
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Configuring PHP for success and security
Eric Marshall

August 1st, 2004

Abstract: The success of the World Wide Web has led to the widespread use of
dynamic web pages and attendant security problems. This paper describes a
number of approaches and configuration options needed to use PHP to create
and secure dynamic web pages.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Many organizations have connections to the Internet and have websites to mark
their presence on the Web. Many of these organizations cannot afford the luxury
of non-dynamic web sites as suggested by many IT security experts. Dynamic
websites offer many advantages over other forms of software such as easy
deployment to large numbers of users, platform independence, single point of
maintenance, etc. while at the same time posing substantial security risks.

A potential problem in securing web sites, for many in IT security, is the security
officer’s lack of experience in web programming, the web developer’s lack of
experience in security and the dearth of material focused on this topic coupled
with the wide range of technologies associated with the Web. In this paper, I will
focus on the PHP language, a technology widely associated with the World Wide
Web. I will look at problems associated with the configuration of PHP for use in
web programming. I hope to provide an understanding of the major problems
associated with web programming and a list of easy to spot items in and
associated with PHP’s configuration that will allow a security person to lookat a
configuration file and see if the obvious and reasonable first steps for security are
being taken.

One of problems, for security officers, due to the wide range of material, in areas
the security officer is not expert, is he or she is forced to trust the opinions of
others within his or her organization in order to achieve true security for the
organization. It critical to the success of the security officer that there is enough
information to judge how much trust to place in programmers and system
administrators, who create or manage parts of the perimeter that are notorious
for security problems.

Brief Background

This paper focuses on the PHP scripting language and its use for web based
applications and dynamic web pages. It is assumed that information in this paper
will be seen as a small part of a larger context of best security practices and best
software development practices. It is easy to not see the forest for the trees and
just as easy to get lost among the trees for not seeing the forest regarding the
process of writing, securing, and managing secure software.

Browser and web servers manage the flow of information whenever someone
views a web page. When a web page is requested the browser sends that
request via the Hypertext Transfer Protocol (HTTP)i at the application level.
Communications takes place over the Transmission Control Protocolii/Internet
Protocoliii (TCP/IP).iv HTTP could be implemented on top of any web-based
protocolv however. The web server, by convention, ‘listens’ on port80 for non-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

secure communicationsvi via HTTP and ‘listens’ to port 443 for secured
communicationsvii via HTTPS (generally using Secure Sockets Layer (SSL) or
Transport Layer Security (TLS)). Encryption of web-based communications is the
topic of a paper itself and will not be covered here. For the level of this
discussion, think of it as black box working at a lower layer of a connection,
which otherwise works the same as HTTP. The web server, having received and
parsed the request finds the appropriate file and sends it back to the browserviii.
After receiving the requested information, the browser parses Hypertext Markup
Language (HTML)ix or the Extensible HyperText Markup Language (XHTML) and
displays a page, based on the instructions in the HTML, that the user then can
see and read (and mostly likely repeat the process). The page of HTML may also
have Cascading Style Sheets (CSS)x embedded within, which are a separate set
of instructions affecting the layout, look and feel of a page. HTML and CSS are
both stored as text. A page of HTML may also contain requests for other pieces
of information to be fetched via HTTP. Most common being digital images stored
in formats like .jpg, .gif, .png, .bmp, etc. The browser manages all of these types
of media and places them as they are received in the rendered page.

The limitation of this model is the static nature of the requested web pages.
Dynamic web pages overcome this limitation allowing the creators of these web
pages to display near-real time data like weather conditions or stock quotes and
alter the page on the fly. Dynamic pages use the same protocols of HTTP and
HTML. The difference is in the web server and/or in the browser.

Most browsers support one or more similar languages: JavaScript, VBScript or
ECMAScript. JavaScriptxi was created by Netscape (and bears no relationship to
Java, other than in name), VBScriptxii was developed by Microsoft in response to
JavaScript and ECMAScriptxiii is openly standardized (by European Association
for Standardizing Information and Communication Systems) version of
JavaScript. Each browser supports one or more versions of these languages,
which allows a web programmer to run code on the user’s browser. A simple
example would be to store a visitor’s preferences in a cookiexiv (a small text file
stored and managed by the visitor’s web browser). When the visitor returns to the
site, script embedded in the web page will execute and read the preferences and
alter the web page’s structure to match the preferences. Another common use of
browser-side scripts is pop-up windows informing the visitor of an incorrectly
filled-in form. As an aside, web developers should always assume that all
browser-side scripting could be bypassed or altered. Browser side scripting is
very powerful mechanism for controlling most aspects of the browser. However,
most (if not all) browsers capable of running these kinds of code, can be
configured to not execute any such code.

Dynamic web pages can also be constructed on the server side before they are
sent to the browser. When the web server receives a request for a page, instead
of finding the page of HTML text and sending it back, the web server can do one
of two other things: one, execute the file as program, collect the output and send

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

that back along or two, read the file before sending and wherever the web server
encounters special commands to execute snippets of code, the web server
executes the code and replace the special commands with the output of the
executed code and then returns the reworked page. Depending on the site either
one or both approaches may be used.

If the file is executed and the web server waits for the output; this is called, a
Common Gateway Interface (CGI)xv script or program. CGI is a specification for
this approach (which supports a very wide range of programming languages).
PHP can be used in this way. The web server must be configured to so it ‘knows’
to execute PHP scripts. Apache can be configured (as most web servers) to
execute a file based on the file suffix, in this case .php.xvi Usually a directory is
specified (for example, www.sample.org/cgi-bin/myscript) as well as a suffix is
identified like .php or .cgi (for example, www.sample.org/todays_results.php or
www.sample.org/todays_results.cgi). In the first line of a CGI PHP script needs
to identify where the php executable is that parses and executes the script. This
will generally look this #!/usr/local/bin/php but this path is system
dependent.

The other approach works like Server Side Includesxvii (supported by Apachexviii

and NCSA HTTPdxix web servers) or Active Sever Pagesxx, where the web server
scans for special tags, in the HTML text that require processing to be done by the
server. The results are given back to the web server where the special tags are
replaced by the results allowing web developers to add the PHP code equivalent
of <put today’s date here>, which when viewed show the current date. PHP’s
special tags/commands begin with <?php and end with ?>. For example
please see Source Listing 1 (as found in the Appendix of this paper). The line
<?php echo '<p>Hello World</p>'; ?> would be replaced with
<p>Hello World</p> While this not very useful, inserting the current time or
information stored in a database is almost as easy and is very useful. When PHP
is used this way, for any changes made in PHP’s configuration file to take effect,
the web server must be restarted.xxi

PHP can be used in a third way as a command line script. The command line
form is not used to serve web pages and will not be discussed here.

PHP runs on all major platforms and can be used with most web servers,
including Apache, Microsoft IIS and Netscape/iPlanet servers. While the
language can be used in a variety of ways, PHP is primarily associated with
dynamic web content.

Rasmus Lerdorf created PHPxxii in 1994 and since then PHP’s usefulness,
portability and user base have only grown. PHP has grown and adapted to it
large and diverse user base by expanding the range of its functionality. Since
PHP has a reputation for being easy to use, it poses an extra rich possibility for
security concerns since easy-to-use languages attract a larger number of non-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

programmers (or what one may call semi-programmers) who learn and use the
language a little bit at a time and who may not be aware or concerned about
issues of security. Highly trained programmers also may not be aware or
concerned since not all organizations train developers about security nor is
security a focal point of university or college training in computer science and
related fields yet.

This paper will not cover web server configuration and security nor server OS
hardening and the like which are obviously necessary parts of a Defense in
Depth approach needed to protect an organization that servers dynamic pages
on the Web.

Configuration
Configuration is handled via the php.ini file (or php3.ini for the older version of
PHP, PHP3). PHP does not support other names for the configuration file. This
file is read when the web server starts. If no php.ini is found, then PHP will load
with its own pre-set defaults. For Common Gateway Interface (CGI) scripts,
php.ini is read on every invocation.xxiii On most Linux and Unix installs this will
reside in the /etc/ directory, on Mac OSX, php.ini will be found at
/usr/local/bin/php.ini and on Windows 9x/ME/XP php.ini will be found in
%WINDIR% which is usually C:\Windows. On Windows NT/2000 will be in
%WINDIR% or %SYSTEMROOT% that is usually C:\WINNT of C:\WINNT40 for
NT/2000 servers.xxiv Please note that the php.ini can be placed elsewhere at the
discretion of the system administrator. One source noted if PHP did not find the
php.ini file it did not complain, so be aware of this when troubleshooting
problems.xxv (There is display_startup_errors option that might catch this
problem.)

