
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1 of 34

Secure implementation of Enterprise
single sign-on product in an organization

v.1.4b

Ravikanth Ponnapalli
July 14, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2 of 34

Contents

1. Abstract... 3

2. Overview of Single Sign-On.. 3

2.1 What is Single Sign-on? .. 3
2.2 Different types of SSO... 4
2.3 How can SSO products address security issues in an organization? .. 6

3. Life-cycle of a Single Sign-On product implementation............................... 7

3.1 Evaluation of available products in the market 7
3.1.1 Functional evaluation...7
3.1.2 Security and usability evaluation ...7
3.1.3 Scalability evaluation ...9
3.1.4 Integration evaluation ..10
3.1.5 General evaluation...11

3.2 Planning the Implementation ... 11
3.3 Implementation .. 12

3.3.1 Determining the architecture ...12
3.3.2 Nailing down requirements ..22
3.3.3 Investing right resources ...23

3.4 Common mistakes... 25
3.4.1 Process/Project mistakes ..25
3.4.2 Technical mistakes ..26

4. Post-Implementation verification... 30

4.1 Testing the application... 30
4.1.1 Functional testing...30
4.1.2 Integration testing ..30
4.1.3 Security testing ..30
4.1.4 Failover testing ..32

5. Ongoing maintenance... 32

6. Conclusion .. 33

7. References ... 33

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3 of 34

1. Abstract

Single Sign-On is a very important component of the security architecture of an
organization. In IT, it is generally believed that it is expensive to deploy an
enterprise Single Sign-On solution that is secure and scalable. However, there is
a growing awareness in IT management about the advantages of implementation
of enterprise Single Sign-On. It can be overwhelming for project managers to
understand what it takes to build a secure Single Sign-On solution and whether it
is viable to build the solution in-house or to buy a product and implement it. The
topic - “buy versus build” is not discussed in this paper. There are a lot of
resources on the Internet that can help to educate you on this topic. The
references section at the end of this paper provides a link (reference #3) to one
such resource. Even after voting to “buy”, it can take significant efforts to
evaluate the products and choose the SSO product that is suitable for the
organization. This paper aims to usher IT managers, developers and other
resources interested in such a project by providing a blue print of the effort
needed to implement an enterprise Single Sign-On solution with security in mind.

2. Overview of Single Sign-On

2.1 What is Single Sign-on?
We will go through a brief introduction to Single Sign-on (hereafter also referred
to as SSO in this document). SSO can be defined as a user experience of
logging in just once and being able to navigate across many applications
seamlessly without a need to enter credentials for each application. It is very
common for organizations to have many applications running to take care of
different business functions. SSO makes it easy for the users to login once and
be able to access all the applications they can, reducing the need for users to
remember a plethora of logins and passwords. The following is a brief description
of a few important concepts of SSO.

Authentication
The process of verifying the user’s identity, making sure that the user is who he
claims to be. This can be based on login & password combination or Smart card,
biometrics, etc.

Authorization
The process of verifying whether a user is privileged to access a particular
resource.

Credentials
Credentials are the details provided by a user during the process of
authentication into an application. They can be login and password, fingerprint,
smart card etc.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4 of 34

Domain
A domain is a logical group in an organization with a unique name that is the part
of host names used on the intranet/Internet. For example, mycompany.com is the
domain name in myhost.mycompany.com where as mycompanystore.com is the
domain name in www.mycompanystore.com. While mycompany.com is a parent
domain, it.mycompany.com is a sub domain reserved for the IT department in the
organization.

Protected Resource
It is a resource the access of which is not open to everyone. A user needs to go
through authentication and authorization before accessing a protected resource.
It can be a URL on the Internet or intranet, a client to an application, a folder on a
server, etc.

Cookie
A cookie is a ticket given to a user’s browser as a result of successful
authentication and it contains data to indicate authentication and authorization
information. The actual contents of a cookie may vary depending on the
application. After having a cookie, if the user browses to a different application
that is a part of SSO, the cookie is presented by the browser to the application in
lieu of credentials, for directly logging into the application. Then if the user is
authorized to access the resource, he will be able to do so. There are two types
of cookies.

 Per session cookie: The cookie is retained in volatile memory of the user’s
computer and is valid only till the end of the current session. As soon as
browser is closed, the cookie is destroyed.

 Persistent cookie: When you check the box for “Remember my password”
or “Log me in automatically” or a similar one in the login page ofa web site
then a cookie is stored on your hard drive. This is a persistent cookie and
the server that sets the cookie specifies its life. So, its contents are not
destroyed when the browser is closed and will remain available between
sessions, till expiry.

Very good resources are available on the Internet to provide a detailed
description on the basics of SSO. A few of them are listed in the references
section of this paper.

2.2 Different types of SSO
Most of the SSO products available in the market can be categorized into two
types based on the architecture.

 Web-based (also known as enterprise SSO or ESSO) and
 Non Web-based (also known as legacy SSO).

The focus of this paper is ESSO. For the benefit of readers, there is a brief
introduction to legacy SSO given below.

Web-based SSO can be categorized as follows.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5 of 34

Internet facing: This generally takes care of the SSO for the applications that
interact with customers. For example, an organization may have

 A customer support application that lets customers login, raise service
tickets and browse through the knowledge base and

 Another application that lets customers view their bills online and pay
them online.

These applications can be knit using SSO so that customers can login only once
to be able to access both the applications.

Intranet facing: Generally this takes care of the SSO for the intranet applications
that internal users of an organization interact with, using a web browser. For
example, an organization may have

 An expense reporting application that lets employees submit their expense
reports, track their status online and

 Another application that lets the users plan their upcoming travel needs.
These applications can be knit using SSO so that the user can login only once to
be able to access both the applications.

Multi-domain: This can be categorized into two types.
 SSO between two or more different domains in the same organization

(often referred to as Intra-organization multi-domain SSO). For example,
an organization may store its confidential marketing content on
content.mycompanymarketing.com and available opportunities on
opportunities.mycompanypartners.com. These applications can be knit
using SSO so that the partner user can login only once to be able to
access both the applications.

 SSO between the applications of two or more organizations, usually
partners (often referred to as cross-organization SSO). A new concept
called federated identity management emanated recently to improve
security in the architecture of cross-organization SSO. We are going to
discuss it in detail later, in the architecture section of this paper.

Most of the products available in the market support all these categories of
enterprise SSO. We will take a closer look at each type of deployment in the
architecture section.

Legacy SSO products use a different approach to SSO. A component called the
SSO agent gets activated when a user logs into his workstation and remembers
the logins and passwords of the user to different applications. It provides the
credentials to the applications when the user tries to log into these applications
subsequently. Thus, with one authentication session initiated by the SSO agent,
legacy single sign-on enables user navigation to various applications on an
intranet. Recent versions of legacy single sign-on products support smart card,
PKI, and biometric authentication.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6 of 34

A few SSO products available in the market are given in the references section.

2.3 How can SSO products address security issues in an organization?

The marketing literature of available products in the market can be misleading to
get managers to believe that an SSO product is a cure-all. SSO products come
with many features that augment the security in the infrastructure of an
enterprise. However, it is a fact that any SSO product cannot resolve all the
security concerns of an organization. Without very careful planning,
implementation and verification, SSO products can introduce new security holes.
By and large, the following are some of the ways in which SSO products can add
security to infrastructure.
 Reduces the need for users to remember many logins & passwords and

hence reduces the chance of users following insecure practices like writing
the passwords on post-it slips pasted to their workstations etc.

 Central enforcement and administration of security policies on the
applications participating in SSO.

 Enforcing restrictions on passwords like minimum length, having at least one
special character, character in upper case, numeric digit, etc.

