
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Steganography
using the

Chess PGN Standard Format

GIAC Security Essentials Certification (GSEC)

Practical Assignment
Version 1.4b

Option 2 – Case Study in Information Security

Brian Lange, CISSP
SANS Rocky Mountain 2004
July 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents
Abstract...1
1.0 Before Snapshot ...1

1.1 Cover, concealment, and camouflage ...1
1.2 Using chess for steganography ...2
1.3 Risks of using Visual Basic macros...4

2.0 During Snapshot ...6
2.1 Encoding binary into chess moves ..6
2.2 Using vectors and passwords..8
2.3 Distribution of the vector key ...10
2.4 Using the chess board as a substitution box ...11
2.5 Encoding binary into the PGN header ...12
2.6 Encoding binary into chess comments ..15
2.7 Encoding binary into extra spaces...16
2.8 Encoding binary into font and paragraph formats......................................17

3.0 After snapshot...18
3.1 Installing the applications ..18
3.2 Encrypting data using Chess Steganography..18
3.3 Decrypting data using Chess Steganography ...22
3.4 Chess steganography conclusions..23

Appendix A: How much data can be hidden using correspondence chess?......25
Appendix B: Vector key layout for the chess algorithm27
Appendix C: Amount of data hidden in the chess game30
Appendix D: Types of steganography used ...32
References ...33

 i

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract
This paper provides a practical example of how to conceal information inside a
chess game using steganography techniques in three snapshots. The before
snapshot introduces the concepts of how to protect sensitive information,
discusses why the Chess PGN Standard was chosen, explains the security goals
for this project, and reveals the risks of using a macros program in a word
processing document. The during snapshot shows how a binary string is
converted into a chess game and what steps are taken to address the risks that
are discovered along the way to make the hidden information more secure. The
after snapshot demonstrates how to install and run the programs.
A single chess game is able to hold about 2 ½ pages of text information and still
look inconspicuous to the casual observer. The program provides for strong
authentication, good encryption, and several methods for hiding data. Running
the program can take some time for larger files and it is possible for the enemy to
potentially destroy the hidden data by removing text formatting or changing the
order of the chess games. There are many other ways to hide information, but
the principles that are discussed in this paper can be used for various
applications of steganography.

1.0 Before Snapshot

1.1 Cover, concealment, and camouflage
There are some situations where simply scrambling or encrypting your data is not
sufficient. A spy sending encrypted messages to a foreign country would arouse
suspicion within the host country. A businessman working overseas may be
susceptible to eavesdropping by other businesses and government agencies that
would focus in on encrypted transmissions to find sensitive information. A
hostage forced to read a ransom note would endanger their life if they sent
obviously cryptic messages. If you need to conceal the fact that you are
communicating any message at all, it is necessary to safeguard the information
using more than just cryptography.
Protecting data can be compared to protecting a soldier. In the military, there are
three methods used to protect soldiers from the enemy: cover, concealment and
camouflage.1 “Cover” gives protection from bullets, bombs and shrapnel. It can
take the form of bunkers, helmets, flak jackets, tanks, walls, or other solid
objects.2 The way “cover” protects a solider is similar to how cryptography
protects information: it changes data into random-looking characters so that the
information is not exposed to the enemy. Direct fire from the enemy is the
equivalent to brute-force guessing of the key needed to decrypt a message. The
better the cover, the less chance there is of getting hit; the better the algorithm or
the larger the keyspace, the less chance there is of the secret message being

1 United States. Department of the Army. US ARMY Field Manual 21-75. 1984, 1-1.
2 FM 21-75 1-2.

 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

discovered. Cryptography won’t camouflage data; it just scrambles it so no one
can guess what the original message is.
“Concealment” is anything which hides you from enemy observation, but doesn’t
necessarily protect you from enemy fire. This can take the form of foliage,
camouflage nets, or even shadows.3 Steganography is a method of hiding
information from enemy observation just like “concealment” can hide a soldier.
Using today’s technology, it is possible to hide data inside digital pictures, songs,
or even text files. Although steganography helps prevent the enemy from
detecting your message, if they find out what you are doing, there is nothing to
stop them from reading your communications.
“Camouflage” is anything you use to keep yourself or your equipment from
looking like what they are. This can involve painting your face or equipment a
different color to match your surroundings.4 Camouflage is related to
steganography because it deals with the context of the hidden message. Holding
a piece of paper in front of your face would provide concealment, but not
camouflage. Likewise, sending your boss a digital picture that contains
concealed information doesn’t provide any camouflage unless this is a regular
practice and wouldn’t arouse suspicion. Camouflage also will not provide any
protection of the actual data.
The best way to protect sensitive data is to use all three principles together.
Cryptography is used to prevent the data from being understood; steganography
is used to keep the data from being detected; and camouflage is used to make
the message blend into its environment.

Military
protection

Purpose Data
protection

Purpose

Cover Protects from enemy fire Cryptography Protects from brute
force attack

Concealment Hides from enemy
observation

Steganography Hides data in a
different form

Camouflage Disguises yourself or
equipment

Message’s
context

Hidden data blends
into environment

Figure 1: Comparison between military and data protection.

1.2 Using chess for steganography
Methods of hiding data using steganography are only limited by one’s creativity
and imagination. This paper describes the creation of a program to hide as much
data as possible inside a chess game. The Portable Game Notation (PGN)
standard is used because it is a universally accepted text-based format for
documenting chess games. It is easily read by both people and computers and

3 FM 21-75 1-3.
4 FM 21-75 1-3.

 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

is the de facto standard among users.5 Many chess databases are stored in this
format and provide a good camouflage for hiding information. A description of
the specifications for the PGN standard format can be found at
http://pgn.freeservers.com/Standard.txt.
During World War II, the United States banned various types of international mail
for fear that they may contain hidden information. This ban included crossword
puzzles, instructions for knitting, and correspondence chess games.6 There is no
evidence that hidden messages were ever sent using chess moves, but it was
still done as a precaution. There are even some state prisons that forbid
correspondence chess games for this reason.7 One drawback to hiding data
using a correspondence chess game is that there are only a few places available
on the postcard for hiding data (see Appendix A), so only very short messages
could be sent using this method. In order to hide large amounts of text data, it is
necessary to make use of the entire chess game, instead of just a couple of
chess moves on a postcard.
There are several goals for this project. One goal is to investigate how much
data can be hidden inside a chess game using the PGN standard format. Since
an entire chess game is being used, not only are chess moves used for hiding
information, but also:

• the number of chess moves for the game,
• who was the winner of the game,
• what type of chess opening was used for the game,
• and the values in the PGN header.

The PGN header contains several options that can be sent with a chess game8.
The following options are used for the PGN header:

• event where the game was played,
• city and country where the game was played,
• date of the chess game,
• white player’s name,
• black player’s name,
• tournament round the game was played in,
• result of the chess game,
• white player’s ranking,
• black player’s ranking,
• and the type of opening move that was used.

5 Weeks, Mark. “Portable Game Notation (PGN),” About Chess. 12 Oct. 2002. URL:

http://chess.about.com/library/weekly/aa101202a.htm (12 July 2004).
6 Kahn, David. The Codebreakers. 2nd ed. New York: Scribner, 1996, 515.
7 Campbell, J. Franklin. “USCF Abandons Prison Inmates,” The Campbell Report. 23 Dec. 2002.

