeasures.”  June 2003.  MSDN.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetsec/html/THCMCh12.asp.

Powell, Matt. "Real SOAP Security." 21 November 2001. MSDN.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnservice/html/service11212001.asp.

Schneier, Bruce. “SOAP.”  15 June 2000.  Crypto-Gram Newsletter.
http://www.schneier.com/crypto-gram-0006.html.

“SOAP.” 13 March 2003.  Small Business Computing.com.
http://sbc.webopedia.com/TERM/S/SOAP.html.

“WSDL.” 25 June 2002. Small Business Computing.com.
http://sbc.webopedia.com/TERM/W/WSDL.html.

Deleted: <your name>

Deleted: References

Formatted: Underline

Formatted: Indent: First line: 0.5"

Formatted: Indent: Left: 0.58",
First line: 0"

Formatted: Font: Arial

Formatted: Font: Arial

Formatted: English (U.S.)

Formatted: Indent: First line: 0"

Formatted: Indent: First line: 0"

Formatted: Indent: Left: 0"

Formatted: Indent: First line: 0"

Formatted: Indent: Left: 0.5"

Deleted: .

Deleted: ¶

Deleted:
http://www.whitemesa.com/soapauth.
html#S4.

Deleted: ¶

Deleted: 13 July 2004.

Deleted:“Web Services Description 
Language (WSDL) 1.1.”  15 March 
2001. W3C. 13 July 2004.¶
http://www.w3.org/TR/2001/NOTE-
wsdl-20010315.¶
¶
Gavrylyuk, Kirill. “Building Secure
Web Services with Microsoft
SOAP Toolkit ¶
2.0”.  July 2001.
http://msdn.microsoft.com/librar
y/default.asp?url=/library/en-
us/dnsoap/html/soapsecurity.asp
.¶