Comments are supported; everything after a semi-colon is ignored. All directives
use the same syntax: option = value. (Please note that period after ‘value’ merely
finishes that sentence and is not part of the syntax.) Values can be a string, a
number, a PHP constant (e.g. E_ALL or M_PI), one of the INI constants (On,
Off, True, False, Yes, No and None) or an expression (e.g. E_ALL &
~E_NOTICE), or a quoted string ("foo"). Expressions in the php.ini file are
limited to bitwise operators and parentheses: | (bitwise OR), & (bitwise AND), ~
(bitwise NOT) and ! (Boolean NOT). Boolean flags can be turned on using the
values 1, On, True or Yes. They can be turned off using the values 0, Off, False
or No. xxvi To denote an empty string, the value ‘none’ (with out quotation marks)
can be used or simply have no value to the right of the equals mark (like so
option =).

register_global
An option that needs to be configured as ‘Off’ is register_globalsxxvii. If this set to
‘On’, PHP will automatically take input sent as part of a HTML URL or posted

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

data from an HTML form and create a variable with an assigned value. For
example, if my web page has a form asking for first name and last name it would
look like Image 1 (as found in the Appendix of this paper). The HTML code would
look the code found in Source Code Listing 2 (as found in the Appendix of this
paper). If register_globals is on, then in the PHP script myniftyPHP.php, there will
be two variables created: first_name and last_name, each initialized with the
value of what was typed in the respective textboxes. So if a user types in ‘Jane’
and ‘Doe’ for first name and last name then in myniftyPHP.php, there will be two
variables in memory: first_name=’Jane’ and last_name=’Doe’. At first glance this
may seem like a convenience, but as we will see this is not. This ‘convenience’
allows a malevolent user to create any variable one likes by altering the URL as
easily as http://www.ourwebsite.com/myniftyPHP.php?trusted=true

Now myniftyPHP.php starts with a variable named trusted equal to true. This
allows the malevolent user to create values for any variable in the PHP program.

To avoid this, make sure in php.ini there is this line:
register_globals = Off

safe_mode
safe_mode prevents users from accessing information and files belonging to
other users. When using any file operation, through functions such as copy(),
chmod(), chown(), chgrp(), dir(), file(), flock(), fopen(),
mkdir(), move(), remove(), readfile, rmdir(), and unlink()
among others, PHP checks the file permissions of script running against the file
or directory being accessed. If the permissions don’t match, the operation is
prevented. To engage safe_mode set:

safe_mode = On

The functions like include() and require() are likewise checked but the files
accessed must also be within the directory specified by the configuration option
safe_mode_include_dir in php.ini or the action will fail.

Functions like exec(), passthru() and system() are limited by safe_mode to
executables found in safe_mode_exec_dir as set in php.ini

By setting safe_mode_allowed_env_vars, scripts can only manipulate
environmental variables starting with prefixes listed (comma delimited). By
default, safe_mode_allowed_env_vars set to PHP_ .

The PHP manual lists these functions as altered by safe_mode: dbmopen(),
dbase_open() ,filepro(), filepro_rowcount(),
filepro_retrieve(), pg_lo_import(), posix_mkfifo(),
putenv(), move_uploaded_file(), chdir(), dl(),
shell_exec(), exec(), system(), passthru(), popen(),
fopen(), mkdir(), rmdir(), rename(), unlink(), copy(),

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

chgrp(), chown(), chmod(), touch(), symlink(), link(),
apache_request_headers(), header(), highlight_file(),
show_source(), parse_ini_file(), and mail().xxviii Please note
however, the PHP manual adds this caveat regarding the influence of
safe_mode: “This is a still probably incomplete and possibly incorrect listing of
the functions limited by safe mode.”xxix

open_basedir
If open_basedir is set, all file operations are limited to the specified directory
and the subdirectories contained within. This option is independent of how
safe_mode is set. This minimizes the range of remote file attacks to get at
password files, configuration files and the like. If not used this option is
commented out, if used it would look this (depending on local setup):

open_basedir = /var/www/html/

error_reporting
The error_reporting directive takes a series of bit flags that are logically OR’ed or
logically ANDed together. The flags are defined in the php.ini file as followsxxx:
E_ALL - All errors and warnings
E_ERROR - fatal run-time errors
E_WARNING - run-time warnings (non-fatal errors)
E_PARSE - compile-time parse errors
E_NOTICE - run-time notices (these are warnings which often result from
a bug in your code, but it's possible that it was intentional (e.g., using an un-
initialized variable and relying on the fact it's automatically initialized to an empty
string)
E_STRICT - run-time notices, enable to have PHP suggest changes to
your code which will ensure the best interoperability and forward compatibility of
your code
E_CORE_ERROR - fatal errors that occur during PHP's initial startup
E_CORE_WARNING - warnings (non-fatal errors) that occur during PHP's
initial startup
E_COMPILE_ERROR - fatal compile-time errors
E_COMPILE_WARNING - compile-time warnings (non-fatal errors)
E_USER_ERROR - user-generated error message
E_USER_WARNING - user-generated warning message
E_USER_NOTICE - user-generated notice message

The following operators work: | (bitwise OR), & (bitwise AND), and ~ (bitwise
NOT) so to see all errors except strict notices the following would be used:
E_ALL & ~E_STRICT.
I recommend logging all errors, which avoids the use of bit-wise operators.

error_reporting = E_ALL

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

html_errors
This will suppress HTML warnings and errors if turned on. The php.ini file has the
following comment regarding this– “Note: Never use this feature for production
boxes”.xxxi

html_errors = Off

ignore_repeated_errors
ignore_repeated_source
PHP can ignore repeated errors. I believe there is no benefit in this feature’s use,
since my approach is to catch all errors and then safeguard against each error
found. If this is not your approach and space for logging is limited, this option
exists. Ignore_repeated_source will ignore repeated errors from different line
numbers or different files.

ignore_repeated_errors = Off
ignore_repeated_source = Off

display_errors
display_errors should be set to off for production servers. There is no need to
give any extra information like file paths or database information to someone
trying to see how things break on your system. This should be set to ‘on’ only on
development servers but keep in mind when debugging failures in production that
this directive suppresses errors so developers might be ‘thrown off the scent’
when first trying hunt down problems.

display_errors = Off

log_errors
This directive allows PHP to write to a log file. This is most useful in catching
problems and errors without passing information to users or attackers. This will
hopefully redeem you with the developers you irked by turning off
‘display_errors’.

log_errors = On

track_errors
This directive enables PHP to store the last error in the environmental variable
$php_errormsg. If your applications have complex error handling, this may be
required, otherwise if this environmental variable is not used then set this
directive ‘Off’. It may be wise to check with your developers regarding this. (It
would also be wise to document any such dependencies.)

track_errors = Off

error_log

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

All errors deems noteworthy (as based on the error_reporting directive) will
be logged to a specified file. error_log also supports reporting via syslogxxxii.
Beware if using syslog of the define_syslog_variables directive.

error_log = /var/log/httpd/php_error.log
or
error_log = syslog

allow_url_fopen
By default allow_url_fopen lets PHP treat URLs as files. Very few sites
require remote files functionality.xxxiii It should be set as so:

allow_url_fopen = Off

In older versions of PHP (pre-4.0.3) this is set as a compiler option.

disable_functions
This disables all comma-delimited listed functions from working. This very useful
for limiting PHP’s access to the file system and operating system by removing
functions like system() or shell_exec(). Another function worth disabling is
phpinfo() since it displays all configuration information.

disable_classes
disable_classes works the same as disable_functions but for classes
instead of functions. (Classes are an object-oriented feature of PHP and at the
risk of over-simplifying a complex idea, can be thought as functions bundled with
their own variables.)

expose_php
This option decides if PHP exposes the fact it is running on the server. While
there is no direct security risk by setting this to ‘on’, setting to ‘off’ may make it a
little harder for an attacker to understand how your website is set up.

expose_php = Off

file_upload
If one does not require uploading files then disable this. There is no good that
can come from having attackers upload files in order to attack your system more
efficiently.

file_upload = Off

upload_max_filesize
If one does need to upload files then this sets the maximum file size that can be
uploaded through PHP. The size is in bytes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

upload_max_filesize = 2097152

max_execution_time
This option limits the amount time a PHP script can run for, in seconds. The
default is thirty seconds. Lower is better, but if set too low, your scripts will not
run.

max_execution_time = 30

max_input_time
This caps the maximum amount of time each script may spend parsing requests,
in seconds. Again, shorter is better. The default is sixty seconds.

max_input_time = 60

memory_limit
This limits the amount of memory a script can use. The default is eight
megabytes.

memory_limit = 8M

variables_order
variables_order set the order in which PHP registers variables from GET, POST,
cookies, environment and built-in variables. This is important in cases where
namespaces of variables overlap. This will protect against attackers trying to
exploit oversights in variable names or assumptions about how certain pieces of
information are created or where they came from. Variables are handled from left
to right with newer values overriding older values.

variables_order = “EGPCS”

E = environmental variable
G = GET
P = POST
C = cookie
S = system built-in variable

y2k_compliance
This will cause problems with non-compliant browsers.
y2k_compliance = On

magic quotes
magic_quotes_gpc creates backslashes to escape all ' (single-quote), "
(double quote), \ (backslash) and NUL's. This is a problematic setting. While
doing mostly good, there are a few problems associated with setting this on.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There is not space here to describe all the details of SQL injection attacks, other
than to say that like problems with system() and strings, it is equally easy to
add characters to the end of a SQL query so commands can be passed to the
database management system (and some database management systems have
commands similar to system()). If these directives are turned off, then each
application must manage string handling for any database queries and the like
manually.

magic_quotes_gpc = Off
magic_quotes_runtime = Off
magic_quotes_sybase = Off

arg_separator.input and arg_separator.output
These directives manage how PHP parses URLs. Shown below are the default
values.

arg_separator.input = ";&"
arg_separator.output = "&"

doc_root, cgi.force_redirect and cgi.redirect_status_env
If PHP is being used for CGI, it is critical to configure PHP so the PHP interpreter
is not accessible by attackers via the CGI mechanism. Please consult the PHP
manual for more detail (http://us3.php.net/security.cgi-bin) and CERT’s Advisory
CA-1996-11 - Interpreters in CGI bin Directories
(http://www.cert.org/advisories/CA-1996-11.html). If doc_root is in conjunction
with safe_mode, no files outside this directory are served. Please note for
Microsoft’s Internet Information Servicesxxxiv, cgi.force_redirect must be turned
off.

sql.safe_mode
I could find no information as what this directive does! The default value is off.

sql.safe_mode = Off

session directives
PHP supports a number of functions to “preserve certain data across subsequent
accesses”xxxv. For more information please see http://us2.php.net/session.

