GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec



http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Secure Y our Web Application through Security Testing
Darren Gannon — System Administrator
Submitted: July 13, 2004

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Abstract

The internet has forever changed the way companies do business. Technology
progresses quickly and what may have been considered secure a year ago often
is considered insecure today. In the past simply having a firewall was considered
a considerable investment in securing a businesses information assets. Today
malicious users are attacking systems and going right through the firewall. They
do this by attacking the web application sitting behind the firewall. Many web
applications are vulnerable to specially crafted attacks. Often the applications go
untested for these attacks. Developers may lack knowledge of new vulnerabilities
in software, the QA department may lack the knowledge of security testing
techniques and the networking team is often untrained in application security.

Three common attacks are buffer overflows, sgl injection and cross site scripting.
There are simple ways to test applications for all three exploits and often there
are tools to automate the process. In this essay we will examine the need for
security testing as a separate function in a development cycle. It will explain the
mechanics behind the three attacks above and how to test your applications for
vulnerability to these three attacks.

For many companies the security of their web applications and infrastructure is
an afterthought. While corporate executives claim that security is a top priority,
often the security budget does not substantiate that claim (Jaquith). Customers

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



have grown accustomed to the reactionary nature of the software development
companies building the applications. The “release now, fix later” approach is the
norm amongst major software vendors and we’re starting to reap the results of
this faulty process. In many development shops timelines and budgets do not
allow for thorough security testing, while the client assumes the application is
secure because it was purchased from a well known vendor (often at high cost).
Others have a false impression that security is a network layer issue addressed
by installing expensive firewalls and network security devices.

3.1 We’re safe, we’ve installed a firewall!

One would be hard pressed to find a Fortune 500 company whose private
network was connected to the Internet without a firewall. Many businesses use a
combination of firewalls along with elaborate intrusion detection systems.
However, if these devices are the magical key to a secure website why is it that
popular sites belonging to EBay, Microsoft, The NY Times and the FBI, to name
a few, have been successfully attacked in recent years? Had they not invested in
secure firewalls? Did they not employ trained security experts? One would have
to assume that this is not the case, but if almost every business is protected at
the network layer how are web sites and applications being successfully
compromised?

It's true that a firewall is only as secure as it's configured to be. You can spend
thousands on a home security system but if you disable the sensors on the
windows so you can climb through when you've lost your keys, then obviously
the effectiveness of the alarm is compromised by the insecure configuration.
However, for the purposes of this article we’ll assume every firewall is configured
properly and locked down. Even when this is the case, most firewalls leave open
a gaping hole.

The increase in the use of firewalls has resulted in a change in tactics amongst
the hacker community. In the late 90’s the preferred weapons amongst malicious
users “were crude Molotov cocktails aimed at firms’ network infrastructure,”
reports Andrew Jaquith of @Stake (Jaquith). Today the network layer is heavily
guarded so it's no surprise that the majority of successful attacks are taking place
at the application layer. The path of least resistance for an attacker is to hit the
application directly since most firewalls protecting web servers allow all http
traffic through via port 80 (Abner).

Web Applications, the New Target

“‘Web services’ fundamental architecture opens the door for serious security
breaches,” states Adam Kolawa (Kolawa). The very nature of a web application
makes it insecure due to its public accessibility. Even when your website is
behind a firewall it's very difficult to block malicious input coming directly down
the same path proper input takes. By opening up any portion of your web

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



application for public access you immediately have the potential for misuse of
that access and attacks on the application. SPI Labs estimate that approximately
“70% of all successful attacks are now coming through the application layer” (SPI
Labs).

In today’s competitive software market, customers demand feature rich
applications with expanding complex functionality. This immediately gives the
attacker a head start since, as an @Stake report concludes, “complexity is the
enemy of security beyond all others” (Abner). With millions and millions of lines of
code in many complex applications a malicious user can attack one component
at a time with a handful of tools and well known exploits until something reveals
an unexpected result, giving up clues as to further weaknesses in the system.

Some blame the development process itself in which hundreds of developers
often work in a structured environment on individual components of an
application. Many developers are more concerned with getting something to work
rather than checking to see what could make it fail or produce the unexpected
(Cenzic). In many organizations, applications are released for production with the
assumption that the network infrastructure will provide security. In other cases
the application developers lack the security know-how while the network
infrastructure team is unfamiliar with the application. The web server and firewall
may be locked down while the web application is full of potential holes (Wood).

