
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Custom Built-In Root CA Certificates for Mozilla

Gabriel L. Somlo

August 13, 2004

Abstract

SSL and TLS are heavily relied on for secure Web communications via the HTTPS protocol.
Still, there is a lot of potential for abuse using man-in-the-middle attacks, which are facilitated
by the lack of sophistication among the user population, and by the fact that, for cost reasons,
many servers operate outside the public-key infrastructure on which the protocol’s security is
based. We offer an overview of the cryptographic methods underlying SSL, and propose a
policy where browser-generated security warnings can always be taken seriously in a reliable
way, in order to avoid security breaches caused by user confusion. By building all necessary
certificate authority information into the browser, users would not be expected to make any
changes on their own, and would never encounter situations where it is necessary to ignore
the browser’s security warnings. Examples are provided using Mozilla v.1.7.2 running on the
Fedora Core 2 distribution of GNU/Linux.

1 Introduction and Motivation

Perhaps the most wildly popular application of public-key cryptography in use today is the HTTPS
protocol. A vast number of people perform “secure Web” transactions on a daily basis, by shopping
and banking on-line, or by managing various devices with Web-enabled management interfaces.

The security of TLS (Transport Layer Security, the protocol underlying HTTPS) [Dierks99] is
based on a commercial public-key infrastructure (PKI), where the client applications (i.e., Web
browsers) come with a built-in list of trusted third parties or authorities capable of vouching for
the integrity of HTTPS servers to which they are connecting. The whole protocol becomes vulnera-
ble when servers refer to authorities that aren’t built into all popular Web browsers. Since authorities
generally charge for their services, server administrators may choose to operate completely outside
the established PKI. When this happens, users typically receive warning messages from their Web
browser, and are asked to make a decision on whether or not to trust the integrity of the visited Web
server anyway. Many large sites, including many academic institutions, instruct users to selectively
ignore such warnings, and/or to perform a series of steps that would instruct their browsers to trust
such Web servers.

In order to minimize user confusion, and to facilitate a simple policy where all browser warn-
ings could reliably be taken seriously, we propose that any necessary credentials be built into the
browsers on a site-wide basis, before having them deployed to the users. Users would not be
expected to perform any configuration steps, and could be instructed to always notify their adminis-
trator if they received security warnings from their Web browser.

1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We continue by reviewing the cryptographic techniques at the basis of TLS in section 2. The
problems that occur when sites use certificate authorities that are not recognized by the client soft-
ware are illustrated in section 3, where we also propose a simple policy to mitigate the associated
risk. Instructions on how to add a new root certificate to Mozilla’s built-in list are given in section 4.
Finally, section 5 shows how to build an RPM package for the modified Mozilla executable.

2 Background: Cryptography, SSL/TLS, and Certificates

This section is intended as a quick refresher on cryptography, public keys, the way SSL/TLS is used
on the Web (via HTTPS), and the role of certificates and certificate chains.

2.1 Symmetric Key Encryption

Encryption is the process whereby a cleartext message is transformed into an unintelligible form
intended to prevent reading by unauthorized parties. Decryption is the reverse operation, by which
the recipient transforms the encrypted message back into a cleartext, readable form. Encryption
and decryption rely on cryptographic algorithms, which are mathematical functions that perform the
conversion between cleartext and encrypted messages.

Currently used crypto algorithms are usually well-known functions, widely available to any inter-
ested party. The secret information that prevents unauthorized parties from decrypting messages
is actually a parameter to the crypto function, known as a key. In the most straightforward type of
cryptography, the same key is used both to encrypt and to decrypt the transmitted message. This is
known as symmetric key cryptography. The sender and receiver must make prior arrangements to
agree upon, and keep secret, the value of the symmetric key before they can begin to communicate.
A naive example of this process is for the sender to bitwise XOR the cleartext message with a string
of equal length consisting of repeated concatenations of the key; and for the receiver to apply the
same process to the encrypted string that is received, thus obtaining back the cleartext message.
This process is illustrated in Figure 1, for cleartext message 1011010, and key 1001.

cleartext: 1011010
key string: 1001100

——- XOR
encrypted: 0010110
key string: 1001100

——- XOR
cleartext: 1011010

Figure 1: Naive example of symmetric key cryptography using XOR

2.2 Public Key Encryption and Signatures

The main issue with symmetric key crypto is the chicken-and-egg problem associated with com-
municating the secret key securely, before reliable encryption is available in the first place. This
problem is addressed by public key cryptography.