 Forgotten password recovery mechanism can alleviate a user from the fear of
forgetting passwords. Users may otherwise follow insecure practices, as
mentioned above, to make sure that they don’t forget passwords. However, it
is important to keep in mind that the password recovery mechanism, like a
security question and answer, can open up new security issues.

 User lockout after a few consecutive unsuccessful attempts.
 Enforcing change of password on first login or after password reset by an

administrator.
 Maintaining password history and making sure that a new password doesn’t

match with a password in the history.
 Expiring passwords after a specified amount of time.
 Session timeout. A user session can be timed out because the session has

been inactive for a specified amount of time (called inactivity session timeout)
or because the user session has been in progress continuously for a specified
amount of time say, the last 2 hours (called absolute timeout).

 Advanced monitoring and reporting capabilities.

Some of the features mentioned above might already exist in your organization in
one or more applications. Implementation of SSO product can be helpful to
homogenize these features across all applications of SSO in the organization.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7 of 34

3. Life-cycle of a Single Sign-On product implementation

3.1 Evaluation of available products in the market
When you look for an enterprise solution that increases security and
usability, SSO is a key piece of the puzzle. When you evaluate SSO
solutions, you need a product that truly provides single sign-on to all of
your applications without using risky and costly integration techniques
(e.g., scripting or agents). SSO should be easy-to-use and manage,
robust, reliable, secure and ready-to-scale to meet your future needs. You
need an SSO solution that will work with your existing and future
infrastructure, including your chosen authenticator and directory service
(Boroditsky, p.7).

So, a careful evaluation is essential before choosing to implement an SSO
product. Evaluation can be divided into the following steps.

3.1.1 Functional evaluation
This is the place where we start understanding what the product can do by
analyzing the functional features of the SSO product. Developing a prototype is a
commonly followed approach that can help improve visualization of the
functionality of the product. A recommended way to begin functional evaluation is
to come up with a set of basic requirements after discussions with
representatives of different applications. You can categorize the requirements as
“must” and “nice to have”. A prototype can be made available in a development
environment with development versions of the deployed applications tied
together using SSO. It can then be analyzed to understand how well each
product under evaluation meets or exceeds the requirements. Features like
authentication, authorization, Password restriction enforcement, etc. can be
evaluated using the functional evaluation.

3.1.2 Security and usability evaluation
It is a common observation that introduction of new security measures can
reduce the usability of applications. Striking a reasonable trade-off between
security and usability can get tricky and hence needs involvement of resources
from different departments.

SSO cannot achieve the objectives on its own. In order to overcome
challenges in user experience and security barriers, security and usability
professionals need to work more closely together. Both are disciplines that
require special consideration. Both security and usability cannot just be
added at the last moment. They must be fundamental to an application’s
design, built into every feature, and considered in each modification. Both
require rigorous testing and constant review (Boroditsky, p.5).

Involving representatives of user community in evaluation can help in analyzing
how usable the features of the products are. For example, an end user can

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8 of 34

explain how he feels about the new restrictions and policies on password
management, a system administrator or a resource from IT security can evaluate
how good the monitoring and reporting tools provided with the product are, while
an administrator can explain on how easy or tough is the administration of the
product. Since the product brought in is going to directly deal with security, it is
needless to mention that meticulous care needs to be taken in analyzing how the
SSO product can augment the already existing security infrastructure without
introducing new vulnerabilities. Following are some of the questions that can help
in an effective security evaluation of the product.

1. What are the different authentication methods that the product can support? If
login & password are used, is form-based authentication supported? What
happens behind the scenes in a user login scenario? How tough or easy is it
for a user to sneak into the application, bypassing authentication?

2. Where do the components of the application reside in the architecture? If
there is a need for SSO of multi-domain applications, how is the architecture
affected and what are the built-in features to ensure security of the
architecture?

3. What are the communication protocols they use? Is the communication
encrypted or not? If encrypted then how secure is the algorithm used?

4. If cookies are used then what details are stored in the cookie and if
encrypted, what is the method used for encoding/encryption? Can a malicious
user exploit the known (or unknown) vulnerabilities either on client or on the
server to read or spoof the contents in the cookie? Is there a way to enforce
inactivity or absolute session timeouts?

5. Are the passwords stored in an encrypted form in the data repository? Is
there any temporary storage for passwords that needs to be used either
during migration from one environment to another or in any other situation?
Are the passwords stored in clear text or stored in an easy-to-break form
(may be encoded with trivial algorithms like Base 64) in any context of the
product?

6. What is the data that is cached in different components of the product? Can
there be any possible security holes because of this caching? Is there a way
users can access the data that is cached? Are the credentials of the user
cached? If so, how easy is it for an intruder to access this data? What are the
precautions to be taken in this context?

7. What are the log levels that the application can have and what is the
implication of each log-level? How frequently do the log files need to be
purged from server(s) to make sure that the disk is not full? Will the logins

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9 of 34

and passwords be dumped into the log file in clear text in any of those log
levels?

8. What are the different modes of administration that are supported by the
product (like an installed admin console, web-based admin console, etc)? Are
there any known vulnerabilities against the administration component of the
product? It is important to understand that administration components are
generally the hot targets of intruders.

9. What are the recommended configurations based on experience of
deployments at other customers?

10. What is the effort needed to migrate the configuration in one environment to
another environment like migration from development environment to QA or
QA to production etc?

11.What is the vendor’s Service Level Agreement (SLA) for fixing any security
holes discovered after the product gets implemented? How does the vendor
inform customers when such security patches are available? Is it through
email or web-based bulletin or discussion forum etc?

It is always a good idea to involve a resource from the IT security team from the
beginning of the evaluation process. After choosing a product, this resource can
be involved with the entire implementation to ensure that the implementation is
secure in all aspects.

3.1.3 Scalability evaluation
Every organization tries to grow in the course of time and so does IT
infrastructure by taking up new projects. For an SSO product scalability is an
important aspect of evaluation. Decision makers responsible for the
implementation of the SSO product like project managers need to have a vision
on the possible direction of growth for the organization and how the SSO product
can help by scaling up to the needs of future applications. Following are some of
the questions that can help in this evaluation.

1. How many concurrent users can the product support now? How many
concurrent users do you expect to have after the implementation of the
product? Does it need new licenses when we add new user base? What are
the cost implications of these new licenses?

2. What are the possible future applications for SSO that may be developed in
the short and long term? How do these applications affect the number of
concurrent users? Will the SSO product be able to scale to that user count?

3. What is the caution that needs to be taken while designing the architecture of
the implementation to make sure that it is scalable for future applications? For

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10 of 34

example, does the product support adding more servers with increased user
load and configuring to have load balancing among the servers? Or does the
product only support a primary and secondary configuration? How easy or
difficult is it to change from one type of configuration to another?

4. How easy or difficult is it to upgrade hardware after the SSO is implemented
with the product? Are there any known issues here?

3.1.4 Integration evaluation
In SSO product deployments, integration with enterprise and/or other
applications is the traditional and most likely point of failure. Hence, if there are
different enterprise applications running (like ERP or CRM applications etc) then
the ability for the SSO product to glue these applications together to allow SSO in
navigating between those applications can be one of the foci of evaluation. Some
of the SSO products are already certified with the vendors of these enterprise
applications. If integration with enterprise applications is high on the list of
priorities then it can be easier to consider for evaluation only those SSO products
that are certified with the vendors of those enterprise applications. An important
point to remember is that certification of an SSO vendor with the product of an
enterprise application vendor doesn’t necessarily mean that the integration will
be smooth and secure. Integration can still mean a lot of effort and it can take a
long time before security issues are identified after an SSO product got certified
with the vendor of an enterprise product. It can get tricky here. The longer it is
since the certification, the higher is the probability that a majority of these issues
are identified and hence more secure the integration can be. For fixing the
identified security issues after certification, you need to apply the patches from
the vendor either individually or in the form of a maintenance release and these
patches can open up a new set of incompatibilities or security issues. Making
sure to evaluate the exact version of the SSO product that got certified is
probably a safer approach from integration point of view. The prototyping
technique discussed in functional evaluation can be handy in integration
evaluation in analyzing such aspects. Following are some of the questions that
can help in this evaluation.

