
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Vulnerability Testing Techniques for Web Application Programmers

Alex Kuhn
December 6, 2004

GSEC Version 1.4c, Option 1

Abstract
Prior to releasing any new web application on the Internet or for use within a
company, it is a best practice to test the application for potential vulnerabilities. A
wide variety of free and commercial tools are available to aid in this task.
However, the developers who have to make changes to those applications do not
necessarily have the tools or the appropriate techniques to correct these
vulnerabilities.

This paper provides an introduction to some techniques a developer can use to
test their own applications while under development or when remediating
particular vulnerabilities.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Introduction
Securing a web application today is like putting together a puzzle: all the

pieces have to be put together in the right way or a hole will remain. SANS’
Defense In-Depth concept teaches the security professional about the many
components that need to be considered in order to secure an environment.
(Cole et al. 2:14)

In the case of an Internet web application, there are many components
that play a role in securing the application. Some examples are firewalls with
restrictive rules, having current patches applied to host operating systems and
web servers, having proper permissions on the files that make up the application,
and a web server configuration that prevents inadvertent access to files. All of
these need consideration prior to making an application available on the Internet.

But all of these components are not generally part of a web developer’s

responsibility. In many enterprises, one organization may administer the
firewalls, another group the servers, and a third the web server application. Even
if all of these components are properly secured, the application itself may have
vulnerabilities due to the techniques used within the web application code. Many
organizations employ commercial tools, such as Appscan and WebInspect, to
assess web applications for vulnerabilities.

Imagine you are a web developer whose new application has just been

subjected to a vulnerability assessment by the corporate security department.
The report describes vulnerabilities such as cross-site scripting, SQL injection
and form parameter tampering. You have never had any formal training in
security, and now are expected to resolve these problems before your application
is released. What can you do? Where do you even start?

This paper will discuss some common vulnerabilities that are frequently

found during the vulnerability assessment process, demonstrate some
techniques to remediate these vulnerabilities, provide links to other reference
materials for remediation information, and provide an overview of one very useful
tool developers can use as they test their fixes.

Common Attacks
 I have run vulnerability assessment tools against many web applications,
and several categories of vulnerabilities repeatedly appear: those based on
cross-site scripting, SQL injection, and form field manipulation. Several other
categories frequently appear which are not usually resolved by changing source
code: directory traversal, debugging settings, and improper access to files.
Upgrading or patching the operating system and/or web server can usually
resolve these latter categories of vulnerabilities, or by changing settings within
the web server itself. Because these vulnerabilities are frequently outside of the
control of the web developer, they will not be discussed further here.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 The three vulnerabilities that will be discussed have one thing in common:
validating data input can be protection against all of them. In Writing Secure
Code, 2nd edition, Howard and LeBlanc sum up the problem with this statement:
“all input is evil until proven otherwise.” (341)

Any place where an attacker can input data, whether in a visible or hidden
form field, as a parameter in a URL, or through a cookie should be validated
upon receipt by the web server. Howard and LeBlanc also sum up the solution
well: “look for that which is provably valid, and disallow everything else.” (385)

Cross-site Scripting
 In their paper “Penetration Testing for Web Applications (Part Two),
Melbourne and Jorm describe Cross Site Scripting (XSS) as occurring “wherever
a developer incorrectly allows a user to manipulate HTML output from the
application” (“Part two”). XSS depends on a server not filtering input from a user
and then presenting it back to the user’s web browser, where the browser may
interpret the response as executable code.

 Specific XSS attacks may only occur with specific pairings of the web
server and web browser; not every variation may work with every combination of
browser and server. Therefore, many possible flavors of XSS exist, and a good
vulnerability assessment tool will check an application for as many of these as
possible. Melbourne and Jorm give a simple example of an XSS vulnerability
where this string is input as a parameter in a URL string (“Part Two”)

<script>alert(document.cookie);</script>

If the server responds with a message including that string, then it shows that the
web server is not filtering out the <script> tags from the input, and could be
susceptible to a XSS attack.