SQL directives
The php.ini file contains a large number of directives for different database
products. Each different database has its own set of functions and directives. For
more information please see the master list of functions
(http://us4.php.net/manual/en/) for details.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Best Practices
These recommendations are based on the Open Web Application Security
Project’s top ten security vulnerabilities.xxxvi This list is not aimed at PHP directly
but at all web applications. Some of this material is also best practices for any
software development (even before software best practices included security as
a component).

Avoid buffer over-runs

PHP handles all dynamically allocated memory for the user. So an attacker
cannot create a buffer over-run in variables used by the PHP developer.
However, PHP is written in C, a language famous for buffer over-runs. This
means it is important to keep track of patches and new releases in case a buffer
over-run is found in PHP itself. Until operating systems (or middleware layers
sitting on the operating systems) can detect problems with on the stack, these
kinds of attacks will be found in code.xxxvii Diligent patching is the only real
defense (unless you have vast resources to comb through the source code to
find these kinds of errors yourself and patch them).

Avoid the shell

PHP contains a number of functions that will pass a string to the operating
system to execute. While this convenient, it is an infamous path of exploitation
when trying to hack a system. If a malevolent user can figure out how to modify
the string passed to the system, he or she can execute any command that PHP
can. By simply adding “;” to the end of the string and then add a command like
“rm –r * ” the operating system on most UNIX systems will execute two
commands: the one the PHP script intended and the second, “rm –r * ”. Do
not use shell_exec(), exec(), system(), passthru(), popen() or
back ticks (̀) in one’s PHP scripts. Using disable_functions in the configuration
file to suppress these functions can enforce this policy.

If one must use calls like system(), filter all data from the outside (user input,
cookies, environmental variables, etc.) and do not use the data directly. Instead
of passing a string via variable, use the variable in an if-statement to trigger a
hard coded command. If this isn’t possible, it is still possible to assemble a string
from a series of if-statements so no user data is passed directly to the system()
but instead merely triggers a concatenation of pre-stored strings. This is a very
powerful and easy technique to use to side-step very nasty problems. Assume
the shell cannot be secured no matter how hardened the operating system is.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Check that code/code libraries and data arenot in the web server’s
document root

The actual PHP engine and its libraries should not be visible to the web. Make
sure that these files are not in the web server’s document root. Otherwise,
malevolent viewers will be able to create and exploit weakness much easier. For
PHP code that has information that ought be best keep secure like database
scripts that contain passwords (but, of course, that style of programming should
be avoided) it is possible to create custom functions that are outside of the web
server’s document root. This is still possible however to compromise this
information in custom functions.

Check the permissions of the script
Check the permissions of the web server
Check the permissions of the data

PHP scripts should not run as root (or any other equally powerful user) otherwise
a simple coding mistake would comprise the entire server. The web server
should not execute PHP scripts as root nor should scripts or data used by PHP
be executed as root. Apache handles this by using the user ‘nobody’ in order to
not use ‘root’. (Part of Apache does run as root in order to create sockets for the
correct ports. This part is a separate fork/thread from the rest of Apache that runs
as ‘nobody’)
If safe_mode is used, this will be checked automatically. Thus preventing
malevolent users from accessing things they should not.

Don’t show errors, log errors

When attacking a server, the first stage is collecting information about the server
and its applications. Error messages are a valuable resource to an attacker,
telling him or her about software packages, version numbers and sources of
errors (which can be exploited directly). So it is in the web master’s direct interest
to suppress this information for outside users and limit an attacker’s ability to
explore. It is also in the web master’s direct interest to be aware of any errors so
they can be patched, fixed and handled as quickly as possible, so logging of PHP
errors is important as well. This is handled in php.ini by display_errors and
log_errors as well as a few other options that handle the location of the log file
and the like. Please note: on development servers, these options should not be
set since it makes debugging much harder and thus slows development.

Don’t trust any user input

A core precept in web application security is never trust user input. All
information coming from the outside should be considered tainted at best. PHP
does not provide a taint flag like Perl does, so there is no easy way to check if
input is handled correctly. This responsibility rests on the programmer.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

All information coming from user input should be suspect. This includes variables
from hidden fieldsxxxviii, cookies, environmental variables and all user input. While
it might seem unlikely, all of these sources can be easily overcome with simple
tools like a text editor. As mentioned above, sometimes using user input can be
avoided or sidestepped. When it cannot, all data must be scrubbed.

Cross-site scripting exploits are the result of unscrubbed data being posted on a
web page. As an example, Randal Schwartz (of Perl fame) has the following on
his home page: “One of my former "stupid Randal tricks" has been to cruise the
net for guest books and see if they accept raw HTML, testing it by feeding it a
name or comment of Barney < IMG SRC =
http://barneyonline.com/Barney/Images/Home/iconBarney1.jpg
>. It's amazing how many of them blindly accept it. (I can't stop giggling when I
see the PurpleOne show up in the list when I reload.)”xxxix The defaced guest
book will display a picture of Barney (or a broken link to a former picture of
Barney). This technique applies to inserting code into programs parsing input
data as well resulting in more dangerous results.

Many non-alpha-numeric characters have special meanings for different
operating systems, languages, databases and the like. Replace non-alpha-
numeric characters with something harmless. Keep in mind that an ampersand
and a number can specify any character so all the characters you thought you
scrubbed away might have still sneaked past (pardon the mixed metaphor).
There are different levels of encoding and different regional encodings as well: all
of which may be handled differently depending on which web server is used.
http://www.asciitable.com/ has a delightful chart showing 640 ways to encode the
128 characters of American Standard Code for Information Interchange (ACSII)xl

There are also issues between ACSII/Standard ECMA-6xli and Unicodexlii

conversions as well with mapping Microsoft’s Windows Latin-1a superset of ISO
8859-1, onto Unicode correctly. This is just the tip of the iceberg.

Scrubbing input is a most important area of diligence. If only one message in this
paper stays with you, the reader let it be “Do not trust any input”. I personally
have found issues like this with national online booksellers and government sites
including NASA. Please read CERT Advisory CA-1997-25 Sanitizing User-
Supplied Data in CGI Scripts (http://www.cert.org/advisories/CA-1997-25.html),
CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web
Requests (http://www.cert.org/advisories/CA-2000-02.html) and CERT
Coordination Center’s How To Remove Meta-characters From User-Supplied
Data In CGI Scripts (http://www.cert.org/tech_tips/cgi_metacharacters.html) for
more information.

Initialize all variables
It is easy to overlook initializing variablesxliii. This can cause hard to track bugs in
languages like C and C++, unexpected behavior in complex data structures in

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Perl and Java and may allow attackers to alter code behavior of web
applications. In Source Listing 3 (found in the Appendix), there is no problem if
good_to_go is defined as false somewhere at the beginning of the program.
However, if this step is bypassed and register_globals has it default value of ‘On’,
an attacker can define good_to_go as true in the URL and the attacker will
gain access to the password-protected content.

Hide important data

Important data should always be stored in a separate file, away from the script
that uses it. The data should be stored in a directory that cannot be accessed via
a web server request. When the data in question is needed, that data can be
included in the PHP script via include() or require() function calls.