4.1 Security Testing, Not an Option

Under these conditions, it's imperative that the application be thoroughly tested
for security. In a perfect world security would be a part of both the requirements
and design phases of development. However, until the market requires software
developers to accept more responsibility for the security of their products this is
unlikely to happen (Abner). The attitude that if something’s broken we'll fix it later
is accepted as the norm. If any security testing is done, it's usually the
responsibility of the QA department, who may not be trained to test for security
gaps. It can be a daunting task, but it is one that needs to be handled thoroughly.

QA testers often test applications for success or failure under normal working
conditions. In order to do proper security testing, applications and web sites
need to be tested for the abnormal. The one advantage security testers have is
that most hackers resort to a handful of well known exploits when attacking your
web applications. Some of the most popular are:

e Buffer Overflows/Overruns
e SQL Injection
e Cross-Site Scripting

5.1 Buffer Overflows

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



Buffer overflows (also know as buffer overruns) have been wreaking havoc on
web applications (especially C and C++ apps) for decades (McGraw). Instead of
diminishing in popularity, they are still a favorite in a seasoned hacker’s toolbox
of nasty tricks. Just last year Microsoft released security bulletin MS03-007
regarding a buffer overrun vulnerability in an operating system component used
by WebDav in Windows 2000 and NT boxes running IS (Microsoft).

In order to effectively test for buffer overruns, we must first understand what they
are and how they are initiated. Simply put, a buffer overrun is when more data is
written to a buffer than the buffer can hold. A buffer is a region of memory used
by the program to temporarily store input data. The application requests a buffer
of the exact size of the data it has to store. If the amount of data is too large for
the buffer, it overwrites the allocated buffer corrupting whatever instruction was
contained next in memory. The result can be damaging to the application, usually
resulting in poor performance or an application crash (Cole).

Buffer overruns can also be used with stack smashing to compromise a system
entirely. If buffers in the program’s run time stack are overrun and the hacker can
insert code to open a shell you’ve got a much bigger problem (Cole). Some
might claim the chances of this occurring are remote, but when a hacker has
almost unlimited time and patience to try over and over again it's imperative that
we remove any possibility, remote or not. Since buffer overruns can be avoided
altogether through thorough testing and a secure development process, there’s
no reason to give the enemy a head start in cracking your application.

Testing for buffer overruns should begin at the development phase with careful
code checks and memory calculations. This doesn’t protect against a faulty code
check or the problems associated with faulty assumptions, such as the byte size
for all characters being one byte, or Unicode characters all being 2 bytes (Ash).
Therefore, all code should be checked for buffer overruns by the security tester
whose goal is to input more data into the buffer than is allowed by the
application. This can be done with simple brute force tactics. For example:

¢ Knowing the expected maximum data size of a given user input, insert a
value that goes beyond the maximum allowed characters and observe
the result. Experiment with double byte characters or even 4 byte
GB18030 characters (Ash).

e If an application can be run from the command line, try running the
executable followed by various amounts of unexpected characters and
recording the outcome (Ash).

e Try adding unexpected parameters to the URL of a web application and
watching for unusual behavior or server errors. At one time Netscape
and Internet Explorer had URL size limitations. 1IS was configured to
allow the maximum amount of characters that Internet Explorer was
capable of sending. Netscape was capable of sending URLs much larger
in size and a buffer overflow vulnerability was discovered (Ash).

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



To put it bluntly, the tester needs to use “dirty” testing techniques on the
application. As Michael Howard suggests, “lie, cheat, swindle, confuse, destroy
and be evil -- think like the attacker” (Howard). Knowing every path that data can
take into the app, and the maximum amount of data that should be allowed, try
different combinations of input to test validation. Can the database be accessed
directly without using the user interface? Possibly the database will allow more
data than the user interface. These testing techniques are other examples of
brute force attacks. For many buffer overruns more extensive testing is required
using specially designed tools (Howard).

There are many tools freely available on the internet for testing applications
against buffer overflows. When used properly many of the same tools malicious
users’ abuse to attack your site or application can be of great benefit to a security
tester in identifying buffer overflows and other vulnerabilities. (Many of these
tools can be found at www.packetstormsecurity.org.)