 It would seem that checking for certain kinds of strings, such as <script>,
should be easy. Unfortunately, the grammar that the web application would have
to examine is very complex. Howard and LeBlanc in Writing Secure Code, 2nd
edition include examples of many of the complex constructions that an
application would need to filter to minimize the risk of executing undesirable
code. Here are a few examples (the malicious code would be placed within the
[code] block): (428-429)

 <body background=”javascript:alert([code])”
 <!-- -- --><script>[code]</script><!-- -- -->
 <\xC0][\xBC]script>[code][\xC0][\xBC]/script>

 The first two examples would display a dialog box that would run arbitrary
code. The third hides code within a comment block, and the fourth hides the
opening angle bracket by encoding it in a different character representation.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

There are many other ways to generate an XSS attack, and the references listed
at the end of this paper contain descriptions of many more versions along with
more detail than can be included herein.

Cross-site scripting remediation
 XSS attacks could be eliminated if users did not have scripting languages
permitted in their browsers, but doing so would cause many web sites to cease to
work properly. Email clients that display dynamic content are also common
programs that permit XSS attacks. Web browsers also need regular updating to
patch new holes but this is a constant catch-up game as new vulnerabilities are
constantly found. In the meantime, web developers need to filter as much as
possible and limit input to that which is known good. Within the code that runs on
the web server, whether it is ASP, CGI or another language, there should be
routine logic that parses user input and strips out undesired data, leaving only
that which can be proven safe. Some examples of code that can do this are
shown below.

 This regular expression from Writing Secure Code allows some html
formatting tags and safe input (430):
 /^(?:[\s\w\?\!\,\.\’\”]*|(?:\<\/?(?:i|b|p|br|em|pre)\>))*$/i

 In Q article 252985, Microsoft lists this javascript function that filters
special characters that allow scripts to execute (Q252985). In this example,
these characters will be filtered out: < > “ ‘ % ;) (& + -

function RemoveBad(strTemp) {
 strTemp = strTemp.replace(/\<|\>|\"|\'|\%|\;|\(|\)|\&|\+|\-/g,"");
 return strTemp;
}

If you implement code like this in a web browser function, do not make it

your only defense! It should be only one part of a defense-in-depth strategy: the
server should validate all data as well.

If you are expecting only alphabetic or numeric data, write a filter that will

only allow those values through. In the article “How To Remove Meta-characters
From User-Supplied Data in CGI Scripts”, cert.org provides this Perl script that
will only allow letters, numbers and a few special characters through: (“Cert”)

#!/usr/local/bin/perl
 $_ = $user_data = $ENV{'QUERY_STRING'}; # Get the data
 print "$user_data\n";
 $OK_CHARS='-a-zA-Z0-9_.@'; # A restrictive list, which
 # should be modified to match
 # an appropriate RFC, for
 # example.
 s/[^$OK_CHARS]/_/go;
 $user_data = $_;
 print "$user_data\n";
 exit(0);

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

SQL Injection
 SQL injection is another kind of input validation vulnerability that can be
executed using similar techniques as Cross-Site Scripting. In their paper
“Penetration Testing for Web Applications (Part Two)”, Melbourne and Jorm
describe SQL Injection as those where developers “do not properly strip user
input of potentially ‘nasty’ characters before using that input directly in SQL
queries”. (“Part Two”) SQL Injection attacks do not require an attacker to send
an email or post a link on a web site and convince a user to click a link; these
attacks can be initiated by an attacker directly against a web site.

 In a SQL injection attack, merging the SQL statement on the web server
with malicious data from an input field creates unexpected output that an attacker
desires. A simple example is an application that has two fields: user ID and
password. In Hacking Exposed Web Applications, Scambray and Shema
demonstrate this SQL statement that might be used to validate a logon: (157)

 SELECT * from AUTHENTICATIONTABLE WHERE Username =
‘username input’ AND Password = ‘password input’

If in the username field an attacker inputs this text:

Username’ --

Then the SQL string sent to the database would be this:

SELECT * from AUTHENTICATIONTABLE WHERE Username =

Username’ -- ‘username input’ AND Password = ‘password input’

 The -- means the rest of the SQL statement is a comment and should be
ignored, so in effect, the password check would be eliminated. However, a valid
username would still be required. Howard and LeBlanc in Writing Secure Code
list these database servers that use the -- operator: Microsoft SQL Server, IBM
DB2, Oracle, PostgreSQL and MySql. (399) This makes the -- operator a very
powerful enemy to your SQL statements.