1. What is the effort involved in integrating the SSO product with enterprise
applications? In other words, how easy or tough? What is a rough estimate on
the average number of person hours taken for a similar integration in prior
implementations?

2. Is there an existing directory server? If not, what are the security implications
of introducing a new directory server? What is the secure configuration for a
new directory server’s access control lists?

3. Are there any known security holes that are created as a result of such
integration in the version of the product?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11 of 34

4. What is the latest version of the SSO product that got certified with the
enterprise application? What is the roadmap for certification of next version?
When was the last security audit (internal or third party) on the SSO product
and on which version of the product?

3.1.5 General evaluation
The evaluations mentioned so far are technical in nature. They can be
complemented with a generic evaluation of the SSO product vendor. Following
are some of the questions that can help in this evaluation.

1. How long has the company been in business?

2. How many customers does the vendor have? How many of those have
successfully implemented SSO into one or more of their customer-facing
applications?

3. What are the minimum hardware and software requirements for implementing
this product? How much does it cost to procure them?

4. Are there any known vulnerabilities in the product? If so, how quickly did the
vendor respond to those vulnerabilities with a patch?

5. Does the product go through third party security audits? If so, how often?

3.2 Planning the Implementation
As we all know, things go better with a plan. Careful planning with different
dimensions of the challenges in mind can pave the way to a successful
implementation of any project. The following gives an overview of some
important criteria while planning the implementation of SSO.

 Plan for training of resources on the chosen SSO product. Note that there can
be different types of training targeted at end user, developer, system
administrator, business analyst, etc. How many resources need to be trained?
What is a typical skill set needed for a resource to start working on the
implementation? What is the security awareness they have?

 If you don’t have the needed expertise in-house to start implementation, plan
for help from a consulting firm that is well experienced in such
implementations. This way, in-house resources work by the side of
experienced consultants in observing critical aspects of implementation and
learn from their experience.

 Set expectations of business and user community in the possible features
and security that they can expect out of the SSO product after
implementation. As mentioned before, SSO can be commonly misinterpreted
as a cure-all for security. Setting realistic expectations avoids any surprises
and the resulting frustration in business and end users.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12 of 34

 Start simple. Start with implementing SSO between two of the simplest of the
applications you have. Since all the architectural foundations are laid out for
the initial deployment, a successful implementation will not only set up the
needed infrastructure but also will increase the confidence and morale of the
associated resources. Expand your SSO to other applications after a
satisfactory initial deployment.

 Plan for sufficient cushion time to absorb any unexpected delays. If the
project timeline slips in the initial deployment it can be very demoralizing for
the user community and the business representatives along with other groups
that are affected by this. Discuss with people who are experienced in
implementing the SSO product to understand the magnitude of the cushion
time at different junctures in the project.

 If possible, test usability of SSO just as a marketing campaign is tested:
first, a focus group; second, a pilot; third, an expanded pilot with multiple
locations; and fourth, deployment (Boroditsky, p.6).

 Take into account input from the most inexperienced users. The number
of novices (less than 18 months of experience) should be greater than the
number of veterans (Boroditsky, p.6).

 It is likely that the SSO product you choose uses a directory server as a
repository. If you already have a directory server, you may need to extend the
schema. Otherwise, you may need to introduce a directory server in your
infrastructure. You may need to import user data from your existing data
repositories into the directory server for you to be able to have SSO.
Alternately some of the vendors support RDBMS databases to be the data
store for the SSO application. Carefully review the advantages and
disadvantages of RDBMS over a directory server and then only choose to use
one of them. Going through the best practices document of the vendor of
SSO product can help you in this.

 You may need to establish an account with a third party digital certificate
authority like Verisign, if you choose to implement communication between
different SSO components over a digital certificate. Or you may choose to
implement your own certificate-issuing server software such as Netscape or
Microsoft Certificate Server.

3.3 Implementation

3.3.1 Determining the architecture
One of the most important aspects of implementation is designing the
architecture for the proposed implementation. Architecture forms the foundation
of the new system and hence it needs to be robust, flexible, secure and scalable.
A thorough understanding of the needed components of the system and where
they can reside in the architecture, experience with the design of the architecture
and participation of resources from all relevant departments in the architecture
design discussions can contribute to a good design of architecture. The rest of
this section aims to give the readers a platform for clarity of thought before,
during and after architecture design.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13 of 34

A typical architecture in different types of SSO with security in mind is given
below. This should only be considered as a guideline and you are expected to
discuss this thoroughly with your IT security team before consolidating the
architecture. Please note that a generalized and common architecture is given
and vendor-specific architectures may vary depending on the components of the
product and the way the components interact among themselves. An explanation
of the terminology that you find in the following discussion is out of scope of this
paper. The references section at the end of this paper lists a good book
(reference #12) for beginners to network security that can be helpful in
understanding the terminology.

It is important to remember that security of communications between
components in architecture plays a key role in the overall architecture. All
communications should be encrypted and transmitted across an SSL connection.
This includes the communications between the engines (access and identity) and
the data repositories.

The encryption method should rely on certificates, not passwords
determined by the installer or shared secrets. This is because somewhere
during the implementation there will be a set of “commonly” known
passwords between the implementation and support group. The longer the
components are in place, the more likely other support personnel will have
access to these passwords (Hobbs, p.10).

Before we take a look at the architectures, let us see what the building blocks of
enterprise SSO are. They may be called with different names in different
products but by and large they share common characteristics.

Access component: As the name suggests, the access component plays the role
of a gatekeeper for access to all protected resources. For example, if you are
trying to access a URL on a web site that is a part of SSO then the access
component intercepts your request, verifies that you are authenticated and
authorized to access the URL and then only lets you access the URL. Access
component can be further divided into an access agent and an access engine.
Access agent resides on the web server. When a user requests to access a
protected resource then the access agent verifies if the user is authenticated and
authorized to access the resource by contacting the access engine which in turn
contacts the data repository to get this information. After authentication, a cookie
is stored in the user’s web browser or user’s hard drive (depending on the type of
cookie) and is passed to all the subsequent applications of the same domain that
the user browses using the same browser. If the application is a part of SSO, the
cookie provides the needed authentication and authorization information and the
user is not needed to provide credentials again. The orchestration of SSO in a
multi-domain SSO is a little different from this, as explained later in this section.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14 of 34

Identity Component: Identity component provides identity management. If you
change the information related to your identity (either as a user or as a group)
like changing your profile information or changing your password or changing
your group attributes etc. on a web site that is a part of SSO then it is the identity
component that works behind the scene to facilitate the functionality. We go with
a brief introduction to identity management and then move on to the explanation
of constituents of the identity component. The purpose of identity management is
to manage the identity of users and groups. A user possesses a few attributes;
some of them static like username, last name, first name (assuming that it is
rather infrequent for a user to change his name or username), user creation date,
etc and some of them are dynamic like password, the department they work for,
the designation, date of last password change, etc. Similarly a group can also
possess static and dynamic attributes. A group can be categorized into static or
dynamic group. An administrator maintains a static group. For example, if Joe
Smith joins in IT department of an organization and if the IT group is maintained
as a static group then the administrator creates him as a member in the IT static
group. If Joe Smith changes to the HR department after some time, he needs to
be manually changed in the group configuration to the HR static group. A
dynamic group is a group based on a user attribute. For example, there can be a
user attribute to store the user’s department and depending on the value on this
field the user will be a part of the department-related dynamic group. If Joe Smith
has a value of IT for this attribute then he belongs to the IT group. If the value is
changed to HR then the user automatically belongs to the HR group based on
the value of the attribute. Dynamic groups can reduce the maintenance
overheads and can lead to better security in identity management. When Joe
Smith moves from the IT department to HR then he needs immediate access to
HR-related information and doesn’t need access to IT-related information and
this can happen rather transparently in a group-based identity management.