One valuable tool is Lookout from Algenta Software. Lookout allows the tester to
connect to a networked system on any port and send raw commands followed by
repeating characters of a length specified by the user. The tester can try different
payloads in an attempt to crash the app. In order to use the tool effectively the
tester will need to know the raw commands for communicating with the specific
service. In the following example (figure 6.1), Lookout initiates an SMTP session
with a sendmail server on port 25. Lookout connects to the server and when
entering the domain the client is connecting from, it will send my domain name
followed by a repeating character. Since the maximum length of a domain name
should be 64 characters (Section 4.5.3 of RFC 821 indicates that the maximum
length of a domain name is 64 characters), | started with a 64 character domain
name which was accepted by the server, as evidenced by the “pleased to meet
you” response. | then increased the number of appended characters
incrementally, going up from 64 until | received a failure at 1000 characters. In
this instance | didn’t appear to overflow any buffers (although sendmail has been
riddled with them in the past), but it's a good example of the kind of input testing
that can be done with Lookout.

Figure 6.1

220 whi stl er. soneconpany. com ESMIP Sendnmai | 8.12.3/8.12.3; Tue, 6 Ju
2004 15:58:29 -0400 (EDT) 250 whistler.soneconpany.com Hello

[192. 168. x.y], pleased to neet you

hel o soneserver.com

XXX XXX XX XXX XXX XXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXXXX

250 whi stl er.soneconpany. com Hell o [192.168.x.y], pleased to nmeet you
hel o soneserver.com

XXXXXX XXX XX XXX XXX XXX XXX XXX XXX XXXKX XXX XX XK XXX XXX XXX XXX

250 whi stl er.soneconpany. com Hell o [192.168.x.y], pleased to nmeet you
hel o soneserver.com

XXXXXXX XXX X XXX XXX XX XXX XXX XXX XXX XXX XK XXX KXXXX XXX XXX XXX

250 whi stl er.soneconpany. com Hello [192.168. x.y], pleased to neet you
hel o soneserver.com
XXXXXXXXXXXXKXXXXKXXXXXXXXKXXXXKXXXXKXXXXKXXXXKXX XXX XXX XXX XXX

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



250 whi stl er.soneconpany. com Hello [192.168. x.y], pleased to neet you
hel o soneserver.com
XXXXXXXXXXXXXXXKXKXXXXXXKKKXXXXXXKXKXKXXXXXKKKKXXXXXKKKKXXXXXKKKXKXXXXXXK XXX XXX
XXXXXXXKXXXXXXXXKXXXXXXXXXXXX

250 whi stl er.soneconmpany. com Hello [192.168. x.y], pleased to neet you
hel o soneserver.com

XXX XXX XXX XXX XXX XXX XX XXX XXX XX XXX XXX XXKXXXX KK XXX XXX XK KXXXXXXXXKKXXXXXXXXXXXXX
XXXXXXXKXXXXXXXKXKXXXXXXKKKXXXXXXKXKXKXXXXXKKKKXXXXXKKKKXXXXXKKKKXXXXXXKKXXXXX
XXXXXXXKXXXXXXXKXKXXX XXX KKK XX XXXKXKXKXXXXXKXKKXX XXX KKK XX XXX KKK XX XXX KKK XX XXX
XXXX XXX XXX XX XXX KKK XX XXX XXX XX XXX XXX XXKXXXX KK XXX XXX XK KXXXXXXXKKXXXXXXXXXXXX
XXX X XXX XXX XX XXX KKK XX XXX KKK XX XXX XXX XXXXXX KK XXX XXX XXKKXXXXXXXXKXXXXXXXXXXXXX
XXXxX 501 5.0.0 Invalid domai n nane

For extensive application buffer testing NTOMax will stress test your server for
DOS and Buffer overflow weaknesses. It runs from the command line and with a
few simple modifications to the script you can run a complete buffer overflow test
specifying the minimum and maximum buffer size with which to hit the server
(figure 7.1 shows a sample script). Only the first four parameters ([IP Address]
[Port] [minimum buffer size] [maximum buffer size]) are required. The script takes
the minimum buffer size parameter and injects a buffer payload of that size in
place of the asterisk. It then increases the buffer size by one byte with each
subsequent loop command until the maximum buffer size is reached. The results
are logged in an output text file that the user specified in the run command (figure
7.2 is an example of the command syntax). In the example, metatest.txt is the
script called by the program and the results of the test are logged in
metaresults.txt. The tester can examine the results file looking for server time
outs and the exact buffer size which crashed the web application. The tool can
also be used with mail servers by including the buffer payload within the
username and password.