2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The idea of public key cryptography was first proposed by Diffie and Hellman [Diffie76]. Its first
implementation was provided by Rivest, Shamir, and Adleman [Rivest78], known today as the RSA
public key cryptosystem. RSA is based on two secret large prime numbers, p and q. Two exponents
are computed, e and d, such that

(e·d) mod[(p−1) · (q−1)] = 1

A recipient publishes the product n= p·q and the public exponent e, but keeps secret the individual
values of p, q, and the private exponent d.

Without loss of generality, we assume that we are sending and receiving numerical messages
(any message can be converted into a numerical format as a pre-processing step). The encrypted
message C is obtained from the cleartext message M using encryption function E:

C = E(M) = Me modn

The information required to perform the encryption function E (e and n) is publicly available to
anyone. To decrypt the encrypted message C, the recipient must use a decryption function D:

M = D(C) = Cd modn

Since the recipient keeps d secret, in order to deduce it, an attacker would first need to obtain p
and q by factoring n, which is prohibitively expensive computationally, and thus impossible to do in
any reasonable amount of time.

To summarize, public key crypto relies on a pair of functions: E for encryption, and D for
decryption. E is made public, and computing D by knowing E is prohibitively expensive. Moreover,
E and D are the inverse of each other. In other words,

D(E(M)) = M,

E(D(C)) = C,

for any message M or C. Not only can these methods be used for encryption, but also for digital
signatures, using the second equation above. Once a user’s public key E is well known, he can
sign messages by encrypting them with his private key D, before sending them to the recipient.
The public key E can then be used for authentication (i.e., to make sure the sender is who he
claims to be), as well as for non-repudiation (i.e., to prevent the sender from later denying to have
sent the message). In practice, the sender only computes an encryption of a condensed hash of
the cleartext message, and appends it as a signature at the end of the cleartext. The recipient then
decrypts the hash, and compares it to his own version obtained by hashing the cleartext directly.

2.3 HTTPS, SSL, and Certificates

On the Web, secure transactions occur over the HTTPS protocol [Rescorla00], which, in essence
is HTTP [Fielding99] over TLS [Dierks99]. TLS is still very often referred to using the name of
its predecessor, SSL (Secure Sockets Layer). Without getting into specifics, TLS uses public key
crypto to help two communicating parties set up a shared symmetric encryption key which is then
used to transfer data for the duration of a session. Public key crypto helps work around symmetric

3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

key crypto’s chicken-and-egg problem mentioned earlier, but since it is computationally more costly,
it makes sense to only use it for setting up a symmetric key, which is much cheaper to use for
transferring a high volume of data.

Even when two parties are using public key crypto, an attacker still has a window of opportunity
to perform a Man In The Middle attack (MITM) the first time public keys are exchanged. Essentially,
an attacker will replace the transmitted public key(s) with his own, and decrypt, modify, and re-
encrypt traffic (this time using the real public key(s) intercepted earlier) without the knowledge of
the communicating parties. For this reason, TLS requires public keys to be digitally signed by
a member of a select list of trusted third parties. Signed keys together with added information
identifying the owner of the key are known as certificates, and the trusted third parties are referred
to as Certificate Authorities (or CAs). Users of TLS-based protocols (such as HTTPS) are supplied
with hard-coded public keys of the CAs when the client applications (such as Web browsers) are
shipped to them, and can verify signatures attached to the public keys of servers they visit. For
simplicity, the CA public keys are packaged as certificates as well. Since there’s no higher authority
to sign a CA’s public key, the CA’s own private key is used to build the certificate’s digital signature.
Hence, the CA’s certificates are referred to as self signed certificates.

