GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Securing Perl Scripts

Brett N. DiFrischia
July 3, 2004

GSEC Version 1.4b, Option 1.
Abstract

Perl is an open source, widely used scripting language made available under the
GNU General Public License. Its power and flexibility have made it one of the
languages of choice for Rapid Application Development. The language is built
with many interfaces to the external world, including CGI, Berkeley Sockets, and
the Perl Database Interface. These tools give a programmer the ability to
perform a wide variety of tasks with only a few lines of source code.

Unfortunately, the same power that makes Perl a great programming language
also allows a developer to open security holes to external users. Covered in this
paper are examples of key interfaces, which could allow security flaws. Once
these security flaws are identified, the mechanisms to assist developers in
generating locked down code are presented.

Introduction

Perl* is a powerful scripting language created by Larry Wall®>. As a partially
compiled/interpreted language, Perl performs wonders in the domain of Rapid
Application Development (RAD)®. The primary sources of Perl’s power are its
extensive capabilities, curt and sometimes difficult syntax, and, most importantly,
a widespread user support system.

The great power presented to programmers by the Perl language “make[s] the
easy jobs easy, without making the hard jobs impossible.”* Unfortunately, this
same ability also gives programmers great potential for opening security holes in
their systems.

The purpose of this research is to make readers aware of potential security
holes. First, it gives a small sample of possible ways for a programmer to
introduce security risks into their programs and libraries. After these problematic
areas are revealed, it will give suggestions on how to protect Perl scripts.

Use with Caution: CGl.pm
Common Gateway Interface (CGI)° provides an interface between which data
servers and clients can exchange information interactively. This standard is of

such use that the Perl source ships with a standard CGI module, CGl.pm°. In
fact, the widespread use of Perl for creating CGl applications’ has categorized

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Perl as a web application development language. While this is certainly a great
use for Perl, it is by no means the only one.

CGl allows a client to send pieces of information to the data server, as stated
above. What this does not reveal is that the client has a great potential to control
and modify that data. The server-side programmer must realize that any
information from an external source is thus potentially dangerous to the server-
side system.

Some examples of malicious data include:

e System or Perl commands typed into text input fields

e SQL injection (see below)

e Hidden data and cookie fields, which could contain sensitive or runtime

configuration data®

The last item sometimes comes as a surprise to programmers. However, these
fields are easily viewed through HTML source or client program in an HTTP
application. As such, creating an interactive local proxy® or using a text
processor or homebrewed program can allow the client user to modify this data.

CGl leaves the programmer responsible for many security tasks. As such, a CGl
application is often a first target for cracking a server.

Use with Caution: Berkeley Sockets

Perl has an extensive built in Berkeley Sockets API. This functionality allows
Perl programmers to instantiate and to connect to Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP) based sockets quickly and
efficiently’®. Many modules are available to perform common socket tasks and
even generate raw IP packets, the most notable of which is 10::Socket, which
allows an object-oriented interface to the socket API. Because of this, the ability
to fork() and multithread, and its powerful syntax, Perl is well suited to the needs
of network programmers.

Of course, network programming carries with it a tremendous responsibility.

Most notably is the need to keep intruders out while allowing clients in. However,
once a client (intruder or not) has access to the underlying network application,
the programmer must also prevent malicious behavior to the data being used or
the underlying system.

Fortunately, Perl provides several built in mechanisms to minimize the security

risk involved with external communication. For a more in depth view at network
programming security, see Stein®.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Use with Caution: Executing Code

Perl allows the programmer to execute code and system commands from within
a script. This ability allows the programmer not only to interact with the
underlying operating system, but also to evaluate Perl code itself. In fact, due to
a lack of built in exception handling, the eval{} statement is often used to allow for
internal error handling.