An identity component may be a part of the SSO product (or offered as an
additional component in a few products) that helps in identity management. It is
often implemented as an identity agent that resides on a web server and an
identity engine. When an authorized user accesses or modifies identity
information then the identity agent on the web server communicates with the
identity engine, which in turn communicates with the data repository to get the
job done. The identity component deals with enforcing restrictions on password
management based on policies. A majority of the products come with flexible
ways of managing workflow in different situations. In the context of identity
component, workflow can be defined as the path that a request to modify
user/group identity information is routed through, based on certain criteria. For
example, enforcing approvals when certain key attributes like compensation,
department, etc. on user profiles are changed.

Administration Component: This comes in different flavors the most common of
which is a web-based administration console. It allows an administrator to
configure access component (authentication and authorization information like

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15 of 34

protected resources, who can access what, etc.) and/or identity component
(configuring users, user attributes, groups, etc.).

Monitoring and reporting component: This is an add-on component in most of the
SSO products. Generally this component is not given enough focus and hence
not properly evaluated. In fact, a lot of implementations are performed without
this component in place. However, the component helps to ensure continued
security of the implementation by identifying events of special interest (like
security policy violations etc.) and notifying the needed people about them.
Based on the need, third party products can be integrated with SSO products for
providing advanced monitoring and reporting functionality. Again, careful
integration is recommended here not to open any vulnerability. It is also
recommended to go with a very basic monitoring and reporting functionality in the
initial implementation and increase the intensity in subsequent releases.

Data repository: Most often this is an LDAP-compliant directory server that
serves as the repository for user data and the metadata. A few vendors support
an RDBMS database to be the back end. Some of the database vendors provide
an LDAP wrapper to the database as well. In a distributed enterprise deployment
that spans multiple geographic locations, it is common to have one or more
master servers with synchronization between those servers at regular intervals
and a few other servers that replicate the content from the master servers.
Strong authentication between the servers before data replication can help
increase the security in the distributed architecture.

Now that we have a basic understanding of the building blocks of an enterprise
SSO, let us move on to a technical discussion on architecture. As mentioned in
the overview of SSO, the presentation of cookie lets a user to navigate into an
application without further authentication. Hence it is very important to
understand what information is stored in the cookie is and how tough it is to read
the contents of a cookie with an attack and then spoof a user cookie by an
intruder.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16 of 34

Architecture for Internet facing SSO

External User

Border Router

Firewall
Access
Agent

Web server

Web server

https

Admin
Web

server
Access
Engine

Identity
Engine

Internal Network

Screened Subnet

Internet

Identity
Agent

Firewall

Administrator

Data
Repository

Figure 1

Application

Figure 1 attempts to visualize the location of different components in a common
architecture for Enterprise SSO. Internet facing applications are prone to a
variety of attacks and hence the concept of defense in depth should be used as a
guiding principle in the architecture to ensure maximum security. The web
servers that hold access agents and identity agents can be placed in a screened
sub-net to separate them from the rest of the network. The access engine,
administration server and data repository can all reside in the internal network.
The communication between a user and web server can be secured by using
Secure Socket Layer (SSL). This avoids sensitive login information (like login and
password) getting transmitted in clear text.

Many vendors offer different types of communication between the components
on the web server and the components in the internal network. These types can
be broadly categorized as clear text and certificate, though vendors may call
them differently. In the clear text type, the web server communicates to the
application server (access engine or identity engine) without any encryption. It is
probably a good choice for a development environment to avoid the hassles of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17 of 34

procuring and maintaining a digital certificate (explained later). Obviously this is
very insecure for a production environment and hence the need for the second
type, certificate. A digital certificate is an electronic document that identifies an
entity like an individual, company, client, server or some other entity. You can
visualize a digital certificate to be the electronic driver’s license with the
Certificate Authority (CA) being the party that endorses it by validating the
identity of the entities. They can be either independent third parties like Verisign
or organizations running their own certificate-issuing server software such as
Netscape or Microsoft Certificate Server. Communication that uses a digital
certificate is expected to be secure as long as the keys associated with the
certificates are not compromised. The references section in this paper provides a
useful link (reference #13) for more understanding on digital certificates. You can
place the application servers behind a firewall, allow only the hosts holding SSO
components to communicate to the servers at designated ports and deny any
other traffic. The firewall can be configured to allow outgoing traffic with source
address belonging to your network, only to the hosts holding SSO components
and deny all other traffic. This reduces the chance of malicious programs like
Trojans sending spoofed traffic from application servers to the Internet. It may
take significant efforts to move the data repository if you choose to use an
existing one. Communication between access or identity engine and the data
repository can be enforced on a secure channel over SSL. It is important to
understand at this stage if a vendor supports these security measures or not, if it
was not already done during evaluation.

Other layers of defense on the server can be hardening these servers, applying
security patches as soon as possible after they are released, restricting access of
the servers to only a very limited number of people, designing a corporate
workflow when a new resource needs access to any of these servers, logging all
important activities on the servers, etc. As a simple defense on the client side,
you can define supported versions of different browsers and prevent browsers of
older versions to access your applications. You can show a friendly error
message to indicate the supported browser versions in such a case. This can
help you prevent an attacker taking advantage of a known vulnerability in an
older version of the browser used by the user.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18 of 34

Architecture for Intranet facing SSO

Access
Agent

Web server

Web server

Admin
Web

server
Access
Engine

Identity
Engine

Internal Network

Identity
Agent

Firewall

Administrator

Data
Repository

Digital
Certificate

Digital
Certificate

Figure 2

Application

Figure 2 shows the common architecture for Intranet facing SSO. It is similar to
that of Internet facing SSO. Since all the components of this architecture reside
in the internal network, all the components are placed in one zone - internal
network. The other security measures that were discussed for the architecture of
Internet facing SSO could still be implemented as the next layers for defense in
depth.

Architecture for Multi-domain SSO
As stated before, this can be in two flavors i.e. Intra-organization multi-domain
SSO and cross-organization SSO. Traditionally, a similar architecture is used for
both the types and it is shown in the figure 3.

User

Access
Agent

Web server
Ancillary Domain

Primary Domain

1

2

6

Access
Agent

Web server

3

Access
Engine

4

7

Figure 3

5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19 of 34

For simplicity sake, access control devices such as border routers, firewalls, etc
are not shown in the figure. In this type of architecture, there can be one primary
domain and one or more ancillary domains. A trust relation is to be established
between the web servers in primary and ancillary domains either using a third
party trust management tool or by using cryptography using keys known to the
access agents. The way of establishing trust can vary between different products
and you need to consult the product documentation or discuss with a product
specialist to understand how the trust can be established. The access agents in
ancillary domains don’t have the ability to authenticate the user themselves.
When a user tries to access a resource protected by ancillary access agents, the
sequence of events is as given below.
1. User uses his browser to access a resource protected by an access agent in

the ancillary domain.
2. The accessagent sends a response to the user’s browser to redirect to the

access agent on a web server in primary domain to get authenticated.
3. User’s request gets redirected to the web server in the primary domain. After

collecting credentials from the user, the request is sent to the web server.
4. Access agent on the web server in primary domain contacts the access

engine for authentication and authorization.
5. Access engine gets the needed information by contacting the data repository.
6. Access agent sends the authentication and authorization information back to
the user’s browser, after it receives the information from the access engine. A
cookie is set on the user’s browser for the primary domain.