 What if the password input was this string, also from Hacking Exposed
Web Applications (157):

 DUMMYPASSWORD’ OR 1 = 1 --

The SQL string sent to the database would become this:
 SELECT * from AUTHENTICATIONTABLE WHERE Username =
‘username input’ AND Password = ‘DUMMYPASSWORD’ OR 1 = 1 --

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

In this case, the logic of the statement would check whether the valid
password associated with the input username was DUMMYPASSWORD or
whether the value 1 is equal to the value 1! Since the clause “1=1” is always
true, then the password check would not be effective. An attacker would need to
know only a valid username and could bypass the password.

A more sophisticated attack involves the use of the UNION clause to

display information from the database. The UNION statement appends the result
of one query onto the end of another query. In this example, Thompson and
Whittaker demonstrate that a Microsoft SQL Server could be instructed to display
all the tables in the database by querying the built-in sysobjects table (62)

 ‘ union all select 0,name,xtype,0,0,0 from sysobjects --

In order for this kind of attack to be effective, the attacker would do

reconnaissance on the application, testing various combinations of strings to see
what errors would result. In some cases, the errors give away the brand and
version of the database and some quick checks on the Internet can result in lists
of vulnerabilities for that database.

In this further example from Thompson and Whittaker, simply by putting a

single quotation mark (‘) in a user field, the syntax for the Select statement can
be made erroneous, resulting in an ODBC error (62)

Error Type:
Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)

[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark
before the character string ‘ and Pin = “, /process.asp, line 40

Now the attacker knows to focus on SQL Server attacks, and knows that

the name of at least one field name: Pin.

SPIDynamics’ website has several good free whitepapers that have more

examples of tests for SQL injection, as do Chris Anley’s papers available at
www.ngssoftware.com. See the references at the end of this paper for specific
links.

Access to built-in stored procedures can be dangerous as well. Many

databases provide stored procedures that can run essentially any command on
the database server. Some of these stored procedures need administrator-level
rights, but not all do. Here Thompson and Whittaker provide another example of
a statement that could spawn a shell and save a list of all files on the root of the
C drive and save it to a file that could then be accessed via a web browser: (62)

‘; EXEC master.dbo.xp_cmdshell ‘cmd.exe /c dir c:\ > c:\inetpub\wwwroot\dir_c.txt’ --

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Vulnerability assessment tools will run many tests for strings such as
these and examine any return error messages for information that could aid an
attacker to learn more about the system, and to see whether field input is being
properly sanitized.

SQL Injection Remediation
 No single technique can protect against SQL injection attacks – there
need to be several layers of protection to be effective. Several that are very
effective and should be considered include input data validation, controlling
access within the database and the use of stored procedures.

 In Chapter 12 of Writing Secure Code, Howard and LeBlanc lay out
several best practices to preventing SQL injection attacks. (403-406)

 1) Never Ever Connect as sysadmin
 Always use an account that has the minimum rights needed to access
the database. Sysadmin can access system-level stored procedures

2) Building SQL Statements Securely
 In a SQL server environment, you can use VBScript within the database

to create parameterized statements that can validate data type. This is an
example of a parameterized query statement: (404)

SELECT count(*) FROM client WHERE name=? AND pwd=?

 Within the VB script function, name and pwd would be defined with

specific type and size characteristics and can be validated against certain string
patterns, such as an email address. After that check the values would be passed
to the database through the select statement.

In his MSDN article “Stop SQL Injection Attacks Before They Stop You”,

Paul Litwin demonstrated several good techniques for validating usernames and
passwords using this regular expression:

[\d_a-zA-Z] {4,12}
This limits the input to entries between 4 and 12 characters of digits,

alphabetic characters and the underscore.

