
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Bouncing Back From a Blaster Disaster:
How One Company Used Free Tools to Build an

Effective Patch Management System

John Verseman
GIAC Security Essentials (GSEC) Practical Assignment

Version 1.4c – Option 2
10/21/04

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

ABSTRACT

This paper tells the story of how SoftCo Corporation, a software development
firm, introduced centralized patch management in an environment with few
controls on its user community and a decentralized IT management infrastructure
– and did it using primarily free tools. There are plenty of resources available
that do a great job of describing how to set up things like Software Update
Services, configure Automatic Updates and use Baseline Security Analyzer and
this paper will touch upon those things. However this paper is really meant to be
a supplement to those materials. The two important themes that run through this
paper center around how these tools were adapted to function in an environment
that is not very security friendly and how the data that was generated by these
tools was used to drive results and communicate those results to management.

This paper starts off by describing the security environment in the summer of
2003 and the effects that MS Blaster had on the environment and the culture. In
the wake of these viruses, the Corporate Security team was faced with the
challenge of ensuring patches were deployed to all systems at SoftCo so that the
events like Blaster and Slammer would not happen again. To further complicate
issues, Corporate Security was given no budget to fix these problems. They had
to rely on free and/or existing tools.

In the wake of these viruses, SoftCo used Active Directory, Software Update
Services and Baseline Security Analyzer along with Microsoft Excel and Access
to create a patch management program that not only distributed patches to
machines, but measured the progress and allowed Corporate Security to find un-
managed devices on the network.

It is important to stress that the events and techniques described in this paper
are real. However the name SoftCo is obviously a fake, some of the details of
SoftCo’s business are purposefully vague and where necessary the data used in
examples has been altered so as to protect the company’s identity.

An Overview of SoftCo’s Environment and Culture

SoftCo Corporation is a software development/consulting firm made up of
roughly 5000 people. SoftCo develops and implements an enterprise-wide
solution for its clients. SoftCo’s mission is to transform the way its clients do their
business through the use of SoftCo’s enterprise software. Thus the consulting
side is just as important as the software development side. Approximately 3000
of SoftCo’s employees work at SoftCo’s world headquarters while the other 2000
of SoftCo’s employees are virtual – they work at client sites or from their homes.
SoftCo also operates a few remote offices that have minimal staff in them.
SoftCo is mostly a Windows shop. Approximately 90% of SoftCo’s systems are
Windows-based. The rest of the systems are a mixture of AIX and VMS.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

As a technology company, SoftCo strives to create “a culture of innovation.”
Creating a “culture of innovation” means empowering the user community with
tools and information to make decisions and explore new ideas. Speed is also a
critical part of SoftCo’s culture. There is very little tolerance for bureaucracy.
That means that individual groups are empowered to build their own
infrastructure to support their development efforts. How that plays out it practice
is that the user community in general has a lot of freedom on the network.

• All users have full administrative rights to their assigned devices. This
decision was made primarily to accommodate the legitimate needs of
SoftCo’s large developer community to be able to develop and test
software on their own machines. However this policy applies to all users.

• IT functions are decentralized. Corporate IT handles HR, Finance and
various other apps used internally. Corporate IT also distributes
workstations to the user community. Engineering has multiple
autonomous IT infrastructure groups to support development and testing.

• There is a strong aversion to patch management from within the company.
Many systems are maintained by developers and this creates a problem
because the developers’ first priority is to get their programs to work.
Patches are perceived as extra work that provides little benefits and leads
to more problems than it solves due to Microsoft’s early troubles
distributing high-quality patches.

In the summer of 2003, SoftCo had developed a manual process for managing
patches on its corporate Windows servers. This process was developed as a
result of the SQL Slammer virus. While it was a step in the right direction, there
were still many obvious flaws in the process. First and foremost, this process
only covered a small portion of the total systems at the company. These were
primarily the Finance and HR Systems, Exchange Systems and file servers.
Second this was a manual process. Essentially it was a monthly “patch-party”
where all the corporate system administrators would come to work in the middle
of the night on a Saturday night and go patch all the systems by going to
Windows Update to download and install the patches on each of the servers.