3 Local Policy for Certificate-Based Server Authentication

Client applications usually ship with a built-in list of CA certificates chosen by the application’s au-
thor. Whenever the user connects to a server using TLS, the client automatically checks whether
any of its configured CAs vouches for the server’s certificate. If this check fails, a warning is dis-
played and the user is asked to decide whether to abort the transaction, or trust the server anyway
and continue. The issue is further complicated by the fact that CAs are usually commercial entities,
and obtaining a server certificate from one of them costs money. For this reason, many organiza-
tions decide to use their own self signed certificates, which will obviously not be verifiable through
an application’s list of built-in CA certificates.

3.1 The Problem: When Certificate Warnings Pop Up

The browser is unable to distinguish between public keys that can’t be verified because their cer-
tificates are self-issued by a server’s administrator, and those that have fake certificates built by
a MITM attack tool such as ettercap. The use of ettercap for MITM attacks against, among
other things, HTTPS transactions, is documented in [Norton04]. Assuming the victim’s IP address
is 192.168.1.234/24, an attacker could use the following command line to obtain cleartext of all
HTTPS traffic between the victim and its default gateway, 192.168.1.1:

$ ettercap -T -M arp:remote /192.168.1.1/ /192.168.1.234/

The victim would notice a warning from the browser, shown in Figure 2 (a), stating that the au-
thenticity of the server’s key could not be verified. If the user chooses to examine the certificate,
information will be displayed similar to what is shown in Figure 2 (b). It is not immediately apparent
what might be wrong with the certificate in question. Savvy users would immediately pick up on
the fact that something is fishy, at least because a real Verisign certificate would be verified auto-
matically, and wouldn’t generate any warnings to begin with. However, naive users, especially if

4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

a) b)

Figure 2: a) MITM attack against a user visiting paypal.com; b) Fake Verisign certificate generated
by Ettercap

de-sensitized to this type of warning due to extensive use of self-signed, locally generated server
certificates, would be very likely to just click OK on the first window and try to get on with their work.

The ideal solution would be an attempt to educate users, allowing them to distinguish between
several scenarios:

• Test server on the intranet: the admin probably generated a local self-signed certificate, and
it’s OK to go ahead, especially if we don’t intend to supply any sensitive information.

• Some mailing list archive on the Web: they chose to use HTTPS for reasons unknown, and we
aren’t expected to type in sensitive information (actually, we don’t expect to type in anything
at all); it’s OK to continue.

• We are trying to connect to a Web-mail interface, or to our banking site. We expect to type
in an account name/number, a password, and all sorts of other information that is sensitive
in nature. This is what HTTPS was invented for in the first place. If this type of server has a
certificate that can’t be verified, we need to abort the transaction right away, and start making
angry/worried phone calls to people in charge.

Realistically, however, a simpler approach is always preferable to complex rules with motivations
that seem incomprehensible to the user. For instance, an alternative to the above list would be:
“If a window pops up, warning you about certificates, it is no longer safe to enter any sensitive
information. Please notify your administrator immediately.”

3.2 Importing Certificates (The User Perspective)

What to do if a resource-strapped site still needs to use locally generated, self-signed certificates for
sensitive information? Also, many applications and appliances (e.g., Cisco 3000 VPN concentra-
tors) are shipped with self-signed SSL certificates for their HTTPS management interfaces. Many
universities require their users to download these certificates from the local intranet, and import
them into their browser profiles. The process is simple: certificates are ASCII-encoded (the format

5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

is known as PEM, for Privacy Enhanced Mail) and placed on an intranet Web server. Most modern
Web browsers will recognize the format, and when the link is clicked, open a window that guides
the user through the certificate import process, asking if the user trusts the authority issuing the
certificate for various purposes such as secure HTTP, secure mail, etc. The downside of this solu-
tion is twofold. First, it requires (potentially naive) users to make decisions for which they don’t have
enough information. Secondly, the process is itself vulnerable to MITM attacks.