Building the SQL statement within a stored procedure is another good way

to prevent SQL injection. Chris Anley’s paper “Advanced SQL Injection in SQL
Server Applications” lists several approaches to validating data: (22-23)

1) Massage data so that it becomes valid. This is problematic because

some characters that we may want to eliminate are possibly valid. Take the --
operator. If we eliminate hyphens in a user name field, then that will cause
problems for people with hyphenated names.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

2) Reject input that is known to be bad. This is one good technique to use

as a part of an input validation routine. In his paper he has a code example that
will filter out the strings “select”, “insert”, “update”, “delete”, “drop”, the double-
hyphen and the single quote. If your application does not need these characters,
filter them out.

3) Allow only good input. After removing known bad input, such as the

SQL reserved words above, then validate the input for known good characters,
such as the characters in Litwin’s regular expression shown above.

The process I recommend to protect against SQL injection is to work with

database administrators to ensure a low-privilege account is used by the web
application, and ensure that the only accessible stored procedures are the ones
the DBA or web developer wrote for that application. Then ensure the web
developers validate all input with routines such as those in #2 and #3 above.
That is, remove any known bad strings, such as the SQL reserved words, and
then check the remainder against the known good characters. By doing this,
other characters that should not be present, such as quotes, periods, double-
hyphens and semicolons would be filtered out, greatly reducing the risk of SQL
injection attacks.

Hidden Form Elements and Cookies
 A third kind of vulnerability regularly found in web applications is not
validating hidden form elements or cookies. Melbourne and Jorm write in
“Penetration Testing for Web Applications (Part One)” that unvalidated item
prices in web shopping carts “is still common on many sites, though to a lesser
degree”. I still see this regularly in custom-written applications. Web developers
have a more difficult time testing their code for these vulnerabilities because the
data is transferred behind the scenes, not using user-accessible fields in the web
browser. The same is true of cookies, which are either stored on disk or in
memory. To discuss vulnerabilities of hidden fields and cookies, I will introduce
the use of the Achilles web proxy tool as a way to test how an application reacts
to unexpected changes in these values.

A good vulnerability scanning tool will test all the input fields in a form,
both visible and hidden. Hidden fields and cookies are frequently used to
maintain state or logon information within applications. If these fields are
modified and not validated, it is possible for a user to access another user’s
account, or change prices for items being purchased.

A user can view these hidden fields if they do a “view source” within their

browser, and they can view their persistent cookies if they look in the directory
where their browser stores them. But it is much harder to see session cookies,
which are stored in memory and not saved to disk. Achilles lets the user see all

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

the data traveling from the web browser to the web server, including cookies,
html and http headers, even if SSL-encrypted.

An example of manipulating a hidden field that stores the price of an item in a
shopping cart is shown in this form code, from “Penetration Testing for Web
Applications (Part One)” by Melbourne and Jorm:

<FORM METHOD="LINK" ACTION="/shop/checkout.htm">
<INPUT TYPE="HIDDEN" name="quoteprice" value="4.25">Quantity:
<INPUT TYPE="text"
NAME="totalnum"> <INPUT TYPE="submit" VALUE="Checkout">
</FORM>

If the web server did not validate or ignore the value coming back from the

browser, the user could purchase something at a lesser price.

Cookies can be manipulated as well. In “Penetration Testing for Web

Applications (Part Three)” Melbourne and Jorm show how cookies are set and
retrieved. As part of the response to a request for a web resource, the web
server sends a statement like this in the http header:

Set-Cookie: SESSION=123456; path=/; expires=Sunday, 24-Oct-04

23:23:23 GMT; domain=somedomain.com

For each subsequent request for a resource in that path “/”, the client

sends that cookie along with the request. In this case, the cookie is a server-
generated session identifier.