Figure 7.1

host: 10. 20. 1. 11, 80, 40, 50, 1000, 250, 250, 2,true, true, fal se, fal se
| c: GET /sone*url/ HTTP/1.0

| c: POST /some * url/ HTTP/1.0

Figure 7.2
C: \ apps\ NTOVax20\ NTOVax20>nt omax /s <metatest.txt> netaresults.txt

7.3 SQL Injection

“The database is the heart of most Web applications” says Mitchell Harper in
“SQL Injection Attacks — Are you safe?” (Harper). Everything from credit info to
usernames and passwords are stored in the database. Therefore it's no surprise
that databases often grab the attention of the malicious user community. How do
you attack the database if it's not directly accessible? Use the web application
itself. Most web applications allow for user interaction, and since the web app
interacts with the database, it opens a door for malicious attacks.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



In SQL injection attacks SQL queries are injected into the database by way of the
web application. If fields that allow user input (such as username and password)
are not validated then they can be used to fool the database into giving up
confidential information, dropping tables, deleting the database, modifying stored
procedures and modifying or creating user accounts and permissions (Mookhey).

As with buffer overflows, the best way to eradicate SQL injection attacks is
through better coding and validation. Many database developers recommend
replacing all single quotes with double quotes. Until that happens it remains the
security tester’s task to ensure that every parameter of every script has been
tested.

The simplest way to test for exposure to SQL injection hacks is to test all the
input fields of a web application. Just as when testing for buffer overflows, it’s
important for the tester to know every possible path for data to find its way from
the application to the database, including fields in cookies. The three most widely
used SQL characters used to perform SQL injection are the single quote
(sometimes the hex version of this character is used (SPI Labs, 2004)), semi-
colon and double dash.

In a SQL query the single quote ends the string. Often the attacker will use the
single quote in an input field to terminate the string and then insert a parameter
that is always true, such as “Or 1 = 17, to gain access to the database (Hurlbut).
The easiest way to test for this kind of injection is to test each parameter
individually with a single quote and a SQL keyword leaving all other parameters
intact with valid data so that there’s no doubt about which parameter caused the
injection. Be sure to include every input field in your test case (SPI Labs, 2004).

You can also use the single quote test in URLs. Pages built with scripting
languages like ASP can sometimes be compromised with added or modified
parameters. Here is an example URL:

http://ww. af akeur| . ca//defaul t.asp?Secti on=books&L.ang=en

To test this example, we could try replacing the entire parameter “books” with a
single quote and observe the results. Also, we could insert a single quote in the
middle of a parameter and check for errors (Kwon).

Evidence of an occurrence of a SQL injection is not always obvious. Look for any
unusual database related errors, but also be aware of error messages in http
headers, redirects to the home page, generic http errors, internal server error
messages, 500 server error pages or anything at all that’s out of the ordinary.
Sometimes you’ll have to view source on the page in order to view the complete
error.

Testing every single parameter at any entry point into the database can be quite
time consuming. Fortunately there are several tools available on the market that

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



can automate this process. One popular tool for testing applications for SQL
injection vulnerabilities as well as a multitude of other vulnerabilities is Nessus
(available at www.nessus.org). Nessus and its windows counterpart, Newt
(www.tenablesecurity.com), use NASL scripts which are easily uploaded as plug-
ins. Known vulnerabilities are grouped into categories and one can easily select
a category with the option to scan for all vulnerabilities or just those that are not
detrimental to the system you’re scanning. Most of the vulnerabilities that will
concern web application testers reside in the CGI abuses category. The SQL
injection plug-in isn’t exactly obvious but an email to Tenable Security support
revealed the SQL injection plug-in is named "wpoison (nasl version)" with script
ID 11139.