Interacting with the system is possible in multiple ways. First and most obvious
is the system() routine, which takes its argument(s) and executes the associated
system command, returning O on success and an error code on failure. Second
is the backtick operator ("string’), which interprets the given string as a system
command, returning the standard output of the operation. The 1/O routine,
open(), also allows system interaction by preceding or following the filename
argument with a pipe(]). A leading pipe indicates that the program will write to
the system command, whereas a trailing pipe indicates reading from the
command. Finally, the exec() call can be used to replace the current program
with the given command. All of these capabilities offer the potential for
dangerous interaction with the system. Any command to be executed in this
fashion should either be generated directly by the script or thoroughly validated.

Use with Caution: Privileged User Permissions

There are several ways in which a Perl script may be allowed to have privileged
access to high security information. The first is simply by being run as root. This
tends to be necessary for servers, among other programs, which need to access
privileged information or routines on the system.

The other two are through the Setuid and Setgid permission bits. This
mechanism, discussed below, can allow the executing user of a file to
temporarily act as the owner.

When accessing the system with a privileged user ID, the real user can easily
impact the rest of the system, either purposely or accidentally.

Use with Caution: DBIl.pm

Database systems are prevalent throughout the computing industry. As such,
you will rarely find a programming language that does not have some form of
database API built into it. Perl is no exception to the rule. Combined with the
aforementioned CGI and Socket capabilities, the Perl Database Interface (DBI)**
allows for a powerful, database management system (DBMS) independent utility,
giving programmers the freedom to concentrate on design over communication*2.

This functionality is extremely useful, but allows for programmer errors when
interacting with the underlying DBMS. Not only does the programmer need to be

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

concerned with protecting impermissible access to the DBMS and the data
contained therein, but they must also be wary of the data they use when querying
the database. In this manner, the programmer is responsible for both
authentication and validation of input data.

Of particular interest in this arena of study is SQL injection. Input from a user
can easily imitate the underlying SQL, if not properly validated, typically by
inserting single quotes on each end of the input string and inserting valid SQL
between them:

Sid = <>; # Read from STDIN... ‘admin’
$pW: <>; # A\ A\ A\ .. N O 0OR M1 =r”
Squery = “SELECT * FROM users “

"WHERE id=’$id’ AND password='S$pw’”;

Given the input values after the ... sequences, $query now contains the value
“SELECT * FROM users WHERE id="admin’ AND password=" OR ‘1’="1""%,
Upon querying through DBI for this result, the application will receive a one-row
result, allowing the cracker to imitate the user ‘admin’ in this system.

Use with Caution: Public Modules

One of the most useful features of Perl is its user base support. Due to its wide
scale use and open source origins, the users of Perl are quite willing to share
modules and assist each other with programming challenges. This effort has
been organized into the Comprehensive Perl Archive Network (CPAN)™. From
this site, a Perl programmer can download and install a plethora of useful
modules and programs, including Perl itself.

The many of modules available via CPAN are of various origins. A great deal of
them are packaged and shipped as standard modules of Perl. Others are Perl
interfaces to C, C++, and Java libraries. Most modules available through CPAN
also come with self-tests, are reviewed by users, and have installation attempts
and failures monitored at their home nodes.

Although a majority of these modules are benign, the programmer may find an
occasional module, which, either maliciously or accidentally, damages their
software systems.

Incident Prevention: Warnings and use strict;
Thankfully, Perl provides several safety mechanisms for its coders. Perhaps the
simplest way to prevent incidents is to prevent coding errors. Perl offers several

options in this category. The two most prevalent are command line triggered
warnings and the strict.pm module.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

When Perl is used with the command line flag —w, it will generate warning
messages in what Perl considers potentially dangerous situations, including
subroutine redefinition, usage of uninitialized variables, and other syntax and
usage errors™. This flag can save the programmer loads of debugging time, and
help him/her prevent unidentifiable security holes due to improper usage of Perl
syntax.

strict.pm is a pragmatic module that will cause Perl to raise errors on variables
which are undeclared or which it cannot resolve®®. It also restricts unsafe
operations involving references and subroutines. This not only saves the
programmer great time and effort when debugging, but will also help identify
troublesome areas of Perl code.