The Blaster Event and its Impact on SoftCo

SoftCo’s Corporate Security Team knew that there were a lot of holes in the
patch management process at SoftCo – namely that only a small percentage of
the systems were getting patched. However the Corporate Security team was
still a relatively young and small group and did not have much authority beyond
Corporate IT. So in the summer of 2003, the Corporate Security team developed
a notification process to distribute security bulletins to system administrators
across the company’s various IT groups: Corporate as well as the multiple
Engineering departments. This process was Microsoft focused. Corporate
Security would monitor for new Microsoft Security bulletins, do the research and
re-classify the vulnerability as it applied to SoftCo.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Corporate Security created the following vulnerability classification table to
provide guidance on how patches should be applied at SoftCo Corporation:

Vulnerability
Rating

Rating Characteristics Recommended
Action

Critical A virus or worm which exploits the
vulnerability is in the wild or a virus outbreak
is in progress or imminent. A security breach
that exploited the vulnerability has been
otherwise identified

Patch all affected
system
immediately.

High The vulnerability can be exploited without
any user interaction (such as opening and
email or going to a hostile web site).

Immediately test
the patch and
apply to affected
systems within
on week.

Medium The vulnerability requires user interaction
(such as opening an email or visiting a
hostile website) to be exploited, but is
otherwise easily exploitable. Likelihood of
exploit being used in the wild by a worm or
hostile web sites is high.

Certify patch and
apply to affected
systems within
three weeks.

Low Vulnerability exploit is extremely difficult or
unlikely. Exploit of vulnerability has minimal
impact on critical systems

Certify patch and
apply to affect
systems at the
next
maintenance
opportunity.

In July 2003, Microsoft released Security Bulletin MS03-026, detailing a
vulnerability in the RPC service that runs on all windows systems. Corporate
Security immediately recognized the gravity of the situation and published an
alert to all internal IT owners.

SECURITY ALERT BULLETIN

Buffer Overrun in RPC Interface could allow code execution (MS03-026)
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS03-026.asp

SEVERITY

HIGH: Certify and deploy patch as soon as possible.

AFFECTED AREAS

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Windows NT 4.0
Windows NT 4.0 Terminal Services Edition
Windows 2000
Windows XP
Windows Server 2003

Impact of vulnerability:
Run code of attacker’s choice. Any system that can connect to TCP 135 can
exploit this vulnerability. No special user privileges are required.

Mitigating Factors:
An attacker has to be able to send packets to TCP Port 135 – this port is blocked
by the firewall protecting systems from direct attacks from the internet.

RECOMMENDED ACTION

ALL SYSTEMS RUNNING AFFECTED VERSIONS OF WINDOWS
 1) Deploy patch to development and certification environments
 2) Certify patch as soon as is possible
 3) Apply patch to production systems

DETAILS

For Complete technical details, see the Microsoft Security Bulletin at:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/securit
y/bulletin/MS03-026.asp

***If you feel this bulletin has not been sent to someone who should see it,
please forward it***

Once we became aware that this buffer overflow had been successfully
exploited, another reminder was sent to system owners indicating the situation
was becoming more serious and urging them to patch their systems.

It is also important to note here that when MS03-026 was originally released, a
patch for that vulnerability for Service Pack 2 on Windows 2000 was not
available. Here is where bad policy by Microsoft and bad policy by SoftCo
created a recipe for near disaster. In July 2003 SoftCo was focused on certifying
and deploying Windows XP to all end-users. Our current build was Windows
2000 Service Pack 2. Service Pack 3 for Windows 2000 was never even a
serious candidate for deployment because traditionally Service Packs had been
seen as highly problematic to certify and deploy while providing little benefit.
Microsoft, in an effort to keep customers on the most current version of their
software did not originally make the patch available for Windows 2000 Service

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Pack 2. Thus if customers wanted continued support via patches, they would
have not choice but to upgrade.