3.3 Built-In Certificates (The Administrator Perspective)

In a centrally managed environment (such as a lab, or a company), certificate authorities could be
added to the built-in list that ships with the application. This has the advantage that users would
no longer be required to import certificates on their own. The downside of this solution is that it’s
restricted to centrally managed environments, and does not address the problem on user-managed
equipment, such as personally owned laptops or home PCs.

The rest of this paper shows the technical details required to add a built-in root CA certificate
to the Mozilla Web browser. We use ipsCA as an example, since they offer free certificates to
educational institutions, and are not already included in Mozilla’s list of built-in root CAs.

The problem of distributing such changes to user-owned equipment that is not centrally man-
aged can be worked around by building an easy-to-install package of the Mozilla browser that could
be written to a CD and passed around to users for easy installation. We show how to build a mod-
ified Mozilla package for RPM-based Linux distributions (such as Fedora Core 2), but the principle
should apply to any other operating system and/or package manager.

4 Adding a Built-in Root CA Certificate to Mozilla

Adding built-in root CA certificates to the Mozilla browser is not a difficult task, once the relevant
details and idiosyncrasies are known. This section offers detailed instructions on how to add an
extra built-in root certificate to the Mozilla executable.

4.1 Where Mozilla keeps its built-in certificates

After unpacking the mozilla-source-1.7.2.tar.bz2 tarball, and performing some exploratory
searches for files containing the string cert in their names, we find that Mozilla’s built-in root cer-
tificates are kept in the libnssckbi.so dynamic library, whose source code can be found under
mozilla/security/nss/lib/ckfw/builtins within the Mozilla source tree.

The README file inside that directory offers really helpful advice on how to add or remove root
certificates, but starts out by stating that, in order to do so, one must first build the addbuiltin tool,
which is “not built by default” as part of the Mozilla build process.

4.2 Building addbuiltin

As it turns out, trying to build the addbuiltin tool from within the Mozilla tree is no easy feat. After
attempting all sorts of Makefile hacks, and an extensive search on the Web, it became apparent
that addbuiltin is best built from the standalone NSS module, which is available at ftp://ftp.

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mozilla.org/pub/mozilla.org/security/nss/releases/NSS_3_9_2_RTM/src/nss-3.9.2.
tar.gz. First, we build the NSS main package by following the instructions available at http://
www.mozilla.org/projects/security/pki/nss/nss-3.7.1/nss-3.7.1-build.html; next,
we change into addbuiltin’s directory, and finish building the tool as shown below:

$ ls
nss-3.9.2.tar.gz
$ tar xfz nss-3.9.2.tar.gz
$ cd nss-3.9.2/mozilla/security/nss/
$ make nss build all
... <lots of output from make> ...
$ cd cmd/addbuiltin
$ make
... <some more output from make> ...
$ ls Linux*
addbuiltin addbuiltin.o

We now place the compiled addbuiltin binary into a directory that is part of the $PATH variable
(such as ˜/bin), in order to have it readily available for execution during the next step. For com-
pleteness, we attempted the same process from Mozilla’s full source tree, but the build failed with
make reporting errors during the make nss build all stage.

4.3 Patching the list of built-in root CA certificates

In our example, we use ipsCA as the certificate authority (CA), since they offer free certificates
to educational institutions such as ours, and are not by default included in Mozilla’s list of built-
in CAs. The same technique applies for any other root CA certificate (which can be generated
using the instructions provided in Apache’s SSL FAQ, at http://httpd.apache.org/docs-2.
0/ssl/ssl_faq.html#aboutcerts. The ipsCA root certificate files (IPSCACLASEA1.crt and
IPSServidores.crt) are available in x509 ASCII-encoded PEM format. We convert both cer-
tificates into the binary DER (Distinguished Encoding Rules) format, which is required by the
addbuiltin program:

$ ls
IPSCACLASEA1.crt IPSServidores.crt
$ openssl x509 -inform PEM -outform DER -in IPSServidores.crt
-out IPSServidores.der
$ openssl x509 -inform PEM -outform DER -in IPSCACLASEA1.crt
-out IPSCACLASEA1.der
$ ls
IPSCACLASEA1.crt IPSCACLASEA1.der IPSServidores.crt IPSServidores.der