7. The user’s browser is redirected to the protected resource in the ancillary
domain by adding the encrypted authentication and authorization information
in the query string or in a form given by the trust management tool. If the user
is authorized to see the protected resource then he is redirected to the
requested resource.The ancillary web server then sets a cookie on user’s
browser for the ancillary domain.

When a user clicks on the logout button on a page in the ancillary domain then
the web server in the ancillary domain destroys the cookie set for the user and
redirects the user to the primary domain with information to destroy its cookie.
The web server in the primary domain then destroys its cookie for the user and
the user is logged out of the application.

Note that the behavior can vary drastically in different browsers in this context.
This is where functional evaluation discussed above can be handy in analyzing if
all the claimed functionality by the vendor can be achieved without any security
holes.

This architecture fits well for an intra-organization multi-domain SSO. However,
there is a disadvantage if you choose to use this architecture for a cross-
organization SSO, as each web server in the partner site should have the access
agent installed and configured to be able to talk to the access agent in the
primary enterprise domain. These access agents need to be maintained and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20 of 34

upgraded along with any upgrades of the access agents in the primary domain.
There is an ongoing attempt to address this issue with the help of federated
identity management as described below.

Federated identity management, used in cross-organization SSO, needs a
slightly modified architecture as depicted in figure 4.

User

Access
Agent

Web server

Corporate Network

Federation
Engine

Federation
Engine

Partner network

Authorization
Engine

1

4

5

6

7

8

9

Access
Engine2

Figure 4

3

Access control devices such as border routers, firewalls, etc. are not shown in
the figure to make it simple for understanding.
1. A user tries to access an application on the web site of an enterprise by

providing his credentials.
2. Access agent on the web server contacts access engine for authentication

and authorization of the user.
3. Access engine gets the needed information by contacting the data repository.
4. Assuming that the user is authenticated and authorized to access the
application then a cookie set on the user’s browser.

5. The user then clicks on a link that takes the user to an application maintained
on a partner site (Say, an online survey application to gather information on
what the user’s experience is with the web site).

6. The access agent on the web server of the corporate web site passes the
buck to federation engine in the corporate architecture.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21 of 34

7. The federation engine uses the user’s browser cookie to pack it as a SAML
(Security Assertion Markup Language) assertion, digitally sign it and then
redirect it to the federation engine in the partner’s network.

8. The federation engine in the partner network receives the SAML assertion,
identifies that it was sent by the federation engine in the corporate network
because of the digital signature and extracts the user’s identity from the
SAML assertion. It then passes the identity information to the partner’s
authorization engine to know whether to allow the user to see the requested
application or not based on the authorization of the user.

9. If the user is authorized, the federation engine on the partner’s network will
redirect the user to the requested application.

This architecture has two inherent advantages.
 The partner doesn’t need to maintain the identity information of the user.
 No separate installation is needed on the partner web servers.

Of course, the federated engines on both sites should be configured to identify,
trust and interact with each other as designed. But, it gets easier when they are
based on standards such as SAML or Liberty. The references section gives
resources to give more information on these standards.

The following questions aim to help you in understanding different aspects of
security in the architecture of enterprise SSO.

1. What are the different zones in which the components of the SSO product will
be located? What are the recommendations from the vendor in this context?

2. How do these components affect security? For example, if there are
components residing in DMZ and need to contact servers residing behind a
firewall, what type of secure communications does the product support?
Which of the options given by the vendor is secure to implement? How does it
affect the performance of the overall applications participating in SSO?

3. What is the corporate policy on redundancy at different points of application in
the architecture and does the SSO product support design for redundancy?
The goal is to not have a single point of failure i.e. if one of the components
fails then will it bring down the application or any important functionality of the
application like authentication or authorization? For example, what happens if
one of the web servers of a web application that participates in SSO goes
down? What happens if there is a hardware/software breakdown on the
firewall? What happens if the access engine or identity engine has a
hardware/OS crash? What happens if one of these servers is disconnected
from the network? What is the failover configuration in the architecture? Are
there any known security issues in this type of configuration? Does it match
the recommended configuration by the SSO product vendor?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22 of 34

4. How is load balancing designed in the architecture? Does the SSO product
vendor support load balancing access/identity engines? Does the SSO
product use any third party products for this load balancing? If so, are there
any known security issues in the version of the product that you may install in
your architecture? If Network Address Translation (NAT) is used, will it affect
the SSO product functionality?

5. Is disaster recovery built into the architecture?

6. Are resources from information security participating in design discussions for
the architecture? Do they see any potential security risks in the architecture?

7. What is the protocol used between the components? Is it proprietary? If so,
what is the range of ports that we need to open? Does it open new avenues
for attacks by intruders?

8. Does the architecture need any special components to support emailing
requirements of the application?

3.3.2 Nailing down requirements

While the discussions about architecture are in progress, it is a good idea to start
gathering the functional requirements of the implementation. As mentioned
before, it helps to start simple with the initial implementation and take incremental
steps towards increased functionality in subsequent releases. Business analysts
often face a dichotomy between accepting the available functionality in the
product and requirements that need customization. Generally it gets tougher to
convince business analysts to accept the available functionality as it implies that
they need to knit the business processes around the functionality. However, the
recommended practice is to minimize any customization. The vendor of a product
can invest significant efforts in making the product more secure. You may not be
able to secure the customizations developed in-house to the extent that the
vendor can ensure in his product line. If you have already developed a prototype
as described in the evaluation section, then by this time you have some in-house
resources who understand which of the requirements can be implemented
through configuration and which of those need customization. So, prioritize your
requirements, interact with the available technical resources and reprioritize
those requirements with minimizing customization as the goal. You must
cautiously balance security and usability in your requirements and look for
solutions that provide both. The following gives a few questions that can help you
nail down your requirements.

1. What are the applications that I can choose to participate in SSO in the first
implementation? These are often the applications that are not directly related
to revenue generation of an organization. The goal is to try the first
implementation on applications that affect the organization to the least if they

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23 of 34

are taken down for longer than anticipated time during the production
migration or if they are taken down frequently because of unforeseen
functional or security issues observed after migration to the production
environment.

2. What resources in these applications need to be protected? For example,
which URLs need authentication and authorization before they can be
accessed?

3. What restrictions are to be enforced on passwords to these applications? Did
the members of security team review them?

4. Are there any emailing requirements? For example, if there is a requirement
to expire a user password, does the user need to be informed through email
in a specified number of days before expiring the user password?

5. What is the forgotten password mechanism? A majority of the applications
use a security question and answer as a way of self-service to recover
password. Is this forgotten password mechanism approved by IT security
team members? If so, did they add any new requirements to ensure that
password recovery does not introduce new security holes?

6. Are there any other requirements related to password security? For example,
do you need to enforce a user to change the password on the first login to
adhere to your corporate policy?

7. Are there any known conflicts between the corporate security policy and
product functionality? What is the planned course of action in such situations?

8. What are the auditing, monitoring and reporting requirements?

9. What are the application log requirements?

10.What are the workflow requirements?

3.3.3 Investing right resources

Involving the right resources from the early stages of the project is key to the
success of implementation. Obviously, these resources generally have a very
busy work schedule and hence it may be difficult to pull them into the project
meetings. Maintaining systematic documentation on the discussions and
developments in each project meeting is a task of paramount importance. The
documentation should be available to these resources for reference (on an
intranet website or on a shared drive). Following are a few questions to help a
project manager in resource management.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24 of 34

1. Did you identify the needed resources for the successful initial SSO
implementation and schedule their time for the project? Internal resources like
developers, project managers, security professionals, business
representatives, business analysts, network administrators, firewall
administrators, directory server administrators, quality assurance engineers,
application specialists, trainers, help desk agents, etc. and external resources
like points of contact on the vendor side, contractors, etc. need to be
identified. Review the needed resources after evaluation of the products and
try to fill in the gaps, if any. Discussion with the SSO product vendor, about
the needed resources for the project, based on their experience in prior
implementations also can be of a great help in this aspect.