Conclusion
While securing dynamic websites is a complex and challenging task, the demand
for these types of sites only grows. Dynamic web sites will only grow more
prevalent as time passes. Organizations like SANS will eventually rise to task to
help train the next generation of web administrators and web developers to
create secure web-based applications. To create secure web-based applications
requires knowledge of HTML, web servers, programming languages, a bit of
networking, a bit of system administration, deep knowledge of security issues
and in many cases, knowledge of other areas like databases, interface design,
graphics design and CSS. Creating software of this complexity is a group effort
and requires communication and understanding of the role security plays by all
contributors. PHP is an effective and powerful tool. As with all powerful tools,
however, PHP must be set-up carefully to insure its safe use. Configuration is
only the beginning of the safe use of PHP. Hopefully this paper has touched on
some of these issues without over-whelming the reader.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bibliography:

[1] Apache Software Foundation “Security Tips for Server Configuration”.
URL: http://httpd.apache.org/docs/misc/security_tips.html (3 July 2004)

[2] National Center for Supercomputing Applications Software Development
Group. “Server Side Includes (SSI)”.28th September 1995.
URL: http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html (3 July 2004)

[3] Bakken, Stig Sæther et al. PHP Manual. 9th June 2004. URL:
http://www.php.net/manual/en/index.php (3 July 2004)

[4] Berners-Lee, T. “RFC 1945–Hypertext Transfer Protocol– http/1.0”. May
1996. URL: http://www.faqs.org/rfcs/rfc1945.html (3 July 2004)

[5] Bos, Bert,Çelik, Tantek, Hickson, Ian And Lie, Håkon Wium. “Cascading
Style Sheets, level 2 revision 1 CSS 2.1 Specification”. 25th February 2004. URL:
http://www.w3.org/TR/CSS21/

[6] Brogdon, Darrell. 29 “Securing a PHP Installation”. March 2001. URL:
http://www.onlamp.com/pub/a/php/2001/03/29/php_admin.html (3 July 2004)

[7] Coar, K. “The Common Gateway Interface - RFC Project Page “. URL:
http://cgi-spec.golux.com/ (3 July 2004)

[8] Clowes, Shaun “A Study In Scarlet, Exploiting Common Vulnerabilities in
PHP Applications”. URL:
http://www.securereality.com.au/archives/studyinscarlet.txt (3 July 2004)

[9] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and
Berners-Lee, T. June 1999 “Hypertext Transfer Protocol -- HTTP/1.1”.
ftp://ftp.isi.edu/in-notes/rfc2616.txt (3 July 2004)

[10] Fuecks, Harry. “register_globals off”. The PHP Anthology Volume 1,
Chapter 1–PHP Basics. 19th December 2003. URL:
http://www.sitepoint.com/article/php-anthology-1-1-php-basics/6 (3 July 2004)

[11] Lonvick, C. “RFC 3164 - The BSD Syslog Protocol”. August 2001 URL:
http://www.faqs.org/rfcs/rfc3164.html (3 July 2004)

[12] Open Web Application Security Project. “The Ten Most Critical Web
Application Security Vulnerabilities”. 13th January 2003. URL:
http://www.owasp.org/documentation/topten (3 July 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[13] Pemberton, Steve et al. “XHTML™ 1.0 The Extensible HyperText Markup
Language (Second Edition)”. 1st August 2004. URL:
http://www.w3.org/TR/xhtml1/ (3 July 2004)

[14] Raggett, Dave. Le Hors, Arnaud. and Jacobs, Ian. “HTML 4.0
Specification” 24th April 1998. URL: http://www.w3c.org/MarkUp/ (3 July 2004)

[15] Rescorla, E. “RFC 2818 - HTTP Over TLS” May 2000. URL:
http://www.faqs.org/rfcs/rfc2818.html (3 July 2004)

[16] Ristic, I. “PHP Configuration”. Late 2003. URL:
http://www.webkreator.com/php/configuration/php-configuration.html (3 July
2004)

[17] Robinson, David. “The CGI Specification”.16th October 1995.
URL:http://hoohoo.ncsa.uiuc.edu/cgi/interface.html (3 July 2004)

[18] Sklar, David. “PHP and the OWASP Top Ten Security Vulnerabilities”
URL: http://www.sklar.com/page/article/owasp-top-ten (3 July 2004)

[19] Stein, Lincoln and Stewart, John “CGI (Server) Scripts” The World Wide
Web Security FAQ URL: http://www.w3.org/Security/Faq/wwwsf4.html (3 July
2004)

[20] Wheeler, David. “Secure Programming for Linux and Unix HOWTO”.
March 2003. URL: http://www.dwheeler.com/secure-programs/Secure-Programs-
HOWTO/index.html (3 July 2004)

[21] Youman, Yves. “An overview of common programming security
vulnerabilities and possible solutions”. August 2003. URL: http://fort-
knox.org/thesis.php (3 July 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix:

Image 1:

Source Listing 1:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en"
xml:lang="en">
<head>
<title>echo example</title>
</head>
<body>
<?php echo '<p>Hello World</p>'; ?>
</body>
</html>

Source Listing 2:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en"
xml:lang="en">
<head>
…

<form action=”http://www.ourwebsite.com/myniftyPHP.php“>
First Name:
<input type=”text” name=”first_name”>

Last Name:
<input type=”text” name=”last_name”>

Source Listing 3:
<? php

...
if ($user_password == $secret_password_from_database)
{

$good_to_go = 1;
}
...

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if ($good_to_go == 1)
{

do_something_only_users_with_passwords_can();
}

?>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Default php.ini file from http://cvs.php.net/co.php/php-src/php.ini-dist:
[PHP]

;;;;;;;;;;;
; WARNING ;
;;;;;;;;;;;
; This is the default settings file for new PHP installations.
; By default, PHP installs itself with a configuration suitable for
; development purposes, and *NOT* for production purposes.
; For several security-oriented considerations that should be taken
; before going online with your site, please consult php.ini-recommended
; and http://php.net/manual/en/security.php.

;;;;;;;;;;;;;;;;;;;
; About php.ini ;
;;;;;;;;;;;;;;;;;;;
; This file controls many aspects of PHP's behavior. In order for PHP to
; read it, it must be named 'php.ini'. PHP looks for it in the current
; working directory, in the path designated by the environment variable
; PHPRC, and in the path that was defined in compile time (in that order).
; Under Windows, the compile-time path is the Windows directory. The
; path in which the php.ini file is looked for can be overridden using
; the -c argument in command line mode.
;
; The syntax of the file is extremely simple. Whitespace and Lines
; beginning with a semicolon are silently ignored (as you probably guessed).
; Section headers (e.g. [Foo]) are also silently ignored, even though
; they might mean something in the future.
;
; Directives are specified using the following syntax:
; directive = value
; Directive names are *case sensitive* - foo=bar is different from FOO=bar.
;
; The value can be a string, a number, a PHP constant (e.g. E_ALL or M_PI), one
; of the INI constants (On, Off, True, False, Yes, No and None) or an expression
; (e.g. E_ALL & ~E_NOTICE), or a quoted string ("foo").
;
; Expressions in the INI file are limited to bitwise operators and parentheses:
; | bitwise OR
; & bitwise AND
; ~ bitwise NOT
; ! boolean NOT
;
; Boolean flags can be turned on using the values 1, On, True or Yes.
; They can be turned off using the values 0, Off, False or No.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

;
; An empty string can be denoted by simply not writing anything after the equal
; sign, or by using the None keyword:
;
; foo = ; sets foo to an empty string
; foo = none ; sets foo to an empty string
; foo = "none" ; sets foo to the string 'none'
;
; If you use constants in your value, and these constants belong to a
; dynamically loaded extension (either a PHP extension or a Zend extension),
; you may only use these constants *after* the line that loads the extension.
;
;
;;;;;;;;;;;;;;;;;;;
; About this file ;
;;;;;;;;;;;;;;;;;;;
; All the values in the php.ini-dist file correspond to the builtin
; defaults (that is, if no php.ini is used, or if you delete these lines,
; the builtin defaults will be identical).

;;;;;;;;;;;;;;;;;;;;
; Language Options ;
;;;;;;;;;;;;;;;;;;;;

; Enable the PHP scripting language engine under Apache.
engine = On

; Enable compatibility mode with Zend Engine 1 (PHP 4.x)
zend.ze1_compatibility_mode = Off

; Allow the <? tag. Otherwise, only <?php and <script> tags are recognized.
; NOTE: Using short tags should be avoided when developing applications or
; libraries that are meant for redistribution, or deployment on PHP
; servers which are not under your control, because short tags may not
; be supported on the target server. For portable, redistributable code,
; be sure not to use short tags.
short_open_tag = On

; Allow ASP-style <% %> tags.
asp_tags = Off

; The number of significant digits displayed in floating point numbers.
precision = 12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; Enforce year 2000 compliance (will cause problems with non-compliant
browsers)
y2k_compliance = On

; Output buffering allows you to send header lines (including cookies) even
; after you send body content, at the price of slowing PHP's output layer a
; bit. You can enable output buffering during runtime by calling the output
; buffering functions. You can also enable output buffering for all files by
; setting this directive to On. If you wish to limit the size of the buffer
; to a certain size - you can use a maximum number of bytes instead of 'On', as
; a value for this directive (e.g., output_buffering=4096).
output_buffering = Off

; You can redirect all of the output of your scripts to a function. For
; example, if you set output_handler to "mb_output_handler", character
; encoding will be transparently converted to the specified encoding.
; Setting any output handler automatically turns on output buffering.
; Note: People who wrote portable scripts should not depend on this ini
; directive. Instead, explicitly set the output handler using ob_start().
; Using this ini directive may cause problems unless you know what script
; is doing.
; Note: You cannot use both "mb_output_handler" with "ob_iconv_handler"
; and you cannot use both "ob_gzhandler" and "zlib.output_compression".
; Note: output_handler must be empty if this is set 'On' !!!!
; Instead you must use zlib.output_handler.
;output_handler =

; Transparent output compression using the zlib library
; Valid values for this option are 'off', 'on', or a specific buffer size
; to be used for compression (default is 4KB)
; Note: Resulting chunk size may vary due to nature of compression. PHP
; outputs chunks that are few hundreds bytes each as a result of
; compression. If you prefer a larger chunk size for better
; performance, enable output_buffering in addition.
; Note: You need to use zlib.output_handler instead of the standard
; output_handler, or otherwise the output will be corrupted.
zlib.output_compression = Off