URL: http://www.correspondencechess.com/campbell/articles/a021223.htm (12 July
2004).

8 Edwards, Steven J. “PGN Specification and Implementation Guide.” 8.1-9,1. 12 Mar. 1994. URL:
http://pgn.freeservers.com/Standard.txt (12 July 2004).

 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Each header is used to hide a certain amount of information along with the chess
game.
A second goal is to make use of cryptographic principles to improve the security
of the hidden information. There are two basic methods for encrypting a
message: confusion and diffusion. Confusion is accomplished by substituting
the original data with a chess move or a portion of the PGN header. This helps
hide the association between the original data and the encrypted chess game.
Diffusion is achieved by distributing the original data throughout the chess game
and the PGN header. This prevents a casual observer from noticing any obvious
patterns that may alert him to a hidden message.9 Other cryptographic principles
are discussed as they are used during the process of creating this algorithm.
A third goal is to make use of steganography to hide data inside the chess game
itself. This includes using additional white-spaces, font formats, and paragraph
formats. Since spaces are very narrow, it is difficult to determine whether or not
there are one or two spaces between words. This allows for the ability to hide
information. If there is only one space between two words, then a “0” bit is
encoded; if there are two spaces, then a “1” bit is encoded. Spaces are also
convenient for hiding information by changing the format of its font characteristics.
For example, if a space is “bold”, a “1” bit is encoded; if the space is not “bold”,
then a “0” bit is encoded. Since formatting of a white-space won’t appear on the
document, they will go unnoticed by a casual reader. Paragraph formats can
also be slightly altered to hide information. For example, if there are no
additional pixels between two lines, then a “0” is encoded; if there is one
additional row of pixels between two lines, then a “1” is encoded. Since the width
of a pixel is very small, any variances would not be easily noticed by someone
viewing the document.

1.3 Risks of using Visual Basic macros
For this project, Visual Basic Macros are utilized, which are available with
Microsoft Word 2003. There are several reasons for using these tools. First,
Microsoft Word is commonly used in the marketplace and is available to most
users. Second, Microsoft Word is a robust word processor that has many
formatting options that can be used for steganography. Third, Visual Basic is
tightly integrated with Microsoft Word. This allows for complex computing and
formatting changes to a document in order to hide information.
There are some risks associated with running macros. Macro viruses have been
created that can cause problems on your machine. To help limit this exposure,
untrusted documents should be scanned with an anti-virus software application
to ensure it is safe.

9 Schneier, Bruce. Applied Cryptography. 2nd ed. New York: John Wiley & Sons, Inc., 1996, 237.

 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Second, be sure to have the macros security setting configured to a safe level.
In Microsoft Word, go to the Tools menu, and pick “Macros” and then “Security”.
On the “Security Level” tab, you are given several options for how to treat macros.
You should select at a minimum the “Medium” level, which allows you to choose
whether or not you want to enable macros for this document.

Figure 2: Screen print of the Macros Security window, Security Level tab

Third, on the “Trusted Publishers” tab on the Macros Security window, clear the
“Trust all installed add-ins and templates” checkbox. This tells Word to apply
security warnings to all files, including add-ins and templates based on the
current security level. Further protection can be provided by digitally signing the
macros, keeping a list of trusted sources, and running the macros from a trusted
location.10

10 “General Office Security”. MSDN Library. URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sdsdk/html/sdconSecurityGeneralOfficeSecurity.asp (12 July 2004).

 5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 3: Screen print of the Macros Security window, Trusted Publishers tab.

2.0 During Snapshot

2.1 Encoding binary into chess moves
The first step in creating an encrypted chess game is to convert the plaintext into
binary. This is done by simply converting ASCII characters into their binary
values. For example, the letter “q” has an ASCII hex value of “71”, which has a
binary value of “1110001”. Notice that the ASCII value for capital letters has
different values than their lower-case counterparts. In this case, the letter “Q”
has an ASCII hex value of “51”, which has a binary value of “1010001”.
Each ASCII character is padded on the left with zeros so that it always has seven
binary numbers. This makes it easier to decrypt back into text because you
always know that each ASCII character is made from seven binary numbers.
The result of the conversion from the plaintext is a string of 1’s and 0’s. Only
seven out of the eight bits are used because the eighth bit (on the very left) is
always 0 for printable ASCII values. Using only the seven significant bits makes
the binary string 12.5% smaller. This reduces the amount of information that
needs to be hidden and lessens the cycle time for the algorithm. It also
increases security because someone trying to crack the binary values would
otherwise know that every eighth bit is a “0”.

 6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The next step is to determine what valid moves are available for the player to
make. For this example, let’s say there are only four valid chess moves for the
white player: a3, a4, b2 and b4. Based on these moves, one of four different
binary values can be encoded.

Chess move Binary value
a3 00
a4 01
b3 10
b4 11

If the first two bits of the binary string have the value “10”, then the next chess
move chosen would be “b3”. This move is written as part of the chess game and
two bits of information are encoded. Let’s say that on black’s turn, there are
eight possible moves that can be made: a6, a5, h6, h5, Nc6, Nf6, Bf5, and Qd7.
Based on these moves, one of eight different binary values can be encoded.

Chess move Binary value
a6 000
a5 001
h6 010
h5 011

Nc6 100
Nf6 101
Bf5 110
Qd7 111

In this case, it is possible to encode three bits of information because there are
more possible moves for the player. As the number of possible moves increases,
the number of bits that can be hidden also increases. If the next three bits of the
binary string have the value “101”, then the next chess move chosen would be
“Nf6”. This process would continue until the end of the binary string is reached.
The result is a string of chess moves that contain the hidden information.

1. e4 d5 2. exd5 Qxd5 3. Nc3 Qa5 4. d4 e5 5. dxe5 Bb4 6. Bd2 Nc6 7. Nf3 Bd6 8.
Bc1 Bxe5 9. Kd2 b6 10. a4 g6 11. Nxe5 Qd5+ 12. Nd3 Bf5 13. f3 h6 14. Rg1 Rd8
15. Ne2 Ra8 16. c4 Bc8 17. Ke1 f5 18. Rb1 Nd8 19. Bd2 Kf8 20. Bc3 Ba6 21. Ndf4
Qa5 22. h3 Qe5 23. Ba5 Rc8 24. Qd2 Qb5 25. Ne6+ Ke8 26. Nxc7+ Kf8 27. Qc3 bxa5
28. Na8 Nf6 29. Rd1 Qe8 30. Kf2 Qxe2+ 31. Kxe2 Rb8 32. Rd5 Rb3 33. Qe3 Rb7 34.
Qe7+ Rxe7+ 35. Kd1 g5 36. Bd3 Rb7 37. Ke2 Rb8 38. Bc2 Kf7 39. Bd3 Nc6 40. Rxf5
Ke7 41. Rd1 Kf8 42. Rf4 h5 43. g4 Ne7 44. Rb1 Kg8 45. Bf5 Nxf5 46. Nc7 Ne3 47.
Na8 h4 48. Kd3 Re8 49. b4 Bc8 50. Ke2 Nexg4+ 51. Kd2 Re4 52. Rf5 Nf2 53. Kc2
Be6 54. Rxf6 Re3 55. bxa5 Ra3 56. Re1 Rb3 57. Kd2 Rb2+ 58. Kc3 Rb7 59. Rf8+
Kxf8 60. Re2 Rb1 61. Kd2 1/2-1/2

Figure 4: Sample output of plaintext that has been hidden using a chess game.