2. Do you have the needed in-house expertise for the implementation of the
project? Often it helps to engage a team of experienced consultants to lead
the implementation while the in-house resources work with them and learn
over a period of time. Did you visit the need of engaging such a team of
consultants?

3. Did you establish communication channels for these resources to interact with
each other during the project? They can be intranet websites for posting
project documentation, mailing lists and discussion groups for a common
place to post questions, etc.

4. Did you plan for the resources that will be primarily responsible for
documenting the progress in project meetings?

5. Did you identify and plan the needed time for training the needed resources?
The training can be in different forms like end user training, train the trainer,
technical and security training for the development and security and project
management teams from the product vendor, etc.

6. Did you plan for the time of the resources during production migration? There
can be long migration times for SSO implementations based on the
applications that are integrated.

7. Did you plan for the lifecycle of a help desk request about issues in SSO or
password management after production migration, right from the point when a
help desk agent receives a call or email or some other form of request to the
time when the issue is resolved and communicated back to the user?

8. Did you document agreed upon Service Level Agreement (SLA) with the
vendor for raising issues/creating service tickets after implementation,
definition of severity levels, escalation procedures, communication channels,
etc.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25 of 34

3.4 Common mistakes

3.4.1 Process/Project mistakes

1. SSO is one of the requirements of a project: Implementation of SSO is major
project unto itself. Many a time it is observed that SSO is just one of the
requirements of a project and to satisfy the requirement, the implementation
is taken up resulting in impractical schedules in the project plan. It is a
recommended practice to take time to discuss with another customer who
implemented an SSO product of your choice to understand the usually faced
challenges and plan accordingly for the project.

2. Too ambitious about SSO implementation: Trying to take a big leap in the first
step can be a good recipe for disaster. As mentioned in the planning section,
divide the whole SSO project into small and manageable units and take
incremental steps towards the full-fledged implementation.

3. Project manager’s experience is the only important thing: Project manager is
going to orchestrate resources from different departments. An experienced
and security savvy project manager with the skill set and ability to understand
and verify every step of the project with security in mind can take a lion’s
share in the success of the project. If you don’t have a project manager with
the needed security awareness then, it helps to train the available project
manager on the essential security aspects of such a project. Ignoring the
needed security awareness, skill set or training for the project manager is a
big mistake that has the potential to lead to a catastrophe.

4. No cushion time allotted in the project plan: Expect the unexpected. Not
giving enough cushion time to absorb unexpected delays in the first
implementation of SSO can lead to confusion and chaos when unanticipated
challenges come your way.

5. Communication about the SSO system within the organization is not planned:
People in the organization, other than those involved with the project, often
come to know about the new SSO system just before the release of the
project. They are initially overwhelmed about what they are going to get and
then get frustrated with the new password restrictions and other security
enforcements. Starting the communication with user community from the
early stages of the project can help set the expectations of potential users.
You may choose to post this information about the new SSO system on your
intranet sites, bulletin boards, etc. or use email communication at regular
points of time.

6. Quick evaluation to save time: Many a time not enough time is spared for a
systematic evaluation. It is done based on the feature comparison or vendor
preference or referral etc. Since each environment is unique, it is worth
spending time on planned evaluation, as it will result in saving of a lot of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26 of 34

efforts, cost and frustration in the long term. Consideration of long-term
requirements may be a step in the right direction. For example, if you see a
need for implementing legacy SSO in the near or distant future, evaluation
with a goal of how well the SSO product can deal with legacy SSO is probably
appropriate.

7. Resource from IT security is not engaged from the beginning of the project: It
is highly recommended that an experienced resource from IT security be a
part of the project, from the inception to at least the end of initial
implementation. Identification of any potential security issues early in the
game can alleviate a lot of stress and effort in the end. Also, the resource
from IT security can try to educate the project manager and the other
resources on the project, thus increasing the security awareness in the team
that can have a positive tangible effect on the success of the project.

8. Consultants leave the project with insufficient documentation or inadequate
knowledge transfer: It is common to hire consultants in the initial
implementation to help in project development and guidance, based on their
experience. Often, because of ambitious timelines and shrunk budgets, the
consultants leave in a short notice. So, they will have no time to share their
knowledge either in the form of detailed documentation that could be a good
reference in future or in the form of dedicated sessions for transferring the
needed knowledge to the in-house teammates. They quickly explain the
“most important aspects” of the implementation and move out of the project.
Ideally, there should be a gradual transfer of control from consultants to the
in-house resources. If possible, during this transition period, the consultants
should shadow when the in-house resources manage the show. This avoids
the in-mates getting overwhelmed if something goes wrong as soon as the
consultants leave.

9. Creating a requirement because a feature is available in the SSO product:
Based on a demo or evaluation of the SSO product, it is easy to get tempted
to insert a new requirement because there is a nice feature available in the
SSO product that you just selected to implement. However, the driver for
requirements should be a business need, not an available feature in the SSO
product. Switching on new functionality may introduce new security,
compatibility or other issues. It is recommended that you come up with a bare
minimum set of requirements that is mandatory for the initial implementation
after discussions with the project resources and stick to it till its successful
completion. All additional requirements can be labeled as enhancement
requests and can be taken up in subsequent maintenance.

3.4.2 Technical mistakes

1. Choosing between certificates and shared secret without a thorough
understanding: Vendors claim that they support encrypted communication

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27 of 34

between different components of the SSO product, giving a choice between
different modes of communication. You need to understand all the
dimensions of implementing different forms of communication before
choosing one. For example, if there is a common shared secret used by all
the components of the product then the whole infrastructure that is based on
SSO can be compromised by an attacker if he knows the shared secret. So,
usage of different shared secrets for different components is better. However,
an attacker could manage to know all the shared secrets if they are used over
prolonged period of time. Hence, there should be a way to “renew” these
shared secrets. It is a concern of single point of compromise even if the
communication uses digital certificates and just one certificate is used for the
communication between all the SSO components. On the other hand, if you
use different third party digital certificates for communication between
different components then the cost of procuring and maintaining those
certificates can be high. More over, these certificates expire after a specified
amount of time, usually one year. So, if you forget to renew and install the
renewed certificates on the appropriate servers then it may bring the entire
infrastructure based on SSO to a screeching halt. There could be many more
aspects like this that you may need to understand before getting a feel of
comfort with any option.

2. Under-estimating issues around cookies: Since HTTP is a stateless protocol,
usage of cookies is the most widely used mechanism in web-based
applications to maintain the state of a user throughout a session. However,
there have been a variety of attacks based on cookies and hence it is
important to understand different aspects of cookie management. The very
fact that a cookie is encrypted does not mean that it is secure. Focus on
details like the information stored in a cookie (if there is any user identity
information like user id, password, session id etc.), the algorithm used to
encrypt the contents, whether the cookie is a per session cookie or persistent
cookie (explained in overview), how well it works if a client IP address is
stored in the cookie and a firewall or a load balancer modifies the client IP
address while proxying connections, how easy or tough is it to launch a
session hijacking or replay attacks after noting the cookie contents, etc. can
take you a long way in getting the big picture of cookie management in the
SSO application.