; You cannot specify additional output handlers if zlib.output_compression
; is activated here. This setting does the same as output_handler but in
; a different order.
;zlib.output_handler =

; Implicit flush tells PHP to tell the output layer to flush itself
; automatically after every output block. This is equivalent to calling the
; PHP function flush() after each and every call to print() or echo() and each

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; and every HTML block. Turning this option on has serious performance
; implications and is generally recommended for debugging purposes only.
implicit_flush = Off

; The unserialize callback function will called (with the undefind class'
; name as parameter), if the unserializer finds an undefined class
; which should be instanciated.
; A warning appears if the specified function is not defined, or if the
; function doesn't include/implement the missing class.
; So only set this entry, if you really want to implement such a
; callback-function.
unserialize_callback_func=

; When floats & doubles are serialized store serialize_precision significant
; digits after the floating point. The default value ensures that when floats
; are decoded with unserialize, the data will remain the same.
serialize_precision = 100

; Whether to enable the ability to force arguments to be passed by reference
; at function call time. This method is deprecated and is likely to be
; unsupported in future versions of PHP/Zend. The encouraged method of
; specifying which arguments should be passed by reference is in the function
; declaration. You're encouraged to try and turn this option Off and make
; sure your scripts work properly with it in order to ensure they will work
; with future versions of the language (you will receive a warning each time
; you use this feature, and the argument will be passed by value instead of by
; reference).
allow_call_time_pass_reference = On

;
; Safe Mode
;
safe_mode = Off

; By default, Safe Mode does a UID compare check when
; opening files. If you want to relax this to a GID compare,
; then turn on safe_mode_gid.
safe_mode_gid = Off

; When safe_mode is on, UID/GID checks are bypassed when
; including files from this directory and its subdirectories.
; (directory must also be in include_path or full path must
; be used when including)
safe_mode_include_dir =

; When safe_mode is on, only executables located in the safe_mode_exec_dir

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; will be allowed to be executed via the exec family of functions.
safe_mode_exec_dir =

; Setting certain environment variables may be a potential security breach.
; This directive contains a comma-delimited list of prefixes. In Safe Mode,
; the user may only alter environment variables whose names begin with the
; prefixes supplied here. By default, users will only be able to set
; environment variables that begin with PHP_ (e.g. PHP_FOO=BAR).
;
; Note: If this directive is empty, PHP will let the user modify ANY
; environment variable!
safe_mode_allowed_env_vars = PHP_

; This directive contains a comma-delimited list of environment variables that
; the end user won't be able to change using putenv(). These variables will be
; protected even if safe_mode_allowed_env_vars is set to allow to change them.
safe_mode_protected_env_vars = LD_LIBRARY_PATH

; open_basedir, if set, limits all file operations to the defined directory
; and below. This directive makes most sense if used in a per-directory
; or per-virtualhost web server configuration file. This directive is
; *NOT* affected by whether Safe Mode is turned On or Off.
;open_basedir =

; This directive allows you to disable certain functions for security reasons.
; It receives a comma-delimited list of function names. This directive is
; *NOT* affected by whether Safe Mode is turned On or Off.
disable_functions =

; This directive allows you to disable certain classes for security reasons.
; It receives a comma-delimited list of class names. This directive is
; *NOT* affected by whether Safe Mode is turned On or Off.
disable_classes =

; Colors for Syntax Highlighting mode. Anything that's acceptable in
; would work.
;highlight.string = #DD0000
;highlight.comment = #FF9900
;highlight.keyword = #007700
;highlight.bg = #FFFFFF
;highlight.default = #0000BB
;highlight.html = #000000

;
; Misc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

;
; Decides whether PHP may expose the fact that it is installed on the server
; (e.g. by adding its signature to the Web server header). It is no security
; threat in any way, but it makes it possible to determine whether you use PHP
; on your server or not.
expose_php = On

;;;;;;;;;;;;;;;;;;;
; Resource Limits ;
;;;;;;;;;;;;;;;;;;;

max_execution_time = 30 ; Maximum execution time of each script, in seconds
max_input_time = 60 ; Maximum amount of time each script may spend
parsing request data
memory_limit = 8M ; Maximum amount of memory a script may consume
(8MB)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Error handling and logging ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; error_reporting is a bit-field. Or each number up to get desired error
; reporting level
; E_ALL - All errors and warnings
; E_ERROR - fatal run-time errors
; E_WARNING - run-time warnings (non-fatal errors)
; E_PARSE - compile-time parse errors
; E_NOTICE - run-time notices (these are warnings which often result
; from a bug in your code, but it's possible that it was
; intentional (e.g., using an uninitialized variable and
; relying on the fact it's automatically initialized to an
; empty string)
; E_STRICT - run-time notices, enable to have PHP suggest
changes
; to your code which will ensure the best interoperability
; and forward compatability of your code
; E_CORE_ERROR - fatal errors that occur during PHP's initial startup
; E_CORE_WARNING - warnings (non-fatal errors) that occur during PHP's
; initial startup
; E_COMPILE_ERROR - fatal compile-time errors
; E_COMPILE_WARNING - compile-time warnings (non-fatal errors)
; E_USER_ERROR - user-generated error message
; E_USER_WARNING - user-generated warning message
; E_USER_NOTICE - user-generated notice message

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

;
; Examples:
;
; - Show all errors, except for notices and coding standards warnings
;
;error_reporting = E_ALL & ~E_NOTICE & ~E_STRICT
;
; - Show all errors, except for notices
;
;error_reporting = E_ALL & ~E_NOTICE
;
; - Show only errors
;
;error_reporting = E_COMPILE_ERROR|E_ERROR|E_CORE_ERROR
;
; - Show all errors except for notices and coding standards warnings
;
error_reporting = E_ALL & ~E_NOTICE & ~E_STRICT

; Print out errors (as a part of the output). For production web sites,
; you're strongly encouraged to turn this feature off, and use error logging
; instead (see below). Keeping display_errors enabled on a production web site
; may reveal security information to end users, such as file paths on your Web
; server, your database schema or other information.
display_errors = On

; Even when display_errors is on, errors that occur during PHP's startup
; sequence are not displayed. It's strongly recommended to keep
; display_startup_errors off, except for when debugging.
display_startup_errors = Off

; Log errors into a log file (server-specific log, stderr, or error_log (below))
; As stated above, you're strongly advised to use error logging in place of
; error displaying on production web sites.
log_errors = Off

; Set maximum length of log_errors. In error_log information about the source is
; added. The default is 1024 and 0 allows to not apply any maximum length at all.
log_errors_max_len = 1024

; Do not log repeated messages. Repeated errors must occur in same file on
same
; line until ignore_repeated_source is set true.
ignore_repeated_errors = Off

; Ignore source of message when ignoring repeated messages. When this setting

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; is On you will not log errors with repeated messages from different files or
; sourcelines.
ignore_repeated_source = Off

; If this parameter is set to Off, then memory leaks will not be shown (on
; stdout or in the log). This has only effect in a debug compile, and if
; error reporting includes E_WARNING in the allowed list
report_memleaks = On

; Store the last error/warning message in $php_errormsg (boolean).
track_errors = Off

; Disable the inclusion of HTML tags in error messages.
; Note: Never use this feature for production boxes.
;html_errors = Off

; If html_errors is set On PHP produces clickable error messages that direct
; to a page describing the error or function causing the error in detail.
; You can download a copy of the PHP manual from http://www.php.net/docs.php
; and change docref_root to the base URL of your local copy including the
; leading '/'. You must also specify the file extension being used including
; the dot.
; Note: Never use this feature for production boxes.
;docref_root = "/phpmanual/"
;docref_ext = .html

; String to output before an error message.
;error_prepend_string = ""

; String to output after an error message.
;error_append_string = ""

; Log errors to specified file.
;error_log = filename

; Log errors to syslog (Event Log on NT, not valid in Windows 95).
;error_log = syslog

;;;;;;;;;;;;;;;;;
; Data Handling ;
;;;;;;;;;;;;;;;;;
;
; Note - track_vars is ALWAYS enabled as of PHP 4.0.3

; The separator used in PHP generated URLs to separate arguments.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; Default is "&".
;arg_separator.output = "&"

; List of separator(s) used by PHP to parse input URLs into variables.
; Default is "&".
; NOTE: Every character in this directive is considered as separator!
;arg_separator.input = ";&"

; This directive describes the order in which PHP registers GET, POST, Cookie,
; Environment and Built-in variables (G, P, C, E & S respectively, often
; referred to as EGPCS or GPC). Registration is done from left to right, newer
; values override older values.
variables_order = "EGPCS"

; Whether or not to register the EGPCS variables as global variables. You may
; want to turn this off if you don't want to clutter your scripts' global scope
; with user data. This makes most sense when coupled with track_vars - in
which
; case you can access all of the GPC variables through the $HTTP_*_VARS[],
; variables.
;
; You should do your best to write your scripts so that they do not require
; register_globals to be on; Using form variables as globals can easily lead
; to possible security problems, if the code is not very well thought of.
register_globals = Off

; Whether or not to register the old-style input arrays, HTTP_GET_VARS
; and friends. If you're not using them, it's recommended to turn them off,
; for performance reasons.
register_long_arrays = On

; This directive tells PHP whether to declare the argv&argc variables (that
; would contain the GET information). If you don't use these variables, you
; should turn it off for increased performance.
register_argc_argv = On