Next, using the addbuiltin tool, we convert the DER-formatted certificates to the format expected
by Mozilla/NSS:

7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$ touch new certdata.txt
$ cat IPSServidores.der | addbuiltin -n "IPS SERVIDORES" -t
"C,C,C" >> new certdata.txt
$ cat IPSCACLASEA1.der | addbuiltin -n "ipsCA CLASEA1
Certification Authority" -t "C,C,C" >> new certdata.txt

The certificate name (i.e., the string used as an argument to the -n flag to addbuiltin can be
extracted using the following command line (look for the contents of the field named CN):

$ openssl x509 -inform PEM -text -in IPSCACLASEA1.crt | grep
Subject
Subject: C=ES, ST=Barcelona, L=Barcelona, O=IPS Certification
Authority s.l., O=general@ipsca.com C.I.F. B-B62210695, OU=ipsCA
CLASEA1 Certification Authority, CN=ipsCA CLASEA1 Certification
Authority/emailAddress=general@ipsca.com

We are now ready to patch Mozilla/NSS itself, using the new certdata.txt file obtained earlier:

$ cd mozilla/security/nss/lib/ckfw/builtins/
$ cat ˜/new certdata.txt >> certdata.txt
$ make generate
perl certdata.perl < certdata.txt
Name "main::a" used only once: possible typo at certdata.perl line 207.
$ find . -newer certdata.txt
.
./certdata.c

Running make generate does give a warning (at least in Mozilla version 1.7.2), but it seems to be
harmless. We notice from the output of find that, as a consequence of make generate, we have
also modified the certdata.c file. This latter file will cause our changes to be incorporated into
Mozilla’s libnssckbi.so dynamic library, thus making our changes available to all system users
by default. In order to facilitate re-applying our changes to a pristine source tree (mozilla), we use
diff to generate a patch that would make the necessary changes outlined above. The modified
source tree was renamed to mozilla-ips for this purpose.

$ diff -rU5 mozilla mozilla-ips > mozilla-ipsca.patch

5 Incorporating Changes Into an RPM Package

This section explains how to build an RPM package containing the modified Mozilla (with added
built-in root CA certificates), to facilitate easy distribution to a large install base.

In addition to being a package management system, which keeps track of the location and
version of the various files that belong to a set of software packages, RPM (http://www.rpm.
org/) is also a build system, in that it allows a binary package to be built from sources according
to a precise set of instructions. In essence, the traditional UNIX/Linux configure / make / make
install process is scripted precisely, and the correct parameters are supplied at each step, in
order for the resulting package to play well with the rest of the installed packages making up the
operating system or distribution.

8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.1 Quick overview of .spec files

The scripted instructions for building a package from source come in a specification file (a.k.a. the
.spec file). The complete set of sources and patches required to build a package, along with the
.spec file, are bundled together in a source RPM package (often referred to as a .src.rpm or
SRPM). A detailed description of the various sections of a .spec file is outside of the scope of this
paper, but excellent documentation is provided by [Barnes99].

A .spec file starts out with a header section listing the name of the package, version information,
all source files and patches, and dependency information such as prerequisites for building and
running the application. A source RPM package may generate several binary packages, one for
each independently installable component of the application. A one-paragraph description for
each of these sub-packages follows the header in the .spec file. The prep section is next, and
its job is to control the unpacking of source tarballs and application of all necessary patches to
the application’s source tree. Next, the build section controls how the application is compiled, by
issuing commands such as configure and make with the appropriate parameters. The install
section will install all application files into a mock-root directory (specified in the $RPM BUILD ROOT
variable). Various pre and post (un)install sections direct the binary RPM packages to run various
commands before or after being installed or removed from the system. Several files sections
specify which of the files installed under $RPM BUILD ROOT belong to which binary sub-package.
Finally, a changelog section keeps track of all modifications made to the .spec file throughout its
lifespan.