An attacker could modify the session identifier cookie during a subsequent

request and see if he could access someone else’s account. If so, they could
potentially perform actions as that user. In most commercial application servers,
the session ID is not sequentially assigned but in some cases can be reverse-
engineered, even if encrypted or hashed. An encrypted cookie could look like
this:

Set-Cookie: SESSION=A$0(k38v; path=/; expires=Sunday, 24-Oct-04
23:23:23 GMT; domain=somedomain.com

Depending on the encryption algorithm being used, and the amount of

data an attacker can gather on the application, this value could still be spoofed,
allowing an attacker access to someone else’s account.

In Chapter 7 of Hacking Exposed Web Applications, Scambray and

Shema go into some detail on how an attacker could derive other valid session
values for various application servers. This analysis is beyond the scope of this
paper, but several of their countermeasures are germane to this discussion (199)

Strong hashes or encrypted contents
 Place dynamic data, such as a timestamp, as part of the string.
Enforce concurrent login limits.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

If a second connection comes in from the same ID, possibly close
out both sessions.

Validate contents of state information
Use similar validation checks as described earlier for SQL injection
for the fields that carry state

Use checksums or message authentication techniques
Use multiple related values so that if one changes but not the other,
it invalidates the session. An interesting paper available from
Advosys Consultants, Inc. includes techniques for hashing certain
hidden fields to detect whether they have been modified.

Use SSL
 It is not a solution to every problem but it does limit sniffing attacks

If a web developer is writing code to protect against these attacks, how

can Achilles be used to manipulate these values to see if the defensive code
works properly? This will be shown below, by using Achilles to modify a hidden
form field.

The Achilles Web Proxy as a testing tool

Achilles is a free tool, written by Robert Cardona and David Rhoades and
is available at www.mavensecurity.com/achilles. Achilles works as a web proxy;
it acts as a pass-through for http requests, and allows the user to control the
traffic flows between the browser and server. This makes it easy to change data
in mid-stream for testing. Achilles has the additional great advantage of being
able to intercept SSL-encrypted HTTPS traffic. This means the developer can
see all the communication within an encrypted session.

After installing and running Achilles the main configuration screen

appears:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 By default, Achilles listens on port 5000 although this is easily changed by
modifying the “Listen on Port” field.

You will need to reconfigure your web browser proxy settings to point to
port 5000 to have Achilles proxy your requests. Internet Explorer may need to be
closed and restarted in order for those changes to take effect. This change can
be made in the Internet Explorer Tools -> Internet Options -> Connections tab.
Click on LAN settings, then click Advanced. Set both HTTP and Secure to your
local loopback address (127.0.0.1) and set the port to the Achilles default port of
5000, unless you changed it on the screen shown above.

Internet Explorer Proxy Settings Page

To start using Achilles to proxy your web browser traffic, check all the

boxes under Intercept Modes. “Log to file” is optional and will create a record of
the data transferred. If “Ignore .jpg/.gif” is checked you will not see the GET
requests for those files, only the html pages. If your site has lots of images,
seeing all the GETs for those can be distracting. Click the blue arrow in the
upper left corner to begin capturing data.

 With Intercept Mode on, Achilles will not forward any request from the
browser to the web server on the Internet until the user clicks the “Send” button
inside Achilles. Because it is intercepting the traffic, the user can modify the
information after the web browser created the request, but before the web server
sees it. In effect, Achilles is facilitating a “man-in-the-middle” attack, but at the
request and under the control of the user. If you have checked the Intercept
Client data and Intercept Server Data, you will need to click the Send button after
every GET and web server response.

 In the below screen shots, we will load an example support web
page that uses the Formmail script, written by Matthew M. Wright (Formmail).
This form allows a user to submit a support question to a webmaster, and the
form has the webmaster email address hardcoded as a hidden form field.
Without changing the code on the web server, we will change the email address
to which the script will send the support request. This will demonstrate how
Achilles allows you to change data after it is submitted from the web browser, but
before it is sent to the server. For this test we will use an example web site I
constructed for this demonstration which is called alexkuhn.com.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Each screen that is displayed as Achilles intercepts the data stream is shown.
Note that because the “Ignore .jpg/.gif” box is checked we will not see any of the
requests for those image files, but this particular form does not use images.