Incident Prevention: Taint Mode and Input Validation

The two tools described above, however, can only do so much. They primarily
function to prevent syntax problems. When the security issue at hand becomes
data, other mechanisms must be used. The primary tool for this purpose is taint
mode.

Perl can be put into taint mode by using either of the command line options —t or
—T*. The difference between the flags is that —t will generate warnings on taint
violations, and —T will fail returning an error (clearly desired in production
environments). Regardless, these flags interpret how Perl handles data. Taint
mode is highly recommended for use with any program that must access
untrusted data, including servers, CGI programs, setuid and setgid scripts, etc.
Taint mode is highly restrictive. So much so that a —T that appears on a Unix #!
line:

#![usr/bin/perl -T

will prevent the script from being run directly through the Perl interpreter:

% per | myprog. pl
Too late for "-T" option at nyprog.pl line 1.

Such an error is desirable, since the Perl interpreter has many powerful
command line utilities.

Taint mode will taint data retrieved from any external source, including command
line arguments, environmental variables, system call input, etc. Tainted data is
not allowed to directly interact with the system or executed as or as part of Perl
code’’. These can be significant restrictions, making life more difficult on the
programmer, but this is a desirable result. As such, the programmer must
examine all data before using it in an insecure manner. This is typically done
through the use of regular expressions (regex) since a matching subgroup of the
regex can be used to interact as expressed above. This can still lead to errors,

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

though, as the programmer can simply match all data, and use the resulting sub
match:

my $data = <>; # Read from STDIN... ‘rm -rf /'
$ENV{PATH} = '/bin'; # nmust set PATH, since it is

external
#syst em $dat a; # This would raise an error
$data =~ /(.*)/s;
system $1; # This executes without fail

As you can see, this doesn’t help avoid security issues.

This leads to the discussion of input validation. Input validation comes in two
flavors: permissive and filtering. Permissive validation checks the input for a
specific format, failing with the appropriate error message when that form is not
followed. Filtering removes any illegal characters or patterns from the input and
proceeds as normal with the freshly rearranged input as usual.

Thankfully, Perl has versatile regex syntax. As such, the clever programmer can
quickly parse what is desired from the input or delete unnecessary patterns
before proceeding to data processing.

Incident Prevention: SQL Injection

As a special case of input validation, SQL injection has potentially cataclysmic
consequences for the database driven web that is known and loved (or hated)
today. An unwary application programmer can allow a cracker to alter, destroy,
or gain illegal access to database information by not validating program input.

For starters, the programmer can use the techniques described above, in
‘Incident Prevention: Taint Mode and Input Validation.” The DBl.pm module,
however, offers more help in the way of the quote method, available to the
database handle. quote() takes a string and escapes any characters that may
have special meaning within an SQL statement. In particular, it escapes quote
characters themselves, making SQL injection nearly impossible™?.

Incident Prevention: Graceful Failure

Protecting a Perl script not only involves preventing malicious use of code, but
also keeping the program from entering an erroneous state. This can be done in
two ways in Perl: catching exceptions and handling signals. Doing so allows
either program recovery or at least graceful failure of operations. Such behavior
is desirable in applications such as servers, in which case it is necessary to be
able to accept new clients, even when another fails.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Exception handling in Perl is done via the eval{} statement, as mentioned above.
eval{} can be passed either a string or a block of code, which it will then interpret
and execute as Perl code. If the code fails, Perl places the returned error
message in the global variable $@ ($EVAL_ERROR when using the English.pm
module)®®. This technique allows the script to catch a fatal error which may occur
during an operation, such as attempting to parse a malformed or invalid

XML file.

Assigning subroutine references to elements of the global hash %SIG is the
method for implementing signal handling in Perl. This method allows a script to
intercept system signals such as TERM, INT, HUP, etc. before the interpreter
halts, permitting the script to finalize its state before exiting, clean itself up and
start from scratch, or do anything else that may be desirable™.