 7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

One of the security benefits of this algorithm is that it encodes data in variable-
sized blocks. Depending on the current setup of the chess board, a move can
signify anything from an eight bit block to none at all. This makes steganalysis,
the science of discovering and uncovering a hidden message11, more difficult
because there isn’t a one-to-one correlation between the moves in the chess
game and the number of bits that are encoded.
One problem with the algorithm described so far is that it does not prevent
anyone from determining what the actual hidden information is because there is
no key needed. If you suspect there may be a chess game that is hiding
information, then all that is needed to do is run the game through the algorithm
and see what comes out. Additional steps are needed to provide “cover” for the
data.

2.2 Using vectors and passwords
If the procedure for creating the list of chess moves is static, then it would be
easy for someone to re-create the original message. You would simply
determine the list of valid moves, see which move is chosen on the chess game,
and find the binary value that the chess move corresponds to. If this process
were repeated for each move in the game, the entire message would be
discovered.
If the procedure for creating the list of chess moves is dynamic, then it would be
much more difficult for someone to determine the bits that are encoded for each
chess move. If the set of priorities for a certain game are to check the bishops
first, followed by the knights, pawns and the queen, then the list of eight valid
moves would look like this:

Chess move Binary value
Bf5 000
Nc6 001
Nf6 010
a6 011
a5 100
h6 101
h5 110

Qd7 111

If the wrong priorities for the chess pieces are used, then the binary values would
not match what is encoded:

11 Cole 188.

 8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chess move Correct binary

values
Wrong binary

values
a6 011 000
a5 100 001
h6 101 010
h5 110 011

Nc6 001 100
Nf6 010 101
Bf5 000 110
Qd7 111 111

If someone wanted to try and decode the message, they would need to have the
correct list of prioritized pieces to be successful.
Not only can the pieces be prioritized, but the way the individual pieces move can
be prioritized. For example, a King can move in eight different cardinal directions:
N, S, E, W, NE, NW, SE and SW. Each of these directions can be given a
different priority when checking for valid chess moves.
Based on the chess pieces and their moves, the total number of possible
priorities that can be created are:
(White pieces) * (Black pieces) * (Rooks) * (Knights) * (Bishops) * (Queens) * (Kings)
(16!) * (16!) * (4*4!) * (4*8!) * (4*4!) * (2*8!) * (2*8!)
(20922789888000) * (20922789888000) * (96) * (161280) * (96) * (80640) * (80640)
= 4.231 * 1045 , which is approximately 2151.
This is the equivalent of having a 151-bit key, which is very strong. If you were to
try and perform brute-force guessing to determine what the value of the key is
and were given one million guesses per second, it would take almost 7 sextillion
times the age of the universe to only get through 50% of the number of possible
values!
This list of pieces and move priorities serve as an initialization variable or an
initialization vector. A vector is something that helps make each encrypted
message unique, even if the same text is being encoded. In most cases, the
vector is a small random value and discarded once used.12 In this case, the
vector is a large and deliberate value (See Appendix B) and is referred to during
the execution of the algorithm when determining valid chess moves.
The way the algorithm uses the vector is similar to how a cryptographic algorithm
uses what is called a “secret key”. A secret key is a value which is used for both
encoding and decoding the data.13 If the key value is not known, then decryption
is impossible. A strong key has a large number of bits and a large keyspace.
The keyspace is the number possible values that can be used for encrypting and

12 Schneier 194.
13 Cole, Fossen, et al. Track 1.4 - Secure Communications. Vers. 2.2. Track 1 – SANS Security

Essentials and the CISSP 10 Domains. 2004, 50.

 9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

decrypting data.14 For this algorithm, the key length is 336 bits, but the keyspace
is only 151 bits. Since the vector also functions as a secret key, it is referred to
in the algorithm as a vector key.
One risk with using keys or vectors is if someone is able to acquire them, then
the secret message is in jeopardy. To help with this, a password that is
converted (or hashed) into a binary string is combined with the vector key using
the binary exclusive-or (XOR) function. An XOR function takes two binary strings
that are laid side-by-side with each other and the bit from one string is compared
with the corresponding bit from the other string. If the bits match, then the value
is false or “0”; if the bits don’t match, then the value is true or “1”. For example, if
the binary strings 1100 and 1010 are put through an XOR function the result is:
1100 (value 1)
1010 (value 2)
0110 (result)
What is useful about the XOR function is that if the function is performed again
with the result and one of the previous values, you retrieve the other original
binary string.15 For example:
0110 (result)
1010 (value2)
1100 (value1)
After the algorithm combines the password hash and the vector key, the result is
passed through another XOR function with the plaintext binary string. This helps
to provide more “cover” for the sensitive information. Now when the string is
converted into a chess game, only encrypted information is found instead of the
plaintext data.
Using a vector key and a password helps to provide strong authentication. There
are several ways to authenticate someone, which is simply proving your identity:
by something you have, something you know, and something you are. Strong
authentication should provide at least two out of three of these methods.16 The
combination of the vector key (something you have) and the password
(something you know) meet these criteria.

2.3 Distribution of the vector key
One issue that inevitably comes up when dealing with encryption is how to
distribute the keys to the party you’re communicating with. If you go through the
trouble of trying to hide a covert message, you don’t want to blow it by sending in
your message, “By the way, attached is the key…” Sending the password may
not be too hard because it is usually fairly short, but sending the vector key would
look very conspicuous.

14 Schneier 3.
15 Cole et al. 36.
16 Harris, Shon. CISSP Certification All In One Exam Guide. New York: McGraw-Hill/Osbourne,

2002, 132.

 10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

To work around this issue, an investigation was performed to see if there was a
way to send the vector key covertly with the encrypted chess game. It’s a little
like leaving your keys in the ignition of your car, but since you also need the
password, it’s more like leaving the key in your car with the door locked.
One thing that was noticed about the size of the vector key is that it is 336 bits
long, which is the product of 12 * 28. Why is this significant? Well, there are
twelve months in the year, and there are at least 28 days in each month. Since
one of the headers on the PGN format is the Date field, it is possible to send the
vector key using this field, one bit at a time. Each bit in the vector key
corresponds to one day on the calendar, minus the 29th, 30th and 31st dates of
the month. If the bit in the vector key is equal to “1”, then the Date of the chess
header would equal to the corresponding calendar date of the vector key.
For example, if the first five bits of the vector key are 10011, then for the first
chess game, the Date field would equal January 1st because the first bit is on.
On the second chess game, the Date field would equal January 4th. This is
because the second and third bits are “0”, so by setting the date to January 4th,
the program can imply that the corresponding bits for January 2nd and January
3rd are “0”. The third chess game would have a Date field of January 5th
because the fifth bit is on. This process would continue until all the bits of the
vector key are encoded in the Date fields. The program can then scan through
the chess games provided, extract the vector key value, and decrypt the chess
games using the extracted vector key. Since the vector key is combined with the
password, it is still protected as long as the password can be sent discretely.
Once the vector key is sent, it can be reused so that only the encrypted message
is sent in the future. Otherwise, you would have to send over 100 games for
each message, which is inefficient if your messages aren’t very long.