As a result, the Corporate Security team found itself in a race against the clock.
Thanks to the patch process that did have in place we were able patch all our
internal infrastructure systems by the time Blaster hit. However certifying and
deploying a service pack to over 5000 users, many of who were remote, and with
no automated software management system, in less than 30 days proved to be
an insurmountable task and Blaster hit before we were able to deploy Service
Pack 3 and the patch for Windows 2000. Lastly, Corporate Security had no real
way to enforce it’s guidelines for installing patches in a timely manner. Thus
server owners did not heed Corporate Security’s warnings and did not patch their
systems.

Microsoft finally did make a patch available for Windows 2000 SP2 on August
12th. But Blaster.A hit on August 11th. Fortunately, the Corporate IT Server
infrastructure was patched thanks the process we had in place. As a result, our
critical infrastructure systems withstood the virus and our core network services
and enterprise systems remained available. But Corporate Security ultimately
lost the race to patch the rest of the company. The result was three weeks of
scanning patching and re-scanning. We had further issues with remote
associates bringing infected computers on to client sites thus infecting our
clients. SoftCo lost countless dollars cleaning up after Blaster and the impetus
for automated patch management was born.

In the wake of blaster a few critical things happened:

• Management finally understood why patch management was important.
They made it a priority and the CIO mandated that all systems must be
patched regularly.

• Corporate Security was officially given the responsibility of virus and patch
management. Previously, these issues were left to the system
administrators and the help desk. While Corporate Security would still
need to work with Administrators and the help desk to ensure the work
was done, the responsibility for maintaining the infrastructure, ensuring the
integrity of our process and holding system owners responsible now lied
directly with Corporate Security.

Our primary constraint was that we had no budget for the project. We could
devote man-hours, creativity, spare hardware and free tools to the effort, but we
could not go out and spend any money.

The Solution: SUS, MBSA, MS Access, Partnerships and Policy
What Blaster made obvious was that SoftCo’s highest risk systems were
Windows systems. Windows Systems comprised 90% of the IT environment.
Further all our virtual users were on Windows and they were using those systems
to connect to our clients networks. Lastly Windows, being the dominant

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

operating system on the market is a very popular target for hackers. Based on
these risk factors – especially the damage that can be caused when a SoftCo
system infects one of its clients – Corporate Security decided to focus on
implementing a Windows based patch management system in order to reduce
our highest risk area. We considered including VMS and AIX patch management
in this process, but ultimately decided to address it as a separate project
because we felt that those systems were at a reduced risk and trying to address
those systems would slow down the progress we needed to make on our
Windows systems.

As mentioned, our primary constraint was cost. Being a relatively new team, we
had no real budget. Our mandate was to fix the problem, but we would be given
no dollars to fix it. What we could use was tools and equipment we had on-hand
and we could use free tools. Give those cost constraints, our decisions were
easy. We would use Microsoft’s Software Update Services solution to distribute
patches because it was freely available. We would validate the integrity of our
environment by using Microsoft’s Baseline Security Analyzer because it was
freely available. We would use tools that we already had available to us – Active
Directory and Microsoft Access - to enforce Automatic Updates settings, deploy
the Automatic updates client and analyze our scan data to ensure we were
delivering results.

Active Directory
One thing SoftCo did have going for us was that most of our systems were in
Active Directory. Those systems not in Active Directory were in a trusted domain
and were in the process of being moved into Active Directory. Thus we were
able to take advantage of Group Policy to configure and manage how most
systems would behave with respect to Software Update Services. For those
systems not in Active Directory yet, we would at least be able to get the
privileges necessary through the Windows trust relationships to scan those
systems to ensure they were patched.

SUS
To deploy SUS we were able to find spare hardware: one server class machine
and one workstation class machine, to run Software Update Services. The
workstation class machine would be used to deploy patches to certification
systems, while the server class machine would be used to deploy patches to
production and end user systems.

With respect to certifying end user systems, we created a separate
Organizational Unit for our Certification systems in Active Directory. This OU
was pointed to the Certification server. The certification process tested the install
and configuration process of the automatic updates client, the download and
install process for the patches and finally that the patches did not break any
applications on our base device image. In order to expedite the certification
process, application testing was done at a “high-level.” That means that we did

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

not do full regression testing on all our applications anytime we wanted to release
a patch. Rather, we did basic functionality testing of our enterprise applications.
This made sure that the patches did not break any functionality used broadly by
the user community. It also allowed us to certify patches faster.