Here is the initial GET for the Formmail page (/cp/scripts/formmail-
doc/example.html) from the web browser:

Here is the response from the alexkuhn.com web server:

You can see that this form uses a hidden field, called “recipient” and sets it

to the value “postmaster@alexkuhn.com”.

Now let’s do this again but manipulate the request, using a test that will

show whether data is being changed in Achilles as expected. This time, we will
request the same page in the web browser, but will change that within Achilles to
a page that is not present. If we get back a 404 “Not Found” response, we know
Achilles has intercepted the data, forwarded it on to the web server and received
a response based on our modification.

After the GET is issued from the web browser, the data is displayed in

Achilles as in the first screen shown above. This time, put your cursor after the
GET / and type in some random page, as shown below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Then click the Send button.

The response you get from the web server shows the 404 Not Found error

and a custom Not Found page.

The page as displayed in the web browser:

This demonstrates that the request was intercepted and changed within

Achilles between the browser request and reception by the server. It should be
apparent that if you can change the page you requested in-between the browser
and the web server, that other data could be changed as well: cookies, http
headers, session identifiers, and hidden form parameters. Let’s try this with a
hidden field.

The web browser View Source function can display the form code. If

doing this on a large html page, use the Find function (Ctrl-F) to bring up the Find
window and search for the string “form”, which is the tag in html that creates an
input form. In this example the page is very small so the form is easy to find. The
text from this form is shown below. Note the hidden field which is boldfaced.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

<form name="formmail" action="/cgi-bin/formmail/formmail.cgi" method="post">
<input type=hidden name="recipient" value="postmaster@alexkuhn.com">
<p>Subject:

<input type=text name="subject" size="45" value=""></p>

<p>Your Name:

<input type=text name="realname" size="45" value=""></p>

<p>Your Email Address:

<input type=text name="email" size="45" value=""></p>

<p>Comments:

<textarea name="body" rows="10" cols="60" wrap="virtual"></textarea></p>

<p><input type="submit" value="Send Email"> <input type="reset" value="Reset

Form"></p>
</form>

This hidden field is the destination for the email that the script will

generate. Since it is hidden it is not displayed in the web browser so the user
cannot change it. However, if we change the destination in Achilles and the
response from the web server shows our alternate email address, not
postmaster@alexkuhn.com, then we will have shown not only that Achilles
allowed us to perform a validation test on the web server’s cgi script, but also that
that script did not restrict the email address to only the expected value.

When an HTML form is submitted, all the input fields are appended onto a
string composed of the field names, an equals sign, and the value for the field.
An ampersand (&) separates the fields.

 In this example, we will change the hidden field value and see if it persists
in the response. I used simple values in the other fields to demonstrate how the
data from multiple form fields is concatenated:

 We will change the recipient value from postmaster@alexkuhn.com to
another value, webmaster@alexkuhn.com:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The response comes showing the value we changed:

We changed the destination email from postmaster to webmaster. This
same technique of testing different values can be used on any value in the web
application, including cookies and http headers, not just the hidden field and URL
GET demonstrated here. If you use this technique of manipulating hidden fields
or cookies, you should understand which fields hold the most important
information, such as session or user identification credentials, and test these
fields for manipulations such as I have demonstrated here. Some of the works in
the List of References to this paper describe ways to defend against these kinds
of manipulations.

Summary
 The web developer’s challenge of securing potential vulnerabilities is a
daunting one. New vulnerabilities are discovered every day, and it is difficult for
even full-time security professionals to stay abreast of every new risk. But many
newly discovered vulnerabilities are similar to other vulnerabilities, and can be
mitigated through the same kinds of techniques.