2.4 Using the chess board as a substitution box
The vector key that is used to determine the list of valid chess moves to this point
is static throughout the algorithm. Since the vector key is a critical part of the
security of the algorithm, it is important to make it as difficult as possible for
someone to try and find a pattern and discover its value. To do this, the priorities
should be shifted a random amount after each move. That way, patterns that
may develop over a chess game will only be limited to a single move instead of
the entire game.
The shifting can’t be random, though, because otherwise there would be no way
to decrypt the data. There must be a method to shift the priorities by various
amounts in a non-consistent manner, but predictable so that the process can be
duplicated on the decryption side. A good way to accomplish this is by using a
substitution box.

 11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A substitution box is used in the popular Data Encryption Standard (DES)
algorithm, and is one of the most important steps in the process because it gives
the encryption a more non-linear appearance and adds to its security.17 The
substitution box is a table of constants that are periodically added to the data to
further confuse and randomize the encrypted data. The substitution box that can
be used for the chess steganography algorithm is the chess board itself. The
pieces on the chess board are constantly shifting and changing as the game
progresses. By assigning numbers to each of the 64 squares, and summing the
values of the squares that have pieces on them, this value can be used to shift
the priorities of the pieces.
For example, if the lower-left-hand square has a value of 1, and there is a chess
piece on this square, then the priorities for the pieces are shifted by one to the
right, and the piece with the lowest priority leapfrogs to the front to become the
piece with the highest priority.

Pawn Bishop Knight King Queen Rook Pawn
Figure 5: After the list of priorities is shifted to the right one space, the pawn priority would be
moved to the beginning of the list.

If there is a piece on the 2nd square and the 44th square, then the values for these
squares are summed together and the priority list is shifted to the right that many
times. To make the process more randomized, a loop is first performed to check
the squares to see if a piece is on them. The sum is added to a seed value
which varies depending on the type of piece it is, and then summed with the
previous total. For example, if there are pieces on the 1st, 2nd and 3rd square and
the seed value is 2, then the shift value for the first round is 1 (square’s value) +
2 (seed’s value) = 3. The shift value for the second round is 3 (previous total) +
(2+2) = 7. The shift value for the third round is 7 + (3+2) = 12. This process
continues until all the pieces are summed together to create the final shift value.
This helps add to the complexity of the algorithm and makes it more difficult to try
and crack the secret information.

2.5 Encoding binary into the PGN header
To complete the algorithm, the binary data must also be encoded in the PGN
header. The header contains several options for hiding information, but they are
encoded using various steganography methods.

17 Schneier 274-275.

 12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[Event "31st Masters"]
[Site "Bergen NOR"]
[Date "2001.11.05"]
[White "Bulmuteng, F."]
[Black "Esyrro, I."]
[Round "7"]
[Result "0-1"]
[WhiteElo "1262"]
[BlackElo "1363"]
[ECO "E16"]

1. d4 Nf6 2. c4 e6 3. Nf3 b6 4. g3 Bb7 5. Bg2 Bb4+ 6. Bd2 Be7 7. Bh3 Ng8 8. b3
Kf8 9. Rf1 d6 10. Ne5 Bg5 11. Bxg5 h6 12. Bc1 Bh1 13. Ng6+ Ke8 14. Bf4 e5 15.
Bg2 exd4 16. Kd2 Qd7 17. Nf8 Na6 18. f3 Nf6 19. Kc1 Ne4 20. Bxh1 Rh7 21. Qd3
Qc6 22. Qc3 Ng5 23. Qd3 g6 24. Ne6 Qd7 25. Qc2 Rb8 26. h4 Qa4 27. Nf8 Rg7 28.
Qf5 Qa3+ 29. Kc2 Ra8 30. Rd1 Nh7 31. Bg5 Nxf8 32. Qd7+ Nxd7 33. e3 Ndb8 34. c5
Rh7 35. Rd3 Kd7 36. b4 Qa5 37. b5 Qd2+ 38. Kxd2 dxc5 39. Ke1 c4 40. Ra3 hxg5
41. exd4 Nb4 42. 0-1

Figure 6: Sample output of a chess game with the PGN header.

Substitution-based steganography is a method of hiding information by
overwriting data that is already on the file.18 This method is used to hide binary
information in the Site section of the PGN header. A series of 256 different cities
are listed as possible locations of the encoded chess game, which is able to hide
eight bits of information. For example, if the next eight bits of the binary string to
be encoded are 11001001, which equals 201 in decimal, then the program would
pick the 201st city for the Site from the list of possible cities. The other PGN
header that is encoded using substitution is the Round the game was played in
during the fictional tournament.
Generation-based steganography uses the plaintext binary string to generate the
hidden information.19 This is different from the previous method, which is
basically a one-for-one substitution of the binary data for the displayed data.
This method may take several iterations before the data is completely encoded.
For example, the player’s ratings (WhiteElo and BlackElo) are created using this
method. The first number is always one because some of the games would look
suspicious if they claimed to be played by a “master” level player, which have
ratings above 2000 points. The next three digits can be any number between 0
and 9. If the next bits to be encoded are 011, which is 3 in decimal, then the
program would place the number “3” in the next slot of the player’s rating. This
process would continue until all four slots are filled in. The generation-based
method is used to create the values of the PGN header on the Event, Date, and
the players’ names and ratings.

18 Cole, Eric. Hiding in Plain Sight: Steganography and the Art of Covert Communication.

Indianapolis, Indiana: Wiley Publishing, Inc., 2003, 112.
19 Cole 112-113.

 13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Algorithmic-based steganography uses some sort of algorithm to determine
where in a file the data is hidden.20 The Encyclopedia Chess Opening (ECO)
code in the header makes use of this method. The ECO value is a code which
describes what kind of chess opening is being used. Using standard openings
for encoding information helps set the game off to a more normal-looking start,
instead of having openings that look random and very unorthodox, which might
arouse suspicion. No information is encoded while the opening from the ECO is
being created, so you must know the chess opening that the ECO code refers to
in order to know where to begin checking for the encoded chess moves. For
example, if the ECO code “E76” is being used, then the first seven moves in the
chess game refer to the chess opening and do not hold any encoded values.
The program must read through to the eighth move before looking for hidden
data in the chess game.
To help promote the diffusion of the data across the entire chess game, the
process for encoding the chess game and the PGN header flip flop. Binary
values are determined and encoded in a chess move, and then binary values are
determined and encoded in part of the PGN header. The process then repeats
until all the binary values have been encoded.
The PGN header that is being encoded is also not performed in a linear fashion.
It is determined by a complex summation of the piece locations, priorities, and
which move was last chosen. This way the hidden data is not laid out in a top-to-
bottom fashion, but jumps around and is spread out across the entire header.
This adds to the complexity and diffusion of the data and in turn adds to the
security of the algorithm.
The PGN values also have a seed value added to them, based on the current
priorities of the various pieces for both sides. For example, if the Round is being
determined, and the next three bits to be encoded are 101, then the value for the
Round header is 5. To make cryptanalysis, the act of finding ways to break an
encoded message21, and steganalysis more difficult, the current priorities of
certain chess pieces are summed together and added to this value. If the sum of
the priorities is 4, then the value for the Round header is now 9. If the summed
value is greater than 9, then the value is divided by 10 and the remainder is used
as the value for the Round header. Obtaining the remainder after dividing two
numbers is commonly known as the modular function. For example, if the sum of
the priorities is 6, then the new value for the Round header is now 11. Since this
is greater than 9, the value 11 is divided by 10, leaving a remainder of 1 and this
value is used for the Round header. This process helps further confuse the data
so it can’t be easily extracted from the encrypted text from someone trying to
deduce what the message is.