Incident Prevention: Using Caution With External Libraries

Perl Culture is inherent with good-natured developers, willing to share their
solutions to common problems on CPAN**. This kind of collaboration is the
essence of open source computing, needless to say. However, people can make
mistakes, and there are always a few bad eggs lurking out there, so it is
necessary to take caution in using external libraries. There are several
guidelines that make external libraries a more security friendly resource.

The first thing one should do when downloading any software package is to
check the checksums and signatures available for that package. This includes
MD5 checksums and PGP signatures, when available. Most unfortunately,
CPAN does not provide this information yet.

Build the software package on a non-production, preferably isolated, system.
Once the software is built, run any internal tests supplied with it. Finally, before
installing it, test it heavily with your own software. This can take time, but it is
definitely worth the effort.

Check all Perl libraries for interaction with the variables $< (EREAL_USER_ID or
$UID), $> (SEFFECTIVE_USER_ID or $EUID), $((REAL_GROUP_ID or $GID),
and $) ($EFFECTIVE_GROUP_ID or $EGID) (the alternative names available
through the English.pm module are in parentheses). These variables affect the
user and group IDs under which the software will be run. Any modules which
read or modify these variables (unless desired) should be checked directly for
malicious behavior. Typically, a search for these variables can be done with a
simple grep command.

Many Perl modules are built on top of C libraries. Although a useful feature of
Perl, this can also allow for any vulnerability present in the C software to directly
affect the Perl module. For more information on securing C software, see
Ahmed™®.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Finally, keep an eye on the external package distribution. It most likely contains
bug fixes, but may also contain security enhancements and repairs. Yet again,
due to a lack of monitoring resources, this is not easily done in CPAN without
bookmarking every module used.

Incident Prevention: Do not Setuid or Setgid

Unix systems, in particular, allow a great power to the common user. If a specific
permission bit is set on an executable file, users with the correct permissions can
execute that file with the privileges of the file’s owner. This is typically done in
programs such as passwd, through which an unprivileged user can change his or
her password in a database file owned and writable only by root. Although a
powerful technique, this procedure is not recommended and can wreak havoc on
a system. However, when necessary, Perl provides some security techniques for
the programmer.

Any Setuid or Setgid program written in Perl automatically uses taint mode. This
cannot be turned off. Also, Perl must be configured to allow for Setuid and
Setgid. As such, if an administrator does not want this capability on his/her
system, Perl can simply be built without it.

Finally, as a rule, do as many tasks as possible with an unprivileged user and/or
group ID. Limit the amount of interaction between the program and the system
when acting as a privileged user™.

Incident Prevention: chroot

Often a program or module is required to interact with files on a local file system.
As such, it is necessary to limit the mobility of that script to prevent damage to
critical system files. This is particularly true of Setuid and Setgid scripts, as well
as servers requiring root permissions for at least part of their lifetimes.

Perl allows the view of the local file system to be limited through the chroot
command®®. This command takes a single scalar argument, which becomes the
new root directory for the process or thread. The process is irreversible, so once
the file system is limited to the view chosen, a cracker cannot use the script to
access sensitive areas of the file system.

A certain precaution must be used, however, when including external Perl

libraries'®. These libraries must either be found within the new root directory, or
loaded before chroot is called.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Incident Prevention: User Authentication

User authentication is problem common to client user programs. A good first
step towards securing authentication is to encrypt passwords with the strongest
hashing mechanism available for your platform. The built in crypt() function will
interface with the C library function of the same name on your platform®. Once
that is done, the hashed password should be stored as privileged information,
either within a root owned file, or, more commonly for web applications, a limited
access database table.

A more interesting problem is that of user authentication over an HTTP
connection. CPAN offers several modules for basic authentication, most of
which are contained in the Library for WWW Programming (LWP)%*. These
include LWP LWP::Authen::Basic, LWP::Authen::DigesT, and
LWP::Authen::Ntim. However, as with any authentication, it is best to perform
these operations in a secure environment. This typically involves Secure Socket
Layers (SSL); of which LWP include an interface to. If this is not sufficient for
your needs, CPAN has a slew of SSL modules available®.