Another problem we faced with SUS was that we had a highly mobile workforce.
We had roughly 2000 users that worked primarily on the road at client sites.
When they did connect back to SoftCo via a VPN, it was usually for file transfer
purposes, to check email (which very often was done with Outlook Web Access)
or to access an enterprise application for a specific purpose then get out. On
average, remote users did not spend much time connected directly to SoftCo’s
network. We were therefore concerned about whether remote users would
actually get the patches once they were released. In order to give our remote
users the best chance that they would get updates in a timely manner, we made
our SUS server available on the Internet.

In order to reduce risk of system compromise, we took the following security
precautions on our production SUS server.

• The firewall was configured only to allow port 80 traffic to the server from
the Internet.

• The server was not a member of our production Active Directory domain.
It was a stand alone system.

• The administrator account was renamed and a long, complex password
was given to the account.

• This was a dedicated system running SUS only and we ran the IIS
Lockdown Tool as part of the SUS installation.

With the SUS Server set up and ready to go, we were ready to start configuring
the SUS Clients.

The Automatic Updates Client
Workstations: Our automatic updates deployment was happening during the
middle of a Windows XP rollout and it was important to ensure both platforms
were protected. We decided to split XP and Windows 2000 systems into their
own organizational units. Since our base Windows 2000 image was at Service
Pack 2, we needed to ensure the automatic updates client was deployed to those
systems. Microsoft provided a free msi file to install Automatic Updates on
Windows 2000 Service Pack 2 systems. We assigned this file to all systems in
the Windows 2000 organizational unit via group policy. This ensured that all
systems got the client. Further, we provided instructions to manually install the
automatic updates client on end user systems. The help desk was then
instructed to verify the client installation on every call they received. This
approach helped us find systems that had fallen through the cracks.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Automatic updates clients were configured via group policy as follows:

The client was set up for automatic download and scheduled install at 3:00AM
daily. Additionally clients were configured to point towards our production SUS
Server and the NoAutoRebootWithLoggedOnUsers key was set to 1. These
settings allowed users the option of installing the updates once downloaded and
if they declined, the updates would install on the next boot.

Servers: Since SoftCo does not have established maintenance windows, we
could not configure automatic updates on servers to automatically install patches.
Further we had all our servers in one OU. So when we dealt with the servers we
decided to configure automatic updates to automatically download the patches
when they became available and notify that the patches were ready to be
installed. That meant that the patching process was still manual, but it was at
least a bit more streamlined. Instead of going to Windows update and
downloading the right patches to be installed, Administrators now just logged on
and clicked the automatic updates icon. It provided a good point of compromise
to allow us to push patches to our autonomous engineering groups – we would
not force an install on those systems, but we would distribute the patches. The
system owners then could determine the best time for them to install the patches.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Certification was accomplished on the server side by rolling patches
progressively through environments. At the time Automatic Updates was
implemented, we had a good communication process between the server team,
the development teams and the certification teams. Developer and certification
analysts would be notified when systems were patched and they were in turn
responsible for testing the stability of the back-end systems and troubleshooting
any issues.

Validating the integrity of the environment

Simply deploying SUS was not enough. Indeed, deploying SUS was only the
beginning of the project. The most important thing we had to do was to validate
to management that we were getting results – and we could just wait till we
survived the next worm better than Blaster to know we were protected.
Management wanted to be sure the patches were successfully being deployed to
the user population. Further we had to hold system owners accountable for
patching their systems. That means we had to have a good way to follow up with
them to ensure they were applying the patches in a timely manner. This is where
MBSA came in. We used MBSA in hfnetcheck mode to run scans of the entire
network and output the results to a tab separated file. These results were
imported into an Access database and analyzed. What we found is that we could
get a wealth of information about our environment through this process.

• We could tell which machines were missing the most patches
• We could tell which patches were not getting installed
• We were able to find rouge Windows machines by analyzing the error

messages output by MBSA
• We could compare the systems that MBSA found against the systems

covered by our Anti-Virus servers and from that find systems that were
not covered by anti-virus.