3. Bumping up to the maximum logging option without understanding what it
means: Many a time it is observed that the technical team or the decision
makers of the project like to play it safe in the initial implementation by
bumping the logging option to the maximum on all the components. The idea
behind this is to get as much details in the log files as possible in the early
stages of initial implementation for easy troubleshooting of any issues. While
the intention is good, it suffers from the following disadvantages.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28 of 34

 It can quickly fill the disk space, leading to an unpredictable behavior of
the underlying operating system. It adds an overhead on the
administrators to keep monitoring the log size and archive them.

 Depending on the information the SSO product writes into the log files in
its maximum log option, it could be help a malicious user to get sensitive
information. For example, if the SSO product writes user credentials into
the log file in the maximum log option then it could prove to be an
attacker’s paradise.

Hence, it should be an informed decision to increase the log option. Measures
like discussions with resources on the vendor team, consulting SSO product
documentation, etc. can help greatly in this direction.

4. Ignoring potential issues with failover configuration: Probably all of the SSO
vendors claim that they have software failover as a feature built into their
product. It usually means that you can maintain redundant software
components in the architecture and configure them to manage the show when
the primary software components fail. However, it needs a closer look to
understand what it can get translated into in terms of failover. The following
are a few questions that can help you in this aspect. Some of the terms used
below are explained in the architecture section.
 What is the mechanism by which the access/identity agent realizes that a

corresponding access/identity engine has failed?
 How quickly can access/identity agent respond to such a failure? How

quickly can access/identity engine realize the failure of a data repository?
Are they configurable parameters? Is there any side effect on modification
of this configuration?

 How does this response time get affected if the communication between
these components is going through a proxy firewall? Does it need to hand-
in-hand with a special configuration on the firewall?

 Is the behavior going to be the same even when the network connectivity
between access/identity agent and the corresponding access/identity
server is broken suddenly?

5. Expectation of plug and play with firewalls: Whatever the documentation from
the SSO product vendor or from the firewall vendor may claim, it remains a
fact that the introduction of firewall in the architecture is seldom plug and play.
You need to expect some direct or indirect challenges, especially if you plan
to a proxy firewall. A direct challenge is something that shows you very
evident symptoms that it is a communication issue and often it is easier to
troubleshoot. For example, if you enter your login and password in the login
form and wait indefinitely to access a resource then it is probably a
communication issue between the SSO components. An indirect challenge
shows an arcane symptom that may seem quite unrelated to communication.
For example, your application may show strange behavior sporadically that
may point to the issue in communication after a tedious session of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29 of 34

troubleshooting. Because typically you don’t use firewalls in a development
environment, you might not see these errors during the product evaluation.
However, you can use the same fact as your tool to compare the
configuration between your development and QA/Production environments to
understand the differences and nail down to the communication issues
quickly.

6. No understanding on the effects of turning on/off of the features or other
aspects of configuration offered by the SSO product: When a product is
installed then it may come with a few functions/options switched on/off by
default. So, while evaluating the product everything may look like working
great but, when you choose to switch on/off one or more functions/options in
the development/QA/Production environments for getting rid of complexity or
increasing security or for some other reason, it may start cracking the SSO
application. So, having an open eye for the effects of switching on/off the
features/functions/options in the product is important.

7. Ignoring the need for automated migration of configuration between
environments: The capability to migrate configuration from one environment
to another is something that you may assume to have in the SSO product.
However, there are a few SSO products where this feature is not available. It
not only means a lot of effort to manually migrate every piece of configuration
between environments but also is error prone because it is manual in nature,
thus leading to possible security or other issues.

8. Internal zone doesn’t need secure communication: Very often, there is a
sense of security that prevails when you think about the internal zone.
However, history shows that the number of attacks on the systems in the
internal zone is at least equal to those on the external facing systems.
Furthermore, traditional security measures like firewalls, intrusion detection
systems etc. cannot protect against unauthorized insider access. So, securing
the communication of sensitive information in the internal zone is of high
importance and cannot be neglected.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30 of 34

4. Post-Implementation verification

4.1 Testing the application
Often, a majority of the efforts are spent in functional testing. Quality assurance
resources should be in consistent interaction with development, security and
integration teams to make sure that they succeed in testing the application
completely, in all aspects.

4.1.1 Functional testing
This includes tests to verify that SSO works properly and other requirements like
restrictions on password, enforced change of password, lost password retrieval,
password expiration, workflow requirements, protection of resources, etc. are
met. Use different browsers (like Netscape, IE, Mozilla, Opera, AOL, etc) and
different versions of each browser based on the supported browsers and their
versions of each application to perform this testing.

4.1.2 Integration testing
SSO application integration is a very fragile area and hence it needs to be
systematic. The purpose of integration testing is to ensure that each application
that participates in SSO works the same before and after SSO. So, thorough
regression testing of each application of SSO is essential. Using different
browsers and their versions should be done in integration testing to ensure that
using every supported version of a browser results in successful navigation to all
parts of the integrated applications. Automated testing with the help of tools can
help increase the speed of testing.

4.1.3 Security testing
Ensuring that the implementation of the SSO product doesn’t leave any security
holes is a very challenging task. Hence, it is important to test all existing
applications and look for security holes or weaknesses. Training the QA
resources in the needed skills for testing the security of an application can be of
a great help. Following gives a few tips to help you in this task.
 Follow the mailing lists and discussion groups for the SSO product and its

peers.
 Follow the mailing lists and discussion groups of the vendors of any existing

application (that is a part of SSO) to find out any security holes in these
applications that may be a result of the integration.

 Preparing a methodical test plan for testing possible security holes or
weaknesses, after discussions with in-house security team.

The following are some other steps that can help you in the same direction.

Vulnerability scans: Vulnerability scanning can help you to secure your network
by identifying and fixing any weaknesses before an intruder can realize these
weaknesses. Nessus is a popular, freely available and open-source vulnerability
scanner while there are a variety of commercial tools available in the market.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31 of 34

Buffer overflow testing: Buffer overflow occurs when a program tries to write
more data into memory than the space allocated, resulting in unexpected
behavior. It can be a result of poor programming practices and a lot of exploits
have so far been based on buffer overflow. One of the ways of testing buffer
overflow in applications is to populate the fields in the user interface in different
parts of the application to the maximum and test to see if it breaks the
application. For more information and quick understanding on buffer overflow and
countermeasures, refer to #18 in the references section at the end of this paper.

SQL Injection testing:
The principle of basic SQL injection is to take advantage of insecure code
on a system connected to the internet in order to pass commands directly
to a database and to then take advantage of a poorly secured system to
leverage an attacker's access. Interestingly, this is also one of the results
of poor programming practices and developers who use ‘string-building’
techniques in order to execute SQL code usually cause it (McDonald, p.3).

The references section at the end of this paper lists a resource for detailed
understanding of SQL injection attacks. Try to test the user interface of the
applications in SSO (including the administration console and all other user
interface of the SSO application itself) with a variety of non-alphanumeric
characters like semi colons, commas, single quotes, parenthesis, etc. Try to input
some complete and incomplete SQL statements in the fields to see if it breaks
the application.

Malformed URL and other DOS attack tests: A Denial of Service (DOS) attack
can be defined as an explicit attempt by a malicious user to prevent the usage of
a system by authorized users. It can be better explained with an example for the
benefit of the readers. I can launch a Denial of Service attack on a pizza
restaurant by ordering hundred (or more) pizzas from the pizza restaurant by
spoofing the names and phone numbers of all my neighbors. Then a genuine
person who wants order a pizza from that restaurant will not be able to do so
because the staff at the pizza restaurant is overwhelmed by the orders I gave.
DOS attack can be categorized into different subcategories based on the way of
attack. One of the common ways of launching a DOS attack against a web site is
to periodically send a URL constructed with non-alphanumeric and irregular
characters including Unicode characters. Quality assurance resources can
interact with security team to understand the different ways of launching a DOS
attack and test it against the applications that are part of SSO, including any
web-based administration consoles. A resource to provide a comprehensive
understanding on ways of minimizing, detecting and reacting to DOS attacks is
provided at the end of this paper.