Another easy to use tool for SQL injection testing is Paros (available for free at
www.proofsecure.com). When activated, Paros runs as a proxy server on your
local machine. You then setup your browser to point to the localhost as a proxy
server on the default port of 8080. Paros automatically adds any sites accessed
by the browser to the explorer style left hand window as seen in Figure 10.1. You
can then use the spider feature to scour the site looking for each and every page.
There are 16 different vulnerabilities it will scan for, including cross-site scripting,
SQL injection, buffer overflows, parameter tampering and directory browsing.
After selecting the vulnerabilities to scan for, right-click on the site and select
“Scan Selected Node”. Upon completion, Paros opens up an HTML report
detailing each issue and rating its risk level. Paros can also be used to trap http
commands and test with modified parameters. Unfortunately, Paros doesn’t give
any detail regarding the criteria used for the scans and the documentation is
sparse.

Figure 10.1

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



10

=[Ol x|
File. Edit Wew Tree Report Session Tools  Help
- Wigh S“_E Hierarchy Hequestsl Respunsesl Trapl Fitters = Scan I Optiu:unsl
H—E|_bf8|3't ISeIect the wehsiteltree) on left and click menu Tree == Scan Selectedfall to start.
=__| webroot
+- img Enable I Function I Description I
—® home asp H TestServerllS Server IS =]
+-  ecas H TestDirBrowse Ditectory Browsing
- jz H TestServeriehs... \Server IBM WebSphere
+- | flazh H TestOhzoleteFile  [Obsolete Files
—4# hame_flazh_image. H TestParamTamper  Parameter Tampeting
v TestSalinjection Sl Injection
[ TestHitphdethod Hitp tethods (PUT, DELETE and wWishDAN)
[ TestServerColdFu... |Server ColdFusion
H TestCELFInjection  [CRLF Injection
[ TestServerTamcat  [Server Tomcet
H TestCipherSuite SEL Cipher Suite -
ﬂ I LI Enahle Al Dizable Al
17 GET httpcihteistfiveebrooticesicommon.ces HTTRA O== HTTPA 1 200 Ok [0.02 =] ;I
18 GET hitp:ibieistivebrootisiogne_functions js HTTPA .O== HTTP#M 1 200 QK [0.02 5]
20: GET hitpcfibfeisthwebrootizfflash js HTTRH O== HTTPM 1 200 Ok [0.04 =]
22 GET http:thteistiweebrootiflashhome_image swirlang=engimg_url=fvebrootimghomerflazh jpgdhome_url=focebroot hom
46: GET hitp: fhifeistivvebrootihame_flash_image_data xml HTTRPM O==HTTPM 1 200 Ok [00531 =] i
4 | b
| URLs I Outputl Cu:u:ukiesl
i_

© SANS Institute 2004,

10.2 Cross-Site Scripting

In August of 2001 Jeremiah Grossman was able to break into Microsoft’'s Hotmail
system with 3 lines of code. He was then able to access Passport IDs and credit
card info. Fortunately, Jeremiah wasn’t attempting to do any damage and he
quickly alerted Microsoft to the vulnerability. Jeremiah didn’t hack into the firewall
but rather used a technique known as cross-site scripting, a form of attack that
security experts were aware of years before the Hotmail incident (Acohido).
Today cross-site scripting vulnerabilities account for a good portion of the
Bugtraq and CERT alerts.

In a cross-site scripting attack, an innocent user is enticed to visit a vulnerable
website by clicking on a URL which contains a malicious script embedded in the
URL. The website with the vulnerability outputs the script, which it doesn’t
recognize, back to the browser where it is run. The malicious script can then,
unbeknownst to the user, give the hacker access to that user’s cookies. This in
turn can allow the hacker to authenticate as the innocent user, or it may present
a site that looks legitimate, but is actually logging passwords or credit card info.
The innocent user may see an HTTP 404 file not found error and think there’s
something wrong with the website without giving it any further thought. What he
may not realize is that he’s just been the target of a cross-site scripting attack.

As part of GIAC practical repository.

Author retains full rights.



11

At the heart of the vulnerability are three main issues:

1. A good number of web sites that output to HTML unvalidated input in the
URL.

2. Most client browsers are set up to automatically interpret and run scripts
in web pages (CERT).

3. Uneducated users tend to be very trusting of URLs. Well-know domains
are assumed to be legitimate, and the URL is rarely examined. Hackers
will further thwart examination by encoding the URL in hexadecimal, or
making the URL long enough to obscure the script is beyond the user’s
view in the address field of the browser.