As mentioned earlier, one thing SoftCo had going for it was that the different IT
fiefdoms that existed were not entirely separate. Everyone was either in an OU
in Active Directory or in a trusted domain. This allowed Corporate Security,
along with CIO support to mandate that all systems had to allow Domain
Administrators in the Local Administrator group of every device. This was a
critical requirement to simplify and centralize the scanning process. Corporate
Security was also given the authority to remove devices from the network that did
not comply with our policy.

Configuring the Scans
We configured Microsoft Baseline Security Analyzer in hfnetchk mode to scan by
subnet. Our subnet design segregated networks by building and floor. Data
Centers also had their own groups of subnets as well as branch offices. Remote
access clients also had their own group of subnets.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Following is a sample batch file we used:
@echo off

REM This script will run an MBSA Scan for Building 1

sleep 5
net use e: \\server02\reporting

REM First Floor
c:\MBSA\mbsacli -hf -v -t 8 -s 2 -fq c:\Scripts\ignore.txt -nosum -r 10.1.11.1-
10.1.12.254 -x c:\MBSA\mssecure.xml -sus "http://susserver.SoftCo.com" -o tab -
f e:\TabFiles\Building1_1.tab
Sleep 10

REM Second Floor
c:\MBSA\mbsacli -hf -v -t 8 -s 2 -fq c:\Scripts\ignore.txt -nosum -r 10.1.21.1-
10.1.22.254 -x c:\MBSA\mssecure.xml -sus "http:// susserver.SoftCo.com" -o tab
-f e:\TabFiles\Building1_2.tab
Sleep 10

REM Third Floor
c:\MBSA\mbsacli -hf -v -t 8 -s 2 -fq c:\Scripts\ignore.txt -nosum -r 10.1.31.1-
10.1.32.254 -x c:\MBSA\mssecure.xml -sus "http:// susserver.SoftCo.com" -o tab
-f e:\TabFiles\Building1_3.tab
sleep 10

REM Fourth Floor
c:\MBSA\mbsacli -hf -v -t 8 -s 2 -fq c:\Scripts\ignore.txt -nosum -r 10.1.41.1-
10.1.42.254 -x c:\MBSA\mssecure.xml -sus "http:// susserver.SoftCo.com" -o tab
-f e:\TabFiles\Building1_4.tab
sleep 10

net use e: /del

As you can see from the batch file, one scan per floor was performed. Following
is a description of the switches that were used:

-hf: Use Baseline Security Analyzer in hfnetchk mode
-v: Display details for Patch Not Found, Warning and Note Messages
-t 8: Limit the number of threads when the scan was executing to 8. This
slowed down the scans and reduced the chance of the scans interfering
with regular network traffic
-s 2: Supress Note and Warning Messages. We were only concerned
with those patches that registered as Not Found.
-fq c:\Scripts\ignore.txt: This was used to create an ignore file for
known false positives and patches that were not necessarily a concern.
-x c:\MBSA\mssecure.xml: Specify the mssecure.xml file to use

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

-sus http://susserver.SoftCo.com: Check against updates approved in
the Corporate SUS Server. We were only interested in measuring what
we had already approved.
-o tab: Output the data in tab separated format
-f <file specification>: Output the data to the specified file

Once the scans had run, we were left with a large number of tab separated files.
In order to grab the data from these files, we decided to import them into an
Access database for analysis. Since there were a large number of tab files, we
made the decision to combine them first before importing them to make the
import process go more smoothly. Combining the files was accomplished by
using the “type” command and redirecting the output to another text file. For
example:

Type subnet1.tab >> end_user_subnets.tab
Type subnet2.tab >> end_user_subnets.tab
And so on…

These commands were added to a batch file so that could be run with one
command. Once the compiled file was put together, we opened it up in Excel to
make a few modifications prior to importing into access. First, we sorted by KB
number descending and removed all the extra column headings.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The next issue we had to deal with was that the Machine Name and IP address
were placed in the same column as shown below:

We decided we wanted the ability to run queries by subnet, if necessary, to
determine if there was a certain area of the network which needed more attention
than other areas. We used Excel’s “text-to-columns” functionality to create a new
IP Address column, as shown below:

Lastly, we used the find and replace functionality to remove the “)” from the end
of each IP Address. We now had our nicely formatted spreadsheet ready to
import into Access for further analysis.