; Maximum size of POST data that PHP will accept.
post_max_size = 8M

; Magic quotes
;

; Magic quotes for incoming GET/POST/Cookie data.
magic_quotes_gpc = On

; Magic quotes for runtime-generated data, e.g. data from SQL, from exec(), etc.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

magic_quotes_runtime = Off

; Use Sybase-style magic quotes (escape ' with '' instead of \').
magic_quotes_sybase = Off

; Automatically add files before or after any PHP document.
auto_prepend_file =
auto_append_file =

; As of 4.0b4, PHP always outputs a character encoding by default in
; the Content-type: header. To disable sending of the charset, simply
; set it to be empty.
;
; PHP's built-in default is text/html
default_mimetype = "text/html"
;default_charset = "iso-8859-1"

; Always populate the $HTTP_RAW_POST_DATA variable.
;always_populate_raw_post_data = On

;;;;;;;;;;;;;;;;;;;;;;;;;
; Paths and Directories ;
;;;;;;;;;;;;;;;;;;;;;;;;;

; UNIX: "/path1:/path2"
;include_path = ".:/php/includes"
;
; Windows: "\path1;\path2"
;include_path = ".;c:\php\includes"

; The root of the PHP pages, used only if nonempty.
; if PHP was not compiled with FORCE_REDIRECT, you SHOULD set doc_root
; if you are running php as a CGI under any web server (other than IIS)
; see documentation for security issues. The alternate is to use the
; cgi.force_redirect configuration below
doc_root =

; The directory under which PHP opens the script using /~username used only
; if nonempty.
user_dir =

; Directory in which the loadable extensions (modules) reside.
extension_dir = "./"

; Whether or not to enable the dl() function. The dl() function does NOT work

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; properly in multithreaded servers, such as IIS or Zeus, and is automatically
; disabled on them.
enable_dl = On

; cgi.force_redirect is necessary to provide security running PHP as a CGI under
; most web servers. Left undefined, PHP turns this on by default. You can
; turn it off here AT YOUR OWN RISK
; **You CAN safely turn this off for IIS, in fact, you MUST.**
; cgi.force_redirect = 1

; if cgi.nph is enabled it will force cgi to always sent Status: 200 with
; every request.
; cgi.nph = 1

; if cgi.force_redirect is turned on, and you are not running under Apache or
Netscape
; (iPlanet) web servers, you MAY need to set an environment variable name that
PHP
; will look for to know it is OK to continue execution. Setting this variable MAY
; cause security issues, KNOW WHAT YOU ARE DOING FIRST.
; cgi.redirect_status_env = ;

; FastCGI under IIS (on WINNT based OS) supports the ability to impersonate
; security tokens of the calling client. This allows IIS to define the
; security context that the request runs under. mod_fastcgi under Apache
; does not currently support this feature (03/17/2002)
; Set to 1 if running under IIS. Default is zero.
; fastcgi.impersonate = 1;

; cgi.rfc2616_headers configuration option tells PHP what type of headers to
; use when sending HTTP response code. If it's set 0 PHP sends Status: header
that
; is supported by Apache. When this option is set to 1 PHP will send
; RFC2616 compliant header.
; Default is zero.
;cgi.rfc2616_headers = 0

;;;;;;;;;;;;;;;;
; File Uploads ;
;;;;;;;;;;;;;;;;

; Whether to allow HTTP file uploads.
file_uploads = On

; Temporary directory for HTTP uploaded files (will use system default if not

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; specified).
;upload_tmp_dir =

; Maximum allowed size for uploaded files.
upload_max_filesize = 2M

;;;;;;;;;;;;;;;;;;
; Fopen wrappers ;
;;;;;;;;;;;;;;;;;;

; Whether to allow the treatment of URLs (like http:// or ftp://) as files.
allow_url_fopen = On

; Define the anonymous ftp password (your email address)
;from="john@doe.com"

; Define the User-Agent string
; user_agent="PHP"

; Default timeout for socket based streams (seconds)
default_socket_timeout = 60

; If your scripts have to deal with files from Macintosh systems,
; or you are running on a Mac and need to deal with files from
; unix or win32 systems, setting this flag will cause PHP to
; automatically detect the EOL character in those files so that
; fgets() and file() will work regardless of the source of the file.
; auto_detect_line_endings = Off

;;;;;;;;;;;;;;;;;;;;;;
; Dynamic Extensions ;
;;;;;;;;;;;;;;;;;;;;;;
;
; If you wish to have an extension loaded automatically, use the following
; syntax:
;
; extension=modulename.extension
;
; For example, on Windows:
;
; extension=msql.dll
;
; ... or under UNIX:
;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; extension=msql.so
;
; Note that it should be the name of the module only; no directory information
; needs to go here. Specify the location of the extension with the
; extension_dir directive above.

;Windows Extensions
;Note that ODBC support is built in, so no dll is needed for it.
;

;extension=php_bz2.dll
;extension=php_cpdf.dll
;extension=php_curl.dll
;extension=php_dba.dll
;extension=php_dbase.dll
;extension=php_dbx.dll
;extension=php_exif.dll
;extension=php_fdf.dll
;extension=php_filepro.dll
;extension=php_gd2.dll
;extension=php_gettext.dll
;extension=php_iconv.dll
;extension=php_ifx.dll
;extension=php_iisfunc.dll
;extension=php_imap.dll
;extension=php_interbase.dll
;extension=php_java.dll
;extension=php_ldap.dll
;extension=php_mbstring.dll
;extension=php_mcrypt.dll
;extension=php_mhash.dll
;extension=php_mime_magic.dll
;extension=php_ming.dll
;extension=php_mssql.dll
;extension=php_msql.dll
;extension=php_mysql.dll
;extension=php_oci8.dll
;extension=php_openssl.dll
;extension=php_oracle.dll
;extension=php_pdf.dll
;extension=php_pgsql.dll
;extension=php_shmop.dll
;extension=php_snmp.dll
;extension=php_sockets.dll
;extension=php_sybase_ct.dll

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

;extension=php_tidy.dll
;extension=php_w32api.dll
;extension=php_xmlrpc.dll
;extension=php_xsl.dll
;extension=php_yaz.dll
;extension=php_zip.dll

;;;;;;;;;;;;;;;;;;;
; Module Settings ;
;;;;;;;;;;;;;;;;;;;

[Syslog]
; Whether or not to define the various syslog variables (e.g. $LOG_PID,
; $LOG_CRON, etc.). Turning it off is a good idea performance-wise. In
; runtime, you can define these variables by calling define_syslog_variables().
define_syslog_variables = Off

[mail function]
; For Win32 only.
SMTP = localhost
smtp_port = 25

; For Win32 only.
;sendmail_from = me@example.com

; For Unix only. You may supply arguments as well (default: "sendmail -t -i").
;sendmail_path =

; Force the addition of the specified parameters to be passed as extra
parameters
; to the sendmail binary. These parameters will always replace the value of
; the 5th parameter to mail(), even in safe mode.
;mail.force_extra_paramaters =

[SQL]
sql.safe_mode = Off

[ODBC]
;odbc.default_db = Not yet implemented
;odbc.default_user = Not yet implemented
;odbc.default_pw = Not yet implemented

; Allow or prevent persistent links.
odbc.allow_persistent = On

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; Check that a connection is still valid before reuse.
odbc.check_persistent = On

; Maximum number of persistent links. -1 means no limit.
odbc.max_persistent = -1

; Maximum number of links (persistent + non-persistent). -1 means no limit.
odbc.max_links = -1

; Handling of LONG fields. Returns number of bytes to variables. 0 means
; passthru.
odbc.defaultlrl = 4096

; Handling of binary data. 0 means passthru, 1 return as is, 2 convert to char.
; See the documentation on odbc_binmode and odbc_longreadlen for an
explanation
; of uodbc.defaultlrl and uodbc.defaultbinmode
odbc.defaultbinmode = 1

[MySQL]
; Allow or prevent persistent links.
mysql.allow_persistent = On

; Maximum number of persistent links. -1 means no limit.
mysql.max_persistent = -1

; Maximum number of links (persistent + non-persistent). -1 means no limit.
mysql.max_links = -1

; Default port number for mysql_connect(). If unset, mysql_connect() will use
; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the
; compile-time value defined MYSQL_PORT (in that order). Win32 will only look
; at MYSQL_PORT.
mysql.default_port =

; Default socket name for local MySQL connects. If empty, uses the built-in
; MySQL defaults.
mysql.default_socket =

; Default host for mysql_connect() (doesn't apply in safe mode).
mysql.default_host =

; Default user for mysql_connect() (doesn't apply in safe mode).
mysql.default_user =

; Default password for mysql_connect() (doesn't apply in safe mode).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; Note that this is generally a *bad* idea to store passwords in this file.
; *Any* user with PHP access can run 'echo
get_cfg_var("mysql.default_password")
; and reveal this password! And of course, any users with read access to this
; file will be able to reveal the password as well.
mysql.default_password =

; Maximum time (in secondes) for connect timeout. -1 means no limimt
mysql.connect_timeout = 60

; Trace mode. When trace_mode is active (=On), warnings for table/index scans
and
; SQL-Erros will be displayed.
mysql.trace_mode = Off