20 Cole 109-110.
21 Cole 187.

 14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.6 Encoding binary into chess comments
The PGN standard allows for more than just a documentation of a game, but also
an analysis of the game. For some games, a player may go back and review the
game for great insights, blunders, and how the game compares with others that
have been played. These comments can be written into the chess game and
give additional opportunities for hiding information.
There are three ways in the PGN standard to encode comments for a chess
game. The first way is using a method called the Numeric Annotation Glyph
(NAG)22. There are 128 commonly used comments in chess that are assigned
integer values from 1 to 128. These codes are then displayed in the chess game
as the integer value beginning with a dollar sign (e.g. 12. Nxe5 $14). These
values can be randomly inserted into the text using insertion-based
steganography. This method inserts additional information into a file, but it
doesn’t effect the actual representation of the data.23 In this case, if an NAG is
added to a chess game, it does not change the way the game was played. For
this algorithm, there is a four percent chance after each move that an NAG value
is added.
The second method for adding a comment to a chess game is by using the
Recursive Annotation Variation (RAV)24. If a series of alternate chess moves are
discovered during analysis that a player finds interesting, he can document these
moves and enclose them in parenthesis. For example, the following subset of
chess moves:
12. Nxe5 Bxe5 …
may have an RAV added to it:
12. Nxe5 (12. dxe5 fxe5 13. Rc1) Bxe5 …
Creating RAV chess moves to encode hidden information makes use of
generation-based steganography. In this case, the covert information is the
binary string and the overt information is the chess moves. For this algorithm,
there is a two percent chance after each move that an RAV is inserted into the
chess game.
The third method for adding comments to a game is by simply adding a text
comment surrounded by braces (e.g. 12. Nxe5 {This was a good move})25. In
order to encode hidden information in a chess comment, you have to make use
of what is known as grammar-based steganography. This method uses the
hidden data to create an output file based on a predefined grammar.26 By taking
a large sample of chess comments that have been used with other games, a
comment that encodes a certain number of bits can be created. For example,
four comments can be predefined with the following bits:

22 Edwards 8.2.4.
23 Cole 111.
24 Edwards 8.2.5.
25 Edwards 5.
26 Cole 110.

 15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“This was a good move” = “00”
“This requires further analysis” = “01”
“Questionable, yet effective” = “10”
“Leads to good opening for white” = “11”
To encode “00” in a chess game, the comment, “{This was a good move}” is
added. A comment can be further broken down to include synonyms, which also
have bit values. For example, synonyms for the first comment can be assigned
as the following:
“This was a great move” = “0000”
“This was a questionable move” = “0001”
“This was a good move” = “0010”
“This was a bold move” = “0011”
This helps mix the comments around so they don’t seem so canned, and also
helps hide additional data. For this algorithm, there is a four percent chance after
every move that a chess comment is added to the chess game.
By using the methods described so far, it is possible to hide on average almost
650 bits of information per chess game. By making use of the white space in the
text to hide additional information, it is possible to encode over 90 times more
data into each chess game.

2.7 Encoding binary into extra spaces
Spaces that are used between words are only a few pixels wide. Adding an
additional space between words may go unnoticed if not closely analyzed. This
additional space can be used to encode additional bits of information.27 If there
is only one space, then a “0” is encoded; if there are two spaces, then a “1” is
encoded.

1. e4 e6 2. d4 d5 3. exd5 exd5 4. Nc3 Nf6 5. Bg5 Nc6 6. Bh4 Rb8 7.
Qe2+ Kd7 8. Nf3 Rg8 9. Qb5 g5 10. Qc4 Bb4 11. Be2 Bxc3+ 12. Nd2 g4
13. b4 Rg7 14. Qb5 Qg8 15. 0-0-0 Bxd4 16. Ne4 Qd8 17. Kb1 g3 18. Rdf1
b6 19. f4 dxe4 20. Rfg1 Ra8 21. Kc1 Nd5 22. Bh5 Ke8 23. Bg4 h6 24.
Kd1 Be3 25. f5 Kd7 26. h3 Bc1 27. Qa5 Qg5 28. Qb5 Qxh4 29. Bh5 Qf6
30. 0-1

Figure 7: Sample output of a chess game, with additional spaces between the words being used
to hide information.

In addition to the spaces between the words, there are also spaces that can be
added before the chess game and after the chess game. In the PGN Standard,
a line is added to separate the header from the chess game and another line is
added to separate the chess game from the next header. Any extra spaces that
are used in these two lines are ignored by the PGN standard28. For each line, six

27 Wayner, Peter. Disappearing Cryptography. Information Hiding: Steganography &

Watermarking. 2nd ed. San Francisco, California: Morgan Kauffman Publishers, 2002,
285.

28 Edwards 8.1.

 16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

bits of information can be hidden safely on one line. As a maximum, if all six bits
that needed to be hidden were ones (i.e. “111111”), then this value would
translate into 63 in decimal. Therefore, to hide these six bits, 63 spaces would
be encoded on one line. If any more bits were to be hidden, it would possibly
cause two lines to be seen instead of just one, which would arouse suspicion.
Finally, there is plenty of room to add additional spaces after the PGN header to
hide information. Only five bits of information can be hidden per line, since there
is already some printed text and according to the PGN standard, each line should
not be longer than 80 characters29. This would result in a maximum of 31 extra
spaces after each line in the PGN header.
Using the spaces within a chess game, an average of over 255 bits of additional
information can be hidden per game. Because spaces are not visible on the
screen or a printed page, they can be used to store more hidden information by
using the formatting options available with the word processor.

2.8 Encoding binary into font and paragraph formats
The Microsoft Word application has many formatting options available for the
user to modify the way their document looks. These formats apply to individual
characters (font formats) or to the paragraphs (paragraph formats).
The font format options can be found by going to the Format menu in Word and
selecting Font. On this window, there are many options on how to format the text
in your document. If you modify only the white spaces of a document, none of
those formats are visible on the screen or on printed paper. This gives an
opportunity to hide information in places that are not visible to the user.30 For
example, if a certain space has a "bold" format, then a “1” is encoded; if a certain
space does not have a "bold" format, then a “0” is encoded. Since a bolded
space looks the same as a regular space, the change can be inserted into the
text without changing the appearance of the document.
Another example is by changing the color of the white space. Since there is no
text on the white space, there is no visible color on the screen. There are 224
different colors that can be chosen from, which can hide 24 bits of information for
each white space in a document. You can also slightly change the actual color of
the text to be not quite solid black, but still have the appearance of black on the
screen. There are about 218 different color values that look very close to black,
but not enough to make a noticeable difference. This allows 18 more bits of
information to be hidden for every non-white space character in a document.
The paragraph format options can be found by going to the Format menu in
Word and selecting Paragraph. By slightly altering the paragraph formats so that
they aren’t visible to the user, you can hide some data depending on what format
is chosen.31 For example, if the amount of space before a paragraph is “1 pt”,
then a value of “1” is encoded; if the space is “0 pt” between paragraphs, then a

29 Edwards 8.2.1.
30 Wayner 284-285.
31 Wayner 285.

 17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“0” is encoded. These values are so small, that no one would be able to notice
the spaces between the lines are different.
To see how much information can be encoded on average in a chess game,
please refer to Appendix C. To review the steganography methods that were
used to encode information, refer to Appendix D.