Incident Prevention: Ask a Guru

Finally, when all else fails, rely on the socially conscious culture of Perl. Perl
programmers tend to enjoy solving a challenging Perl problem. As such, most
are willing to help a fellow Perl hacker in need. If there is no local guru at your
disposal (or they claim to be too busy), there are several places to search for Perl
wisdom, including, but not limited to, a large number of Perl mailing lists®3, nntp
news lists®*, Perl Monks?®, and your local Perl Mongers user group®®. When
asking for advice from others, remember to use examples, not specific
vulnerabilities on your system. You do not want to reveal sensitive information to
a potential cracker.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Works Cited

! Perl.org, “The Perl Directory at Perl.org.” http://www.ruby-lang.org/

% wall.org, “Larry Wall's Very Own Home.” http://www.wall.org/~larry/

% whatis.com, “Rapid Application Development.”
http://whatis.techtarget.com/definition/0,,sid9_gci214246,00.html

* patwardhan, N., Siever, E., and Spainhour, S. “Perl in a Nutshell, 2" Edition.”
O’Reilly, Cambridge: 2002.

> w3.org, “CGl — Common Gateway Interface.” http://www.w3.0rg/CGlI/

® cpan.org, “Lincoln D. Stein / CGl.pm.” http://search.cpan.org/~Ids/CGl.pm/

’ Guelich, S. Gundavaram, S., and Gunther, B. “CGI programming With Perl, 2™
Edition.” O’Reilly, Cambridge: 2000.

& Musciano, C. and Kennedy, B. “HTML and XHTML, The Definitive Guide, 5"
Edition.” O’Reilly, Cambridge: 2002

® Dhanjani, N. “Web App Security Testing with a Custom Proxy Server”
http://www.onlamp.com/pub/au/1714

10 Stein, L. D. “Network Programming with Perl.” Addison-Wesley, New York:
2001.

1 cpan.org, “Tim Bunce / DBI.” http://search.cpan.org/~timb/DBI/

12 Descartes, A. and Bunce, T. “Programming the Perl DBI.” O’Reilly,
Cambridge: 2000

13 Jepson, B., “Beware SQL Injection in Web Applications.”
http://www.oreillynet.com/pub/wlg/1595

14 CPAN, “Comprehensive Perl Archive Network.” http://www.cpan.org/

15 perldoc.com, “perlrun - how to execute the Perl interpreter.”
http://www.perldoc.com/perl5.8.4/pod/perlrun.html

16 perldoc.com, “strict - Perl pragma to restrict unsafe constructs.”
http://www.perldoc.com/perl5.8.4/lib/strict.html

" perldoc.com, “perlsec - Perl security.”
http://www.perldoc.com/perl5.8.4/pod/perisec.html

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8 Hall, J. N., with Schwartz, R. L. “Effective Perl Programming: Writing Better
Programs with Perl.” Addison-Wesley, New York: 1998.

19 Ahmed, S. J., “Securely Programming in C.”
http://www.sans.org/rr/papers/index.php?id=388

20 Perldoc.com, “crypt.” http://www.perldoc.com/perl5.8.4/pod/func/crypt.html

2 cpan.org, “Gisle Aas / libwww-perl.” http://search.cpan.org/~gaas/libwww-perl/

22 cpan.org “The CPAN Search Site.”
http://search.cpan.org/search?query=ssl&mode=all

23 perl.org, “The Perl Mailing List Database.” http://lists.perl.org/

24 Perl.org, “perl.org lists.” http://www.nntp.perl.org/group/

25 perl Monks, “Seekers of Perl Wisdom.”
http://www.perlmonks.org/index.pl?node=Seekers%200f%20Perl%20Wisd

om

%6 Perl Mongers, “Perl Mongers: User groups.”
http://www.pm.org/groups/index.html

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