[MySQLI]

; Maximum number of links. -1 means no limit.
mysqli.max_links = -1

; Default port number for mysqli_connect(). If unset, mysqli_connect() will use
; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the
; compile-time value defined MYSQL_PORT (in that order). Win32 will only look
; at MYSQL_PORT.
mysqli.default_port = 3306

; Default socket name for local MySQL connects. If empty, uses the built-in
; MySQL defaults.
mysqli.default_socket =

; Default host for mysql_connect() (doesn't apply in safe mode).
mysqli.default_host =

; Default user for mysql_connect() (doesn't apply in safe mode).
mysqli.default_user =

; Default password for mysqli_connect() (doesn't apply in safe mode).
; Note that this is generally a *bad* idea to store passwords in this file.
; *Any* user with PHP access can run 'echo
get_cfg_var("mysqli.default_password")
; and reveal this password! And of course, any users with read access to this
; file will be able to reveal the password as well.
mysqli.default_password =

; Allow or prevent reconnect
mysqli.reconnect = Off

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[mSQL]
; Allow or prevent persistent links.
msql.allow_persistent = On

; Maximum number of persistent links. -1 means no limit.
msql.max_persistent = -1

; Maximum number of links (persistent+non persistent). -1 means no limit.
msql.max_links = -1

[PostgresSQL]
; Allow or prevent persistent links.
pgsql.allow_persistent = On

; Detect broken persistent links always with pg_pconnect().
; Auto reset feature requires a little overheads.
pgsql.auto_reset_persistent = Off

; Maximum number of persistent links. -1 means no limit.
pgsql.max_persistent = -1

; Maximum number of links (persistent+non persistent). -1 means no limit.
pgsql.max_links = -1

; Ignore PostgreSQL backends Notice message or not.
; Notice message logging require a little overheads.
pgsql.ignore_notice = 0

; Log PostgreSQL backends Noitce message or not.
; Unless pgsql.ignore_notice=0, module cannot log notice message.
pgsql.log_notice = 0

[Sybase]
; Allow or prevent persistent links.
sybase.allow_persistent = On

; Maximum number of persistent links. -1 means no limit.
sybase.max_persistent = -1

; Maximum number of links (persistent + non-persistent). -1 means no limit.
sybase.max_links = -1

;sybase.interface_file = "/usr/sybase/interfaces"

; Minimum error severity to display.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sybase.min_error_severity = 10

; Minimum message severity to display.
sybase.min_message_severity = 10

; Compatability mode with old versions of PHP 3.0.
; If on, this will cause PHP to automatically assign types to results according
; to their Sybase type, instead of treating them all as strings. This
; compatability mode will probably not stay around forever, so try applying
; whatever necessary changes to your code, and turn it off.
sybase.compatability_mode = Off

[Sybase-CT]
; Allow or prevent persistent links.
sybct.allow_persistent = On

; Maximum number of persistent links. -1 means no limit.
sybct.max_persistent = -1

; Maximum number of links (persistent + non-persistent). -1 means no limit.
sybct.max_links = -1

; Minimum server message severity to display.
sybct.min_server_severity = 10

; Minimum client message severity to display.
sybct.min_client_severity = 10

[dbx]
; returned column names can be converted for compatibility reasons
; possible values for dbx.colnames_case are
; "unchanged" (default, if not set)
; "lowercase"
; "uppercase"
; the recommended default is either upper- or lowercase, but
; unchanged is currently set for backwards compatibility
dbx.colnames_case = "unchanged"

[bcmath]
; Number of decimal digits for all bcmath functions.
bcmath.scale = 0

[browscap]
;browscap = extra/browscap.ini

[Informix]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; Default host for ifx_connect() (doesn't apply in safe mode).
ifx.default_host =

; Default user for ifx_connect() (doesn't apply in safe mode).
ifx.default_user =

; Default password for ifx_connect() (doesn't apply in safe mode).
ifx.default_password =

; Allow or prevent persistent links.
ifx.allow_persistent = On

; Maximum number of persistent links. -1 means no limit.
ifx.max_persistent = -1

; Maximum number of links (persistent + non-persistent). -1 means no limit.
ifx.max_links = -1

; If on, select statements return the contents of a text blob instead of its id.
ifx.textasvarchar = 0

; If on, select statements return the contents of a byte blob instead of its id.
ifx.byteasvarchar = 0

; Trailing blanks are stripped from fixed-length char columns. May help the
; life of Informix SE users.
ifx.charasvarchar = 0

; If on, the contents of text and byte blobs are dumped to a file instead of
; keeping them in memory.
ifx.blobinfile = 0

; NULL's are returned as empty strings, unless this is set to 1. In that case,
; NULL's are returned as string 'NULL'.
ifx.nullformat = 0

[Session]
; Handler used to store/retrieve data.
session.save_handler = files

; Argument passed to save_handler. In the case of files, this is the path
; where data files are stored. Note: Windows users have to change this
; variable in order to use PHP's session functions.
;
; As of PHP 4.0.1, you can define the path as:
;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; session.save_path = "N;/path"
;
; where N is an integer. Instead of storing all the session files in
; /path, what this will do is use subdirectories N-levels deep, and
; store the session data in those directories. This is useful if you
; or your OS have problems with lots of files in one directory, and is
; a more efficient layout for servers that handle lots of sessions.
;
; NOTE 1: PHP will not create this directory structure automatically.
; You can use the script in the ext/session dir for that purpose.
; NOTE 2: See the section on garbage collection below if you choose to
; use subdirectories for session storage
;
; The file storage module creates files using mode 600 by default.
; You can change that by using
;
; session.save_path = "N;MODE;/path"
;
; where MODE is the octal representation of the mode. Note that this
; does not overwrite the process's umask.
;session.save_path = "/tmp"

; Whether to use cookies.
session.use_cookies = 1

; This option enables administrators to make their users invulnerable to
; attacks which involve passing session ids in URLs; defaults to 0.
; session.use_only_cookies = 1

; Name of the session (used as cookie name).
session.name = PHPSESSID

; Initialize session on request startup.
session.auto_start = 0

; Lifetime in seconds of cookie or, if 0, until browser is restarted.
session.cookie_lifetime = 0

; The path for which the cookie is valid.
session.cookie_path = /

; The domain for which the cookie is valid.
session.cookie_domain =

; Handler used to serialize data. php is the standard serializer of PHP.
session.serialize_handler = php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; Define the probability that the 'garbage collection' process is started
; on every session initialization.
; The probability is calculated by using gc_probability/gc_divisor,
; e.g. 1/100 means there is a 1% chance that the GC process starts
; on each request.

session.gc_probability = 1
session.gc_divisor = 100

; After this number of seconds, stored data will be seen as 'garbage' and
; cleaned up by the garbage collection process.
session.gc_maxlifetime = 1440

; NOTE: If you are using the subdirectory option for storing session files
; (see session.save_path above), then garbage collection does *not*
; happen automatically. You will need to do your own garbage
; collection through a shell script, cron entry, or some other method.
; For example, the following script would is the equivalent of
; setting session.gc_maxlifetime to 1440 (1440 seconds = 24 minutes):
; cd /path/to/sessions; find -cmin +24 | xargs rm

; PHP 4.2 and less have an undocumented feature/bug that allows you to
; to initialize a session variable in the global scope, albeit register_globals
; is disabled. PHP 4.3 and later will warn you, if this feature is used.
; You can disable the feature and the warning seperately. At this time,
; the warning is only displayed, if bug_compat_42 is enabled.

session.bug_compat_42 = 1
session.bug_compat_warn = 1

; Check HTTP Referer to invalidate externally stored URLs containing ids.
; HTTP_REFERER has to contain this substring for the session to be
; considered as valid.
session.referer_check =

; How many bytes to read from the file.
session.entropy_length = 0

; Specified here to create the session id.
session.entropy_file =

;session.entropy_length = 16

;session.entropy_file = /dev/urandom

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; Set to {nocache,private,public,} to determine HTTP caching aspects
; or leave this empty to avoid sending anti-caching headers.
session.cache_limiter = nocache

; Document expires after n minutes.
session.cache_expire = 180

; trans sid support is disabled by default.
; Use of trans sid may risk your users security.
; Use this option with caution.
; - User may send URL contains active session ID
; to other person via. email/irc/etc.
; - URL that contains active session ID may be stored
; in publically accessible computer.
; - User may access your site with the same session ID
; always using URL stored in browser's history or bookmarks.
session.use_trans_sid = 0

; Select a hash function
; 0: MD5 (128 bits)
; 1: SHA-1 (160 bits)
session.hash_function = 0

; Define how many bits are stored in each character when converting
; the binary hash data to something readable.
;
; 4 bits: 0-9, a-f
; 5 bits: 0-9, a-v
; 6 bits: 0-9, a-z, A-Z, "-", ","
session.hash_bits_per_character = 4

; The URL rewriter will look for URLs in a defined set of HTML tags.
; form/fieldset are special; if you include them here, the rewriter will
; add a hidden <input> field with the info which is otherwise appended
; to URLs. If you want XHTML conformity, remove the form entry.
; Note that all valid entries require a "=", even if no value follows.
url_rewriter.tags = "a=href,area=href,frame=src,input=src,form=,fieldset="