 This paper has shown some of the more common, significant
vulnerabilities that continue to surface in applications, and ways for a web
developer to test for these vulnerabilities, and to test the fixes to determine if they
are effective. By implementing a defense-in-depth strategy, where not only the
network infrastructure, operating systems, and web servers are secured, but also
the applications themselves, you can be more confident in your ability to repel
potential attackers against both known and future attacks.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

List of References
Anley, Chris. “Advanced SQL Injection in SQL Server Applications” 24 Oct.
2004 <http://www.nextgenss.com/papers/advanced_sql_injection.pdf>

Anley, Chris. “(more) Advanced SQL Injection” 24 Oct. 2004
<http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf>

Cardona, Robert and Rhoades, David. Achilles 24 Oct. 2004
<http://www.mavensecurity.com/achilles>

Clover, Andrew. “GOBBLES SECURITY ADVISORY #33.” Online posting, May
11, 2002 Bugtraq. 24 Oct. 2004.
<http://www.securityfocus.com/archive/1/272037>

Cole, Eric et al. SANS Security Essentials, version 2.2, volume 1.2: Defense In-
Depth. 2004.
--- SANS Security Essentials, version 2.2, volume 1.3: Internet Security
Technologies. 2004.

Dhanjani, Nitesh. Web App Security Testing with a Custom Proxy Server. 22
Jan 2004 <http://www.onlamp.com/pub/a/php/2004/01/22/php_proxy.html>

“FAQ”. Online Web Application Security Project. 24 Oct. 2004
<http://www.owasp.org/documentation/appsec_faq.html>

Howard, Michael and LeBlanc, David. Writing Secure Code, 2nd edition.
Redmond, Washington: Microsoft Press. 2003.

“How To Remove Meta-characters From User-Supplied Data in CGI Scripts.”
Cert.org. 24 Oct. 2004 <http://www.cert.org/tech_tips/cgi_metacharacters.html>

Internet Security Systems Internet Scanner.
<http://www.iss.net/find_products/vulnerability_assessment.php>

Litwin, Paul. “Stop SQL Injection Attacks Before they Stop You.” Microsoft
Developer Network. 24 Oct. 2004
<http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/default.aspx>

Melbourne, Jody and Jorm, David. “Penetration Testing for Web Applications” (in
three parts). 24 Oct. 2004
<http://www.securityfocus.com/printable/infocus/1704>
<http://www.securityfocus.com/printable/infocus/1709>
<http://www.securityfocus.com/printable/infocus/1722>

“Microsoft HOWTO: Prevent Cross-Site Scripting Security Issues.” Microsoft. 24
Oct. 2004 <http://support.microsoft.com/default.aspx?scid=kb;EN-US;q252985>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

“Paros” web vulnerability assessment tool. 24 Oct. 2004
<http://www.proofsecure.com>

“Preventing HTML form tampering” 7 Aug. 2001 Advosys Consulting, Inc.
<http://advosys.ca/tips/form-tampering.html>

Rhoades, David. “Hacking Web Apps” 24 Oct. 2004
<http://www.mavensecurity.com/presentations>

Scambray, Joel and Shema, Mike. “Hacking Exposed – Tools” 24 Oct. 2004
<http://www.webhackingexposed.com/tools.html>

Scambray, Joel and Shema, Mike. Hacking Exposed Web Applications.
Berkeley: McGraw-Hill/Osborne, 2002.

Sima, Caleb. Security at the next level: Are your web applications vulnerable?
<http://www.spidynamics.com/support/whitepapers/webappwhitepaper.pdf>

“Sleuth: web proxy.” 24 Oct. 2004 <http://www.sandsprite.com/Sleuth>

Spett, Kevin. Blind SQL Injection: Are your web applications vulnerable?
SPIDynamics. 24 Oct. 2004
<http://www.spidynamics.com/support/whitepapers/Blind_SQLInjection.pdf>

Spett, Kevin. Cross-site scripting: Are your web applications vulnerable?
SPIDynamics. 24 Oct. 2004
<http://www.spidynamics.com/support/whitepapers/SPIcross-sitescripting.pdf>

Spett, Kevin. SQL Injection: Are your web applications vulnerable?
SPIDynamics. 24 Oct. 2004
<http://www.spidynamics.com/support/whitepapers/WhitepaperSQLInjection.pdf>

Thompson, Herbert & Whittaker, James “String-Based Attacks Demystified.” Dr.
Dobb’s Journal, June 2004, 61-63

Wright, Matthew M. “Formmail” 6 Dec. 2004.
<http://www.scriptarchive.com/formmail.html>