3.0 After snapshot

3.1 Installing the applications
To make the applications functional, create a directory for the programs to reside
and copy the zipped files below to this directory.

StegoChess.zip

There are three files that have been zipped. The first one is a Word document
which encodes a text file into a chess program and is called, “Chess
Steganography Encrypting Program.doc”. The second one is a Word document
which decrypts an encoded chess program back into text and is called, “Chess
Steganography Decrypting Program.doc”. The third file is used to hold all the
constant values for the two programs and is called, “chess_steganography.ini”.
As long as these three programs are in the same directory, they should work fine.
Since the programs are using macros, they must be enabled in order to work
correctly. To do this from Microsoft Word, go to the Tools menu and select
Macros and then Security. Change the security setting to medium. This way,
whenever you open a document in Word that has macros, you will be prompted if
you want them enabled. When you open the Word documents, be sure to select
“Enable Macros” when prompted.

3.2 Encrypting data using Chess Steganography
First, you want to open the “Chess Steganography Encrypting Program.doc”
document. When prompted, you should select “Enable Macros” so that you can
run the program inside this document.
Once open, you can begin typing in a sample message that you want to encrypt.

 18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 8: Screen print of the Chess Steganography Encrypting document.

When you are ready to encrypt your text message, you can do one of two things.
You can either click the “Project_Module1.Run_Chess_Encrypt” button on the
toolbar; or you can go the Tools menu, select Macro, select Macros, scroll down
the list macros until you find the Run_Chess_Encrypt macro and click the Run
button. Either method will open up the “Chess Steganography Encrypting
Program” window.

 19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 9: Screen print of the Chess Steganography Encrypting Program window.

On the Selections tab, there are four main sections. The first section is the
“Document and key info” section. There are four checkboxes that are available
here. The first one is the “Create new secret key?” checkbox. If selected, then a
new vector key is created for this process; if it is not selected, then the vector key
is read from the location specified in the “Location of secret key” field down below.
The second field is the “Send secret key in the encrypted text?” checkbox. If it is
selected, then the vector key is sent inside the Dates of all the chess games.
The other two fields, “Read from current document” and “Write to current
document”, determine where the data is written to or from. If selected, the data is
written to/read from the current Word document; otherwise, it is written to/read
from the files listed below.
The second section is the “Password info” section. This is where you will input a
password for the vector key. To ensure it is typed in correctly, there is a second
field called the “Re-type password” field where you re-type the password.
The third section is the “Steganography selections” section. This section
determines what types of word processing formats you want to include with your
chess games. If “None” is selected, then only the chess game and the PGN
header are used to encode information. If “Stealth” is selected, then only the
formatting options that are not easily visible to the casual observer are used.
The “Random” radio button picks random formatting options to encode the data.
The “All” radio button makes use of all the available formatting options to encode

 20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the data. To see the detailed selections of what formatting options are used,
select the “Advanced” tab.

Figure 10: Screen print of the Advanced tab with the Stealth options selected.

The fourth section is the “File locations” section. This determines what directory
and file names are being used for the secret key, input file (if being used) and the
output file (if being used).
Once you have the desired settings selected, click the “OK” button and the
program begins. The result is a chess game document in the PGN standard
format.

 21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 11: Screen print of the results after running the chess steganography program.

3.3 Decrypting data using Chess Steganography
Now that you have an encrypted chess game, the next step is to decrypt it. In
order to do this, you must open the document that contains the decrypting
program. This program is found in the “Chess Steganography Decrypting
Program.doc” document. When prompted about the macros found in the
document, select the “Enable Macros” option so that you can run the program.
The encrypted data may have many formatting options that would be lost if
everything is not copied correctly to the decrypting document. To ensure this
doesn’t occur, go to the encrypting document and select Edit from the tools menu
and select the “Select All” option. This option ensures all margin, paragraph, and
font options are selected to be copied. Now select the “Copy” option from the
Edit menu and go to the decrypting document. To ensure there are no left over
formats or text in the document, use the “Select All” option and hit the Delete
button. Now select the “Paste” option from the Edit menu. You are now ready to
run the decrypting program.
This can be done in one of two ways. You can either click the
“Project.Module1.Run_Chess_Decrypt” button on the toolbar; or click on the
Tools menu, select Macro, select Macros, navigate down the list of macros and

 22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

select “Run_Chess_Decrypt” and click the Run button. Either method will open
the “Chess Steganography Decrypting Program” window.

Figure 12: Screen print of the Chess Steganography Decrypting Program window.

There are several options to choose from when running the decrypting program.
First, you must let the program know if you will be decrypting the current Word
document, or if you will be reading from an input file. If the current Word
document will be decrypted, then check the “Read from current document”
checkbox. Otherwise, deselect it and make sure the Input file field is filled in
correctly.
Second, you must let the program know if you will be writing the results to the
current document or sending it to an output file. If the results will be written to the
Word document, then check the “Write to current document” checkbox.
Otherwise, deselect it and ensure the Output file field has the correct directory
and file name where the results will go to.
Third, you must enter the password for the vector key file. It should be the same
value that was used to encrypt the data.
Finally, you must enter the location of the secret vector key. This is used to
determine what the priorities are for the chess pieces and their moves.
When ready, click the “OK” button and the program begins. It starts with
scanning the document for any formatting to see if there is any hidden
information in them. Depending on the length of the document, this may take a
few moments. Once completed, the original text is displayed, or is placed in the
output file if that is what was selected.

3.4 Chess steganography conclusions
After creating a steganography algorithm using a chess game to hide the
information, several conclusions can be found. First, it is possible to use several
different steganography methods inside one algorithm. This helps create a more
robust solution than other algorithms that are more one-dimensional when trying
to hide information.

 23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Second, using word processing formats is a very effective way to hide
information. For this algorithm, over 90% of the bits that are hidden were
accomplished by using this technique. This same technique can be used not just
with chess games, but with any text document.
Third, this algorithm still needs outside intervention when sharing the password.
This process can be tricky, since it can lead to a suspicion of sending secret
information, which can defeat the whole purpose of using steganography in the
first place.
Fourth, the algorithm is rather slow. Because of the intensive process of
determining chess moves and reading in the formatting information, it causes the
program to run slowly, especially if the input is large. To help compensate for
this, smaller documents and text files should be used.
Fifth, in order to make sending encoded chess games believable, a context must
be developed. This can be done by having people who regularly talk about
chess topics send the secret information, or establishing a context by regularly
sending chess games through e-mails.
Sixth, there are several ways to counteract the hiding of data using this algorithm.
You can change the order of the games, remove formatting of characters and
paragraphs, or remove certain headers from the games. Slightly altering a file
that is potentially hiding information can essentially destroy the information, no
matter what method of steganography is used.
Lastly, close observation of the chess game may cause suspicion that it is not
authentic. Since the moves are not based on strategy or tactics, a person
familiar with the game may question certain moves that make no common sense.
Using standard openings helps reduce this risk, but the rest of the game will still
have this issue.
Using this method of steganography has some benefits and some drawbacks.
Depending on the need of the individual and the context of the situation, it can
provide an effective method for transmitting sensitive information.