Backdoor attack tests: Applications can leave a few back doors that can be
used to bypass layers of defense. It is important for Quality Assurance resources
to be aware of common types of back doors in the context of SSO to see if a user
can bypass restrictions imposed by the SSO architecture. The following gives a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32 of 34

few examples to throw some light on these aspects. Please note that this list is
no way complete. The users can go through a lot of resources on the Internet
(like discussion groups, mailing lists etc.) and use their creativity to find out many
such possible ways of bypassing the protection of the resources.
 Can a user disable JavaScript in his browser and bypass validation in the

user interface?
 What is the expected behavior if the user disables cookies in his browser?
 Can a user modify the hosts file on his workstation to give a fictitious name to

the hostname of the protected resources and bypass authentication? For
example, say the protected resource is
http://anyhost.samplecompany.com/protectedresource. I can modify the hosts
file on my workstation (in the windows operating system it is typically in the
C:\WinNT\System32\drivers\etc folder) to add a new entry with the IP address
of host of the protected resource and www.mysneakyhost.com as the
hostname. In this case, can I bypass the authentication and authorization
using http://www.mysneakyhost.com/protectedresource? Is a similar attack
possible through a script?

 Can a user bypass the authentication using an IP address in the URL instead
of using the hostname?

 Can a user just refresh the browser or the application to bypass the session
timeout?

 If there is a HTML page for entering credential information, is it using https or
http? It should be using https to protect against sniffing.

 Can a user enable an option in his browser to warn the user when there is a
cookie, watch the contents of a cookie, manipulate them in a script, post it to
the web server and escalate his privileges? Can a user use a similar
technique to view the profile or any other sensitive information of other users?

4.1.4 Failover testing
A failover test consists of intentionally bringing down one of the components in
the architecture of an application to understand the impact it makes on the
application. A good architecture design implements redundancy, clustering or
failover and load balancing at different points in the architecture so that there is
no single point of failure for the application. The failover test plan can consist of
 Shutting down the needed process on different components. For example, for

a web site with windows web server, it is done by bringing down IIS Server
Service. On a Unix system, it can be done by executing a command to shut
down the web server process.

 Switching the power off for different hardware components in the architecture
 Simulating hard drive crash
 Pulling off the network cable from one of the hosts in the architecture

5. Ongoing maintenance
Secure architecture of a system is a journey, not a destination. As time passes,
new vulnerabilities will be disinterred in every application. Following is a quick list

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33 of 34

of some of the important measures to have in place to ensure security in the
architecture.
 Deploy all relevant security fixes and software updates for all software

components in the architecture.
 Perform vulnerability scans regularly, on a periodic basis, preferably every

month.
 Interact with your IT security team and let them schedule security audits of

the system periodically.

6. Conclusion
A well-planned and carefully deployed Single Sign-on product can be a great
complement to the other security measures that are already in place in an
organization. By weighing the risk factors associated with implementing each
SSO product against the advantages and by keeping the expectations aligned
with realistic planning, an SSO product implementation to satisfy your
requirements is achievable.

The reference section lists a few eminent products in the industry.

7. References
1. Smith, Mick. “Evaluating Enterprise Single Sign-on: A nontechnical guide“

January 2004. URL:
http://www.protocom.com/whitepapers/evaluating_sso_nontech.pdf

2. “Enterprise Single Sign-on: Balancing Security & Productivity“. URL:
http://www.bnx.com/pdf/Enterprise%20Single%20Sign-On%20-
%20Balancing%20Security%20&%20Productivity.pdf

3. Lenox, Greg. “Unraveling the buy VS build conundrum”. 06 March 2003.
URL:
http://searchcio.techtarget.com/originalContent/0,289142,sid19_gci884437
,00

4. Taylor, Laura. “Understanding Single Sign-on”. May 28 2002. URL:
http://www.intranetjournal.com/articles/200205/se_05_28_02a.html

5. Sandhu, Sandeep Singh. 30th January 2004. URL:
http://www.giac.org/practical/GSEC/Sandeep_Sandhu_GSEC.pdf Version
1.4b

6. Single Sign-On Deployment guide URL:
http://developer.netscape.com/docs/manuals/security/SSO/contents.htm

7. The open group. June 1997. X/Open Single Sign-on Service (XSSO)—
Pluggable Authentication Modules. URL:
http://www.opengroup.org/onlinepubs/008329799/toc.pdf

8. Hobbs, Russell. Considerations For Implementing Single Sign-On Within
The Enterprise. 1 September 2003. URL:
http://www.sans.org/rr/papers/6/1215.pdf Version 1.4b

9. LDAP FAQ. URL: http://www.mjwilcox.com/ldap/ldapfaq.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34 of 34

10.Timothy A. Howes, Mark C.Smith, and Gordon S.Good. Understanding
and deploying LDAP Directory services New Riders Publishing, First
edition 1999.

11.Boroditsky, Marc and Pleat, Bruce. Security @ The Edge: Making Security
and Usability a Reality with SSO. URL:
http://www.passlogix.com/media/pdfs/security_at_the_edge.pdf

12.Mailwald, Eric. Network security: a beginner's guide New York:
Osborne/McGraw-Hill, c2001

13.Gornes, Ferdinand. SECURITY ALERT: Fraudulent Digital Certificates. 07
June 2001. URL: http://www.sans.org/rr/papers/index.php?id=679

14.Oblix Inc. An overview of federated identity architecture from Oblix URL:
http://www.oblix.com/resources/whitepapers/fedid_arch/obx81a_wp_feder
ation_paper.pdf?WP=26

15.Dornan, Andy. Security Assertion Markup Language. 05 December 2003.
URL:
http://www.networkmagazine.com/shared/article/showArticle.jhtml?articleI
d=16600124

16.Liberty Alliance Project. A white paper on Liberty protocol and identity
theft. February 20 2004. URL:
http://www.projectliberty.org/resources/whitepapers/Liberty_Identity_Theft
_Whitepaper.pdf

17.Bradley, Tony. Introduction to Vulnerability scanning. 04 March 2004.
URL: http://netsecurity.about.com/cs/hackertools/a/aa030404_p.htm

18.Grover, Sandeep. Buffer overflow attacks and their countermeasures.
March 10, 2003. URL: http://www.linuxjournal.com/print.php?sid=6701

19.McDonald, Stuart. SQL Injection: Modes of attack, defense, and why it
matters. April 8 2002. URL:
http://www.sans.org/rr/papers/index.php?id=23 Version 1.4

20.CERT Coordination center. Managing the threat of Denial of Service
attacks. October 2001. URL:
http://www.cert.org/archive/pdf/Managing_DoS.pdf Version 10.0

21.Lee, Paul S. Cross-site scripting 1 September 2002. URL: http://www-
106.ibm.com/developerworks/security/library/s-csscript/

SSO Product links
22.Netegrity Siteminder URL: http://www.netegrity.com
23.Oblix COREid URL: http://www.oblix.com
24.Passlogix v-Go SSO URL: http://www.passlogix.com
25.Protocom SecureLogin URL: http://www.protocom.com
26.RSA Sign-on Manager URL: http://www.rsasecurity.com
27.IBM Tivoli Global Sign-on, Access Manager, Identity Manager and other

related solutions URL: http://www.ibm.com
28.Evidian SSO Xpress, Secure Access Manager, Identity manager and

other related solutions URL: http://www.evidian.com
29.Computer Associates eTrust access and identity solutions URL:

http://www.ca.com