Next, the file was imported into an access database so we could run queries to
measure our progress. We used the Import function in Access located under File
-> Get External Data. Upon initial creation of the table we made sure Access
used the first row as column names and we let access choose its own primary
key.

Once the file was imported, we queried for the following things:

The total number of missing patches (Vuln Query): This was reported on
primarily for its “thud” factor. Telling management that we are missing 20,000+
patches across the organization was a good way to get their attention.

Here is the SQL for the query from Access:

SELECT Vuln1.[Machine Name], Vuln1.[IP Address], Vuln1.Status,
Vuln1.Product, Vuln1.Bulletin, Vuln1.[Q Number]
FROM Vuln1
WHERE (((Vuln1.Status)="NOT Found"))
ORDER BY Vuln1.[Machine Name];

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

This was a simple query just to get us any row where the status of the patch was
“NOT Found.” The total number of rows returned by this query gave us the total
number of missing patches at SoftCo and the resulting aforementioned “thud”
factor. It was also used to calculate the average number of missing patches per
device.

The list of all systems with missing patches, sorted in descending order
(VulnPerServer): This was our hit list. We attacked systems on this list from the
top down to ensure our most vulnerable systems are getting attention.

Following is the SQL Statement for this query:

SELECT [Vuln Query].[Machine Name], [Vuln Query].[IP Address],
Count([Vuln Query].Status) AS CountOfStatus
FROM [Vuln Query]
GROUP BY [Vuln Query].[Machine Name], [Vuln Query].[IP Address]
ORDER BY Count([Vuln Query].Status) DESC;

In order to ensure we were querying only for missing patches, we built this query
on the aforementioned Vuln Query. This query grouped all the Status NOT
Found messages by machine name then counted them and sorted the data in
descending order.

Following is a small sample of the resulting output:

This query armed us with the necessary information to find our highest risk
unpatched systems and get them up to date. This was also the key to holding
systems owners accountable. Now when we released a bulletin telling people to
patch, we could actually find the people who ignored us and target them. We
could also take this information to management should we have to deal with
anyone who did not want to cooperate with us. This query proved to be very
effective in reduce the number of unpatched and often forgotten systems in our
environment.

A list of all missing patches, sorted in descending order: This list enabled
us to analyze which patches were not getting deployed and perform secondary
checks.

Following is the SQL Statement for this query:

SELECT [Vuln Query].Bulletin, [Vuln Query].[Q Number], Count([Vuln
Query].Status) AS CountOfStatus, [Vuln Query].Product

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

FROM [Vuln Query]
GROUP BY [Vuln Query].Bulletin, [Vuln Query].[Q Number], [Vuln
Query].Product
ORDER BY Count([Vuln Query].Status) DESC;

Conceptually, this query is the same as our VulnPerServer query. The only
difference is the “GROUP BY” clause. Instead of grouping by machine name and
IP address, we now grouped by bulletin, Q(or KB) number and product.

Following is a sample of the output from this query:

This query gave us a good snapshot of patches were not being deployed. This
then gave us an opportunity to validate the results to determine if we were seeing
false positives in our scans or if there was a problem in patch distribution.

Making use of MBSA Error Messages
During our research, we also learned a key thing about the error messages that
Baseline Security Analyzer gives. Following is a list of the most common errors
we received on our scans:

• Error: 200 - System not found. Scan not performed.
• Error: 235 - System not found, or NetBIOS ports may be firewalled. Scan

not performed.
• Error: 261 - System found but it is not listening on NetBIOS ports. Scan

not performed.
• Error: 301 - SystemRoot share access required to scan.
• Error: 451 - Admin rights are required to scan. Scan not performed.
• Error: 553 - Unable to read registry. Please ensure that the remote

registry service is running. Scan not performed.

Upon researching these messages, we found that Error’s 200 and 235 almost
always meant that a system was not using that IP address. We learned that
error 261 almost always was a piece of network gear or another non-Windows
system. The remaining errors (301, 451 and 553) were almost always a case of
the scan not having administrative access. Given this knowledge, we were able
to come up with a few more queries that gave us an even better understanding of
our environment.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The total number of systems scanned: This query was designed to give us a
count of all the Windows based systems our scans found.