 24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A: How much data can be hidden using
correspondence chess?

Correspondence chess is a version of chess where two people make each move
by sending a postcard to their opponent. The postcard usually contains the
following information which are options for hiding information:

• Opponent’s last move number. You can probably have a chess game with
as many as 60+ moves without looking suspicious. This would translate to
about 26 = 64 bits that can be hidden here.

• Opponent’s last move. To ensure you recorded your opponent’s move
correctly, you typically echo their last move. There are 1,560 possible
moves that can hold 210 bits of information. (See below)

• Player’s last move number. Since the next move must be sequential,
there can be no additional information hidden here.

• Player’s last move. To ensure your opponent recorded the last move
correctly, you typically echo your last move. There are 1,560 possible
moves that can hold 210 bits of information. (See below)

• Player’s move. This tells your opponent what your current move is for this
game. You can hold 210 bits of information as show above.

• Conditional move (optional). In correspondence chess, if you expect your
opponent to make a certain move, you can send a conditional move. A
sample one would look like: If Kg3, Then Qf1. Since you are hiding two
possible chess moves, there are 210 * 2 moves = 220 bits of information
that can be hidden.

• Comments. Depending on how creative you want to be, a comment can
stand for a single bit of information. For argument’s sake, about 64 = 26
different comments can be realistically encoded.

• Opponent/Player salutation. You can either put “Mr.” or “Ms.” (whichever
is appropriate) or leave this blank. This can encode only one bit each.

• Opponent/Player first name. You can either put your entire first name or
just your first initial. This can encode only one bit each.

• Opponent/Player last name. You probably can’t modify this, or your
opponent wouldn’t receive your postcard.

• Opponent/Player address. You probably can’t modify this, or your
opponent wouldn’t receive your postcard.

• Stamp orientation. You can place the stamp in various positions to hide
additional bits (upside down, sideways, and diagonally). This can encode
8 bits = 23 of information.

• Upper/lower case. You can hide an additional bit of information
depending on whether you write the postcard in upper or lower case.

To see how many possible bits can be hidden in a single chess move, you need
to first determine how many possible chess moves there are.

 25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. Pawns. Move forward (8 pieces x 7 moves) + Capture left (7
pieces x 6 squares) + Capture right (7 pieces x 6 squares) = 140
possible moves.

2. Rooks, Knights, Bishops, Queen, King. Can move to all squares (5
pieces x 64 possible squares) and capture to all squares (5 pieces
x 64 possible squares) = 640 possible moves.

3. Moves that cause the king to be in check. Technically, any move
can cause the king to be in check, which is identified by a ‘+’ after
your move (e.g. Qc4+). 640 + 140 = 780 possible moves.

So the total number of possible chess moves available is 780 + 640 + 140 =
1560, which is about 210.
When playing correspondence chess, you play two games with your opponent:
one where you are the “white” color and one where you are the “black” color.
The total number of bits of information that can be hidden are:
(Game 1) * (Game 2) * (Comments) * (Player’s info) * (Opponent’s info) * (Stamp
orientation) * (Upper/lower case) =
(Last move number * Opponent’s last move * Player’s last move * Player’s move
* Conditional move) * (Game 2) * (Comments) * (Player’s salutation * Player’s
first name) * (Opponent’s salutation * Opponent’s first name) * (Stamp orientation)
* (Upper/lower case) =
(26 * 210 * 210 * 210 * 220) * (26 * 210 * 210 * 210 * 220) * (26) * (21 * 21) * (21 * 21) * (23) * (21) =
(256) * (256) * (26) * (22) x (22) * (23) * (21) =
2126

This means that one correspondence chess postcard can hold up to 126 bits of
information. If an ASCII character is converted into seven bits, then you can only
hide about 18 characters of information, which isn’t very much. To make this
effective, you need to create a substitution chart for each item on the postcard
you want to hide data on. For example, “axb5” would be “blue”, or “Nc7+” would
be “night”. This way, you are able to hide much more information, but it is difficult
to translate and the substitution table would be very large.

 26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B: Vector key layout for the chess algorithm

This is the file layout for the vector key, which determines what priorities the
pieces will be checked for valid moves.

Chess piece

Length

Start
Position

End
Position

White Queen’s Rook 4 1 4
White Queen’s Rook move North 2 5 6
White Queen’s Rook move East 2 7 8
White Queen’s Rook move South 2 9 10
White Queen’s Knight 4 11 14
White Queen’s Knight move North and West 3 15 17
White Queen’s Knight move North and East 3 18 20
White Queen’s Knight move East and North 3 21 23
White Queen’s Knight move East and South 3 24 26
White Queen’s Knight move South and East 3 27 29
White Queen’s Knight move South and West 3 30 32
White Queen’s Knight move West and South 3 33 35
White Queen’s Bishop 4 36 39
White Queen’s Bishop move North East 2 40 41
White Queen’s Bishop move South East 2 42 43
White Queen’s Bishop move South West 2 44 45
White Queen’s 4 46 49
White Queen’s move North 3 50 52
White Queen’s move North East 3 53 55
White Queen’s move East 3 56 58
White Queen’s move South East 3 59 61
White Queen’s move South 3 62 64
White Queen’s move South West 3 65 67
White Queen’s move West 3 68 70
White King’s move North 3 71 73
White King’s move North East 3 74 76
White King’s move East 3 77 79
White King’s move South East 3 80 82
White King’s move South 3 83 85
White King’s move South West 3 86 88
White King’s move West 3 89 91
White King’s Bishop 4 92 95
White King’s Bishop move North East 2 96 97
White King’s Bishop move South East 2 98 99
White King’s Bishop move South West 2 100 101
White King’s Knight 4 102 105