These three factors combined create a dangerous situation that is easy for
hackers to take advantage of (CERT).

Preventing cross-site scripting attacks involves addressing the three issues
mentioned above. Developers need to be aware of the security issues when
programming. Careful input validation at all entry points to your application, along
with proper data escaping could eliminate the majority of XSS attacks. CERT
advises developers to “restrict variables used the in the construction of pages to
those characters that are explicitly allowed” (CERT). If at all possible, users
should disable the browser function to automatically run scripts downloaded from
websites. They should also not trust URLs found on message boards or sent in
emails, which are common methods used by attackers to distribute malicious
URLs (Sharma). The prevention methods for developers and programmers are
similar for most vulnerabilities and it often comes down to better input validation.
However, mistakes will always be made and changing the bad habits of users is
a difficult task. Thus, it’s crucial for the security tester to be vigilant in testing
each and every entry point into the application. One unvalidated entry point can
render futile all of the other input validation performed in other areas of the
application. Now, let's examine some techniques for testing for XSS vulnerability.

To reiterate, the objective in testing for XSS vulnerabilities is to see if any entry
point into the application can cause the application to output a script which could
potentially be run by the browser. The first step is documenting every entry point
into the application, which could include URL parameters, form fields, cookies,
guery strings and http headers. Once these entry points are documented, we can
run some specific tests against them (Howard, When Output Turns Bad).

To test URL parameters, try changing a variable in the URL and hitting enter. On
the resulting page (which may generate an error), view the source and search for
your variable. If the new variable was included in the output page, it may be
possible to inject malicious variables or script and you have a bug that needs
fixing. (Pennington)

Of all the potentially dangerous characters in XSS attacks, the “<” and “>”
characters are worthy of special attention as they specify the start and end of a

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



12

script. Security conscious developers will have these characters escaped. To
confirm this, try changing your variable to “<somevariable>" and searching the
resulting page source for “<somevariable>" (Grossman). If you find your variable
between the “<” and “>” characters, you have a potential XSS vulnerability.
Properly escaping the greater-than and less-than characters is one step in
building a secure application.

To test for script execution try replacing your variable with a JavaScript alert
statement, such as “<script>alert(‘Hello’)</script>" (which would display a
message dialog containing the text, “Hello”). If your application executes the
script or returns the string you have a vulnerability in your application
(Pennington). URL parameters are not the only input fields to test with this
technique. Every form input should also be tested to see if scripts will be
accepted and executed.

Free tools such as Nessus and Paros, or their commercial counterparts, such as
Weblnspect from SPI Dynamics, can automate the task. Web Scarab, a project
under development by the OWASP group, promises to be an excellent
vulnerability testing tool (currently, it is still under development). Many
experienced security testers are of the opinion that the best way to test for XSS
vulnerabilities is to manually check the application with a thorough testing plan
employing the techniques detailed above. As stated previously, this requires a
complete knowledge of the input entry points, and a thorough understanding of
how XSS vulnerabilities are exploited by malicious users.

12.1 Conclusion

As the use of web applications continues to grow we can expect the number of
attacks against them to increase. The threats are real and every year millions of
dollars are lost to downtime and fraud due to unsecured applications. The only
way to properly ensure the security of your application is to employ thorough
security testing. Software development firms must take make this a part of the
development process. If you are a client, you too must ensure that the application
you’ve purchased has been tested. The maijority of vulnerabilities and exploits
are well known, and there is no excuse for allowing these holes to exist in a
professionally developed application. This paper examined a few of the threats
including buffer overflows, SQL injection and cross-site scripting. While there are
several other exploits you will want to familiarize yourself with, a thorough
knowledge of the three we discussed will enable you to thwart many of the
attacks your application will face.