[MSSQL]
; Allow or prevent persistent links.
mssql.allow_persistent = On

; Maximum number of persistent links. -1 means no limit.
mssql.max_persistent = -1

; Maximum number of links (persistent+non persistent). -1 means no limit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mssql.max_links = -1

; Minimum error severity to display.
mssql.min_error_severity = 10

; Minimum message severity to display.
mssql.min_message_severity = 10

; Compatability mode with old versions of PHP 3.0.
mssql.compatability_mode = Off

; Connect timeout
;mssql.connect_timeout = 5

; Query timeout
;mssql.timeout = 60

; Valid range 0 - 2147483647. Default = 4096.
;mssql.textlimit = 4096

; Valid range 0 - 2147483647. Default = 4096.
;mssql.textsize = 4096

; Limits the number of records in each batch. 0 = all records in one batch.
;mssql.batchsize = 0

; Specify how datetime and datetim4 columns are returned
; On => Returns data converted to SQL server settings
; Off => Returns values as YYYY-MM-DD hh:mm:ss
;mssql.datetimeconvert = On

; Use NT authentication when connecting to the server
mssql.secure_connection = Off

; Specify max number of processes. Default = 25
;mssql.max_procs = 25

[Assertion]
; Assert(expr); active by default.
;assert.active = On

; Issue a PHP warning for each failed assertion.
;assert.warning = On

; Don't bail out by default.
;assert.bail = Off

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; User-function to be called if an assertion fails.
;assert.callback = 0

; Eval the expression with current error_reporting(). Set to true if you want
; error_reporting(0) around the eval().
;assert.quiet_eval = 0

[Ingres II]
; Allow or prevent persistent links.
ingres.allow_persistent = On

; Maximum number of persistent links. -1 means no limit.
ingres.max_persistent = -1

; Maximum number of links, including persistents. -1 means no limit.
ingres.max_links = -1

; Default database (format: [node_id::]dbname[/srv_class]).
ingres.default_database =

; Default user.
ingres.default_user =

; Default password.
ingres.default_password =

[Verisign Payflow Pro]
; Default Payflow Pro server.
pfpro.defaulthost = "test-payflow.verisign.com"

; Default port to connect to.
pfpro.defaultport = 443

; Default timeout in seconds.
pfpro.defaulttimeout = 30

; Default proxy IP address (if required).
;pfpro.proxyaddress =

; Default proxy port.
;pfpro.proxyport =

; Default proxy logon.
;pfpro.proxylogon =

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; Default proxy password.
;pfpro.proxypassword =

[Sockets]
; Use the system read() function instead of the php_read() wrapper.
sockets.use_system_read = On

[com]
; path to a file containing GUIDs, IIDs or filenames of files with TypeLibs
;com.typelib_file =
; allow Distributed-COM calls
;com.allow_dcom = true
; autoregister constants of a components typlib on com_load()
;com.autoregister_typelib = true
; register constants casesensitive
;com.autoregister_casesensitive = false
; show warnings on duplicate constat registrations
;com.autoregister_verbose = true

[mbstring]
; language for internal character representation.
;mbstring.language = Japanese

; internal/script encoding.
; Some encoding cannot work as internal encoding.
; (e.g. SJIS, BIG5, ISO-2022-*)
;mbstring.internal_encoding = EUC-JP

; http input encoding.
;mbstring.http_input = auto

; http output encoding. mb_output_handler must be
; registered as output buffer to function
;mbstring.http_output = SJIS

; enable automatic encoding translation accoding to
; mbstring.internal_encoding setting. Input chars are
; converted to internal encoding by setting this to On.
; Note: Do _not_ use automatic encoding translation for
; portable libs/applications.
;mbstring.encoding_translation = Off

; automatic encoding detection order.
; auto means
;mbstring.detect_order = auto

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

; substitute_character used when character cannot be converted
; one from another
;mbstring.substitute_character = none;

; overload(replace) single byte functions by mbstring functions.
; mail(), ereg(), etc are overloaded by mb_send_mail(), mb_ereg(),
; etc. Possible values are 0,1,2,4 or combination of them.
; For example, 7 for overload everything.
; 0: No overload
; 1: Overload mail() function
; 2: Overload str*() functions
; 4: Overload ereg*() functions
;mbstring.func_overload = 0

[FrontBase]
;fbsql.allow_persistent = On
;fbsql.autocommit = On
;fbsql.default_database =
;fbsql.default_database_password =
;fbsql.default_host =
;fbsql.default_password =
;fbsql.default_user = "_SYSTEM"
;fbsql.generate_warnings = Off
;fbsql.max_connections = 128
;fbsql.max_links = 128
;fbsql.max_persistent = -1
;fbsql.max_results = 128
;fbsql.batchSize = 1000

[exif]
; Exif UNICODE user comments are handled as UCS-2BE/UCS-2LE and JIS as
JIS.
; With mbstring support this will automatically be converted into the encoding
; given by corresponding encode setting. When empty
mbstring.internal_encoding
; is used. For the decode settings you can distinguish between motorola and
; intel byte order. A decode setting cannot be empty.
;exif.encode_unicode = ISO-8859-15
;exif.decode_unicode_motorola = UCS-2BE
;exif.decode_unicode_intel = UCS-2LE
;exif.encode_jis =
;exif.decode_jis_motorola = JIS
;exif.decode_jis_intel = JIS

[Tidy]
; The path to a default tidy configuration file to use when using tidy

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

;tidy.default_config = /usr/local/lib/php/default.tcfg

; Should tidy clean and repair output automatically?
; WARNING: Do not use this option if you are generating non-html content
; such as dynamic images
tidy.clean_output = Off

[soap]
; Enables or disables WSDL caching feature.
soap.wsdl_cache_enabled=1
; Sets the directory name where SOAP extension will put cache files.
soap.wsdl_cache_dir="/tmp"
; (time to live) Sets the number of second while cached file will be used
; instead of original one.
soap.wsdl_cache_ttl=86400

; Local Variables:
; tab-width: 4
; End:

i T . Berners-Lee, http://www.faqs.org/rfcs/rfc2616.html and R. Fielding,
http://www.faqs.org/rfcs/rfc1945.html
ii http://www.faqs.org/rfcs/rfc793.html
iii http://www.faqs.org/rfcs/rfc791.html
iv T. Berners-Lee, http://www.faqs.org/rfcs/rfc1945.html
v T. Berners-Lee, http://www.faqs.org/rfcs/rfc1945.html
vi T. Berners-Lee, http://www.faqs.org/rfcs/rfc1945.html
vii E. Rescorla, http://www.faqs.org/rfcs/rfc2818.html
viii T. Berners-Lee, http://www.faqs.org/rfcs/rfc1945.html
ix D. Raggett, http://www.w3c.org/MarkUp/
x B. Bos, http://www.w3.org/TR/CSS21/
xi http://devedge.netscape.com/central/javascript/
xii http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/vbscripttoc.asp
xiii http://www.ecma-international.org/publications/standards/Ecma-262.htm
xiv

http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/cooki
es.html
xv K. Coar, http://cgi-spec.golux.com/
xvi D. Brogdon, http://www.onlamp.com/pub/a/php/2001/03/29/php_admin.html
xvii Apache Software Foundation,
http://httpd.apache.org/docs/misc/security_tips.html
xviii Apache Software Foundation, http://httpd.apache.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

xix National Center for Supercomputing Applications, HTTPd home page,
http://hoohoo.ncsa.uiuc.edu/
xxhttp://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28
000522
xxi I. Ristic, http://www.webkreator.com/php/configuration/php-configuration.html
xxii http://www.php.net
xxiii S. Bakken, PHP Manual, http://www.php.net/manual/en/configuration.php
xxiv S. Bakken, PHP Manual, http://www.php.net/manual/en/install.windows.php
xxv xxv I. Ristic, http://www.webkreator.com/php/configuration/php-
configuration.html
xxvi http://cvs.php.net/co.php/php-src/php.ini-dist
xxvii H. Fuecks, http://www.sitepoint.com/article/php-anthology-1-1-php-basics/6
xxviii S. Bakken, PHP Manual, http://us2.php.net/manual/en/features.safe-
mode.functions.php
xxix S. Bakken, PHP Manual, http://us2.php.net/manual/en/features.safe-
mode.functions.php
xxx http://cvs.php.net/co.php/php-src/php.ini-dist
xxxi http://cvs.php.net/co.php/php-src/php.ini-dist
xxxii C. Lonvick, http://www.faqs.org/rfcs/rfc3164.html
xxxiii S. Clowes, http://www.securereality.com.au/archives/studyinscarlet.txt
xxxiv http://www.microsoft.com/WindowsServer2003/iis/default.mspx
xxxv http://us2.php.net/session
xxxvi Open Web Application Security Project
http://www.owasp.org/documentation/topten
xxxvii Y. Youman, http://fort-knox.org/thesis.php
xxxviii L. Stein, http://www.w3.org/Security/Faq/wwwsf4.html
xxxix R. Schwartz, http://www.stonehenge.com/merlyn/
xl http://www.ansi.org/
xli http://www.ecma-international.org/publications/standards/Ecma-006.htm
xlii http://www.unicode.org/
xliii D. Wheeler, http://www.dwheeler.com/secure-programs/Secure-Programs-
HOWTO/php.html