5.2 Modifying mozilla.spec

We start out by unpacking the original Mozilla source RPM package, using the rpm2cpio tool:

$ ls
mozilla-1.7.2-0.2.0.src.rpm
$ rpm2cpio mozilla-1.7.2-0.2.0.src.rpm | cpio -id

We now have access to the official Mozilla tarball (mozilla-source-1.7.2.tar.bz2), the various
other source files and patches specific to Fedora Core 2, and the mozilla.spec file.

First, we need to modify the release component of the version information from 0.2.0 to
0.2.0ipsCA. Next, we add the file new certdata.txt obtained in the previous section to the
list of sources for this package. In the prep section, we add instructions to append the content
of new certdata.txt to the file mozilla/security/nss/lib/ckfw/builtins/certdata.txt
and run make generate in the builtins directory (as shown in the previous section). We also
document the changes in the changelog section. The modified mozilla.spec file can be down-
loaded at http://www.cs.colostate.edu/˜somlo/rpms/mozilla.spec. The difference be-
tween the original and modified .spec file is shown in Figure 3. Finally, we build the new binary
RPM package to be distributed:

$ rpmbuild -bs mozilla.spec
Wrote: mozilla-1.7.2-0.2.0ipsCA.src.rpm
$ rpmbuild --rebuild mozilla-1.7.2-0.2.0ipsCA.src.rpm

9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$ diff -U2 mozilla.spec.orig mozilla.spec
--- mozilla.spec.orig 2004-08-10 11:25:14.295795130 -0600
+++ mozilla.spec 2004-08-10 09:16:08.000000000 -0600
@@ -9,5 +9,5 @@
Summary: Web browser and mail reader
Version: 1.7.2
-Release: 0.2.0
+Release: 0.2.0ipsCA
Epoch: 37
License: MPL/NPL/GPL/LGPL
@@ -27,4 +27,5 @@
Source18: mozilla-xpcom-exclude-list
Source19: mozilla-redhat-default-bookmarks.html
+Source20: new_certdata.txt
Patch0: mozilla-navigator-overlay-menu.patch
Patch1: mozilla-editor-overlay-menu.patch
@@ -208,4 +209,8 @@
/bin/cp %{SOURCE19} $RPM_BUILD_DIR/mozilla/profile/defaults/bookmarks.html

+# add ipsCA certificates
+/bin/cat %{SOURCE20} >> $RPM_BUILD_DIR/mozilla/security/nss/lib/ckfw/builtins/certdata.txt
+make -C $RPM_BUILD_DIR/mozilla/security/nss/lib/ckfw/builtins generate
+
%build
Rebuild configure to ensure that any patches to configure.in get applied
@@ -738,4 +743,7 @@

%changelog
+* Mon Aug 06 2004 Gabriel Somlo <somlo at acns dot colostate dot edu>
+- added ipsCA certificates to nss builtins
+
* Tue Jun 22 2004 Christopher Blizzard <blizzard@redhat.com>
- Fix include paths in mozilla-xpcom.pc so that all the paths are

Figure 3: Changes to the mozilla.spec file

6 Conclusion

We have pointed out a policy-related security problem with HTTPS server certificates, where users
tend to become de-sensitized to warning messages related to server key authentication failures as
a consequence of over-use of self-signed certificates. We provide a simple and robust solution,
by building the desired CA certificates directly into the binary browser code. We also provide an
example of how these changes could be distributed to users more easily, by providing a replacement
RPM package for the Fedora Core 2 GNU/Linux distribution.

References

[Barnes99] D. Barnes. RPM HowTo. http://www.rpm.org/RPM-HOWTO/, 1999.

[Dierks99] T. Dierks and C. Allen. The TLS Protocol. RFC 2246, 1999.

[Diffie76] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions in Information
Theory, 22(6):644–654, 1976.

[Fielding99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hyper-
text Transfer Protocol - HTTP/1.1. RFC 2616, 1999.

[Norton04] D. Norton. An Ettercap Primer. GIAC Security Essentials Certification Practical, http://www.
giac.org/practical/GSEC/Duane_Norton_GSEC.pdf, 2004.

[Rescorla00] E. Rescorla. HTTP over TLS. RFC 2818, 2000.

[Rivest78] R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

10