13.0 Cited Works

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



13

Jaquith, Andrew. “The Security of Applications: Not All Are Created Equal.”
February 2002. URL.:
http://www.atstake.com/research/reports/acrobat/atstake app unequal.pdf
(20 June 2004)

Abner, Germanow, Chris Wysopal, Dr. Dan Geer, and Chris Darby. “The
Injustice of Insecure Software.” February 2002. URL:
http://www.atstake.com/research/reports/acrobat/atstake injustice.pdf
(20 June 2004)

Kolawa, Adam. “Preventing Web Service Security Breaches with Unit Testing.”
URL.: http://www.stickyminds.com/se/S6072.asp (21 June 2004)

SPI Labs Inc. “Complete Web Application Security: Building Web Application
Security into Your Web Development Process.” URL:
http://www.spidynamics.com/whitepapers/Webapp Dev_Process.pdf

(21 June 2004)

Cenzic. “Enabling Security in the Software Development Lifecycle.” May 2004.
URL: http://www.cenzic.com/pdfs/CenzicWpEsisd.pdf (1 July 2004)

Wood, Peter. “Web Application Hacking: Exposing Your Backend.” 11 November
2003. URL: http://www.net-security.org/article.php?id=599
(1 July 2004)

Microsoft. “Microsoft Security Bulletin MS03-007.” 30 May 2003. URL.:
http://www.microsoft.com/technet/security/bulletin/MS03-007.mspx
(1 July 2004)

Cole, Eric, Jason Fossen, Stephen Northcutt, and Hal Pomeranz. Sans Security
Essentials and the CISSP 10 Domains: Internet Security Technologies. The
Sans Institute, January 2004. 54

McGraw, Gary, John Viega, “Make your software behave: Learning the basics of
buffer overflows.” (1 March 2000) URL:
http://www-106.ibm.com/developerworks/security/library/s-overflows (1 July
2004)

Ash, Lydia. The Web Testing Companion: The Insiders Guide to Efficient and
Effective Tests. Indianapolis: Wiley, 2003. 253-260

Hurlbut, Robert. “SQL Server Security: SQL Injection.” 28 September 2003. URL:
http://saljunkies.com/WebLog/rhurlbut/archive/2003/09/28/243.aspx (3 July
2004)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



14

Howard, Michael. “Testing for Buffer Overruns.” URL:
http://archive.devx.com/upload/free/Features/zones/security/articles/2000/11nov0
0/mh1100[1]-1.asp (2 July 2004)

Postel, Jonathon. “RFC 821, Simple Mail Transport Protocol” August 1982.
URL: http://www.ietf.org/rfc/rfc0821.txt (2 July 2004)

Harper, Mitchell. “SQL Injection Attacks — Are you safe?” 17 June 2002. URL:
http://www.sitepoint.com/article/794 (3 July 2004)

Mookhey, K.K., Nilesh Burghate. “Detection of SQL Injection and Cross-Site
Scripting Attacks.” 17 March 2004. URL.:
http://www.securityfocus.com/infocus/1768 (2 July 2004)

Kwon, Regina. “Testing for Website Vulnerabilities.” 1 November 2002. URL:
http://www.baselinemag.com/article2/0,1397,666906,00.asp (3 July 2004)

SPI Labs. “SQL Injection: Are your Web Applications Vulnerable” 2002. URL:
http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf (3 July
2004)

Alcohido, Byron. “USA Today: Expert Hacks Hotmail in One Line of Code.” 8
August 2001. URL.:
http://www.usatoday.com/tech/news/2001-08-31-hotmail-security.htm

(3 July 2004)

CERT. “CERT Advisory CA-2000-02: Malicious HTML Tags Embedded in Client
Web Requests” 2 February 2000. URL.: http://www.cert.org/advisories/CA-2000-
02.html (4 July 2004)

Sharma, Anand. “Prevent a cross-site scripting attack. First step: recognize the
signs and halt an XSS intrusion.” 3 February 2004. URL.: http://www-
106.ibm.com/developerworks/library/wa-secsxx/ (3 July 2004)

Howard, Michael. “When Output Turns Bad: Cross-Site Scripting Explained.”
15 July 2002. URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncode/html/secure07152002.asp (4 July 2004)

CGl Security. “The Cross Site Scripting Faq.” May 2002. URL:
http://www.cgisecurity.com/articles/xss-fag.shtml#whatis (4 July 2004)

Pennington, Bill. “Penetration Testing: Re: Cross Site Scripting Vulnerabilities —
XSS.” 6 August 2002. URL: http://seclists.org/lists/pen-test/2002/Aug/0010.html
(5 July 2002)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



15

Grossman, Jeremiah. “Penetration Testing: Re: Cross Site Scripting
Vulnerabilities — XSS.” 6 August 2002. URL: http://seclists.org/lists/pen-
test/2002/Aug/0010.html (5 July 2002)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



16

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.