 27

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

White King’s Knight move North and West 3 106 108
White King’s Knight move North and East 3 109 111
White King’s Knight move East and North 3 112 114
White King’s Knight move East and South 3 115 117
White King’s Knight move South and East 3 118 120
White King’s Knight move South and West 3 121 123
White King’s Knight move East and South 3 124 126
White King’s Rook 4 127 130
White King’s Rook move North 2 131 132
White King’s Rook move East 2 133 134
White King’s Rook move South 2 135 136
White Queen’s Rook Pawn 4 137 140
White Queen’s Knight Pawn 4 141 144
White Queen’s Bishop Pawn 4 145 148
White Queen’s Pawn 4 149 152
White King’s Pawn 4 153 156
White King’s Bishop Pawn 4 157 160
White King’s Knight Pawn 4 161 164
White King’s Rook Pawn 4 165 168
Black Queen’s Rook 4 169 172
Black Queen’s Rook move North 2 173 174
Black Queen’s Rook move East 2 175 176
Black Queen’s Rook move South 2 177 178
Black Queen’s Knight 4 179 182
Black Queen’s Knight move North and West 3 183 185
Black Queen’s Knight move North and East 3 186 188
Black Queen’s Knight move East and North 3 189 191
Black Queen’s Knight move East and South 3 192 194
Black Queen’s Knight move South and East 3 195 197
Black Queen’s Knight move South and West 3 198 200
Black Queen’s Knight move East and South 3 201 203
Black Queen’s Bishop 4 204 207
Black Queen’s Bishop move North East 2 208 209
Black Queen’s Bishop move South East 2 210 211
Black Queen’s Bishop move South West 2 212 213
Black Queen’s 4 214 217
Black Queen’s move North 3 218 220
Black Queen’s move North East 3 221 223
Black Queen’s move East 3 224 226
Black Queen’s move South East 3 227 229
Black Queen’s move South 3 230 232
Black Queen’s move South West 3 233 235
Black Queen’s move West 3 236 238
Black King’s move North 3 239 241

 28

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Black King’s move North East 3 242 244
Black King’s move East 3 245 247
Black King’s move South East 3 248 250
Black King’s move South 3 251 253
Black King’s move South West 3 254 256
Black King’s move West 3 257 259
Black King’s Bishop 4 260 263
Black King’s Bishop move North East 2 264 265
Black King’s Bishop move South East 2 266 267
Black King’s Bishop move South West 2 268 269
Black King’s Knight 4 270 273
Black King’s Knight move North and West 3 274 276
Black King’s Knight move North and East 3 277 279
Black King’s Knight move East and North 3 280 282
Black King’s Knight move East and South 3 283 285
Black King’s Knight move South and East 3 286 288
Black King’s Knight move South and West 3 289 291
Black King’s Knight move East and South 3 292 294
Black King’s Rook 4 295 298
Black King’s Rook move North 2 299 300
Black King’s Rook move East 2 301 302
Black King’s Rook move South 2 303 304
Black Queen’s Rook Pawn 4 305 308
Black Queen’s Knight Pawn 4 309 312
Black Queen’s Bishop Pawn 4 313 316
Black Queen’s Pawn 4 317 320
Black King’s Pawn 4 321 324
Black King’s Bishop Pawn 4 325 328
Black King’s Knight Pawn 4 329 332
Black King’s Rook Pawn 4 333 336

 29

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C: Amount of data hidden in the chess game

There are three main categories in the chess game that can hide information:
the chess game, the font formats, and the paragraph formats. Each of these can
hold various amounts of hidden data. 100 rounds of this algorithm were run to
determine the average amount of data that can be hidden per chess game for
each category.

Chess steganography category

Number of bits that
can be hidden

Average
bits
hidden
per game

Chess game 360
 Length of game 5 bits
 Last move’s color 1 bit
 Chess move 0-7 bits
PGN header 124
 Event 7 or 12 bits
 Site 8 bits
 Date 0 or 12 bits
 Length of player’s name 6 bits
 Player’s name 34-142 bits
 Round 3 bits
 Result 1-2 bits
 Player’s rating 18 bits
 Opening used (ECO) 10-11 bits
NAG 7 bits 26
RAV 77
 Length of game 0 bits
 Last move’s color 0 bits
 Chess move 0-7 bits
Comments 56
 Opening comment 13-37 bits
 Messages 5 bits
 Synonyms 2-6 bits
Additional spaces 255
 After PGN header 50 bits
 Between header/game 12 bits
 Between words in header 14-17 bits
 Between words in game 3 bits per move
 Between words in comments 2-10 bits per comment
Font formats
 All caps 1 bit per white space 532
 Bold 1 bit per white space 532

 30

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Text color 18 bits non-white space 12,779
 Emboss/Engrave/Shadow 2 bits per white space 1,065
 Font 1 bit per character 1,350
 Italics 1 bit per white space 533
 Kerning 1 bit per white space 4,260
 Outline 1 bit per white space 532
 Position 10 bits per white space 4,574
 Scaling 2 bits per white space 1,065
 Size 2 bits per white space 1,065
 Spacing 2 bits per white space 1,065
 Superscript 1 bit per white space 533
 Underline color 24 bits per white space 12,779
 White-space color 24 bits per white space 14,712
Paragraph formats
 Spacing before 1 bit per line 25
 Spacing after 1 bit per line 25
 Hyphenation 1 bit per line 25
 No line number 1 bit per line 25
 Keep with next 1 bit per line 25
 Widow control 1 bit per line 25
 Keep together 1 bit per line 25
TOTAL 58,449

If each character takes seven bits to be encoded, then a chess game can hide
about 8,350 characters. This works about to be about 2 ½ pages of single-
spaced text.

 31

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix D: Types of steganography used

Type used Part of chess game it is used in
Insertion NAG, additional spaces
Algorithmic ECO code, length of player’s names, length of chess

game
Grammar Chess comments
Substitution Site, Round, Result, font formats, paragraph formats
Generation Event, Date, Player’s names, Player’s ratings, RAV, chess

moves

Definitions:
Insertion-based steganography - inserts additional information into a file, but it
doesn’t effect the actual representation of the data.
Algorithmic-based steganography - uses some sort of algorithm to determine
where in a file the data is hidden.
Grammar-based steganography - uses the hidden data to create an output file
based on the predefined grammar.
Substitution-based steganography - hides data by overwriting data that is already
on the file.
Generation-based steganography - uses covert information to create the overt
information.

 32

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References
“General Office Security”. MSDN Library. URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sdsdk/html/sdconSecurityGeneralOfficeSecurity.asp (12 July 2004).

United States. Department of the Army. US ARMY Field Manual 21-75. 1984.
Campbell, J. Franklin. “USCF Abandons Prison Inmates,” The Campbell Report.

23 Dec. 2002. URL:
http://www.correspondencechess.com/campbell/articles/a021223.htm (12
July 2004).

Cole, Eric. Hiding in Plain Sight: Steganography and the Art of Covert
Communication. Indianapolis, Indiana: Wiley Publishing, Inc., 2003.

Cole, Fossen, et al. Track 1.4 - Secure Communications. Vers. 2.2. Track 1 –
SANS Security Essentials and the CISSP 10 Domains. 2004.

Edwards, Steven J. “PGN Specification and Implementation Guide.” 12 Mar.
1994. URL: http://pgn.freeservers.com/Standard.txt (12 July 2004).

Harris, Shon. CISSP Certification All In One Exam Guide. New York: McGraw-
Hill/Osbourne, 2002.

Kahn, David. The Codebreakers. 2nd ed. New York: Scribner, 1996.
Schneier, Bruce. Applied Cryptography. 2nd ed. New York: John Wiley & Sons,

Inc., 1996.
Wayner, Peter. Disappearing Cryptography. Information Hiding: Steganography

& Watermarking. 2nd ed. San Francisco, California: Morgan Kauffman
Publishers, 2002.

Weeks, Mark. “Portable Game Notation (PGN),” About Chess. 12 Oct. 2002.
URL: http://chess.about.com/library/weekly/aa101202a.htm (12 July 2004).

 33