Following is the SQL for this query:

SELECT Vuln1.[Machine Name], Vuln1.[IP Address]
FROM Vuln1
WHERE (((Vuln1.Reason) Not Like "Error: 2*"))
GROUP BY Vuln1.[Machine Name], Vuln1.[IP Address];

For this query we looked for any machine name and IP Address pair where the
Reason field did not contain an error in the 200 range. Thus we had a count of
roughly all the systems on the network that were windows systems, regardless of
whether we were able to successfully scan a system.

This number was then used in conjunction with our total missing patches count to
give us an approximate number of missing patches per Windows device on the
network. The measurement of average number of missing patches per device
gave us another indicator of the relative health of our Windows systems with
respect to missing patches.

List of Systems with Access Denied Type Errors: This query was used to
find those systems that Corporate Security was not able to successfully scan.

Following is the SQL Statement for this query:

SELECT Vuln1.[Machine Name], Vuln1.[IP Address], Vuln1.Reason
FROM Vuln1
WHERE (((Vuln1.Reason) Like "Error: 3*" Or (Vuln1.Reason) Like "Error:
4*" Or (Vuln1.Reason) Like "Error: 5*"));

This query gave us another “hit list” of systems Corporate Security could go out
and investigate. Once we found owners of the systems, we could work with them
to make sure our scans were able to run on the machines successfully. This
query was an outstanding tool in helping us identify rouge systems on the
network.

Lastly, we also were able to get a list of systems that reported to our anti-virus
servers. This list was imported to another table in access and a query was run to
find systems that responded to scans that were not reporting to any anti-virus
servers. Using this information, we were able to identify systems that either were
not using our corporate virus protection solution or those systems that had a
broken anti-virus client.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The Real Test: SASSER

By May of 2004, we had our processes working fairly well. We had enough data
to know our patch management systems were working. We were typically able
to certify and deploy patches to the organization within approximately two weeks
of their release. We had been pro-actively finding and patching our highest risk
unpatched systems. Because of how we used scans to identify systems without
anti-virus, we increased our coverage and discovered client/server
communication issues with our anti-virus system that were subsequently fixed.

On May 1st, 2004, the SASSER worm was released exploiting one of the
vulnerabilities described in MS04-011 released in April. Thanks to our
vulnerability classification process, we immediately recognized the urgent nature
of this vulnerability. We were able to execute on our certification processes and
within two weeks we were at 80% compliance and growing. Moreover, our most
vulnerable systems, our end users, were 90% patched during that two week
period. By the time SASSER hit, we had 5 total infections. It was a long day or
two for the security team, but for the rest of the company it was but a tiny blip.

Implementing patch management the way we did effectively reduced our greatest
area of risk – virus activity on unpatched systems. We were also able to
implement patch management in a way that let system owners retain the control
over their systems to which they had become accustomed. The measuring
processes we used provided the accountability we needed to ensure system
administrators were following the guidelines that we set out for them.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

References

Microsoft Corporation. “Software Update Services Deployment White Paper.”
January 2003. URL:
http://www.microsoft.com/windowsserversystem/sus/susdeployment.mspx

Microsoft Corporation. “Microsoft Baseline Security Analyzer (MBSA) 1.2.1 is
Available.” Rev 20.0. August 18th, 2004 URL:
http://support.microsoft.com/default.aspx?kbid=320454

Microsoft Corporation. “Buffer Overflow in RPC Interface Could Allow Code
Execution (823980).” V2.0 September 10th 2003. URL:
http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx

Microsoft Corporation. “Security Update for Windows (835732).” Version 2.1.
August 10th, 2004. URL:
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx

Cruz, Martin. Trend Micro Corporation. “WORM_MSBLAST.A.” August 16th,
2003 URL:
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_MS
BLAST.A&VSect=T

Sapaden, Bernard. Trend Micro Corporation. “WORM_SASSER.A” May 6th,
2004: URL:
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_SA
SSER.A&VSect=T

