
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

The Challenge of Security When Deploying an 
ASP.NET Application to the Internet 

 
 
 
 
 
 
 
 
Jared Waltzer 
November 16, 2004 
GIAC Security Essentials Certification (GSEC) 
Practical Assignment Version 1.4c, Option 1 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 2 

Table of Contents 
Abstract............................................................................................................... 3 
Introduction ......................................................................................................... 3 
Authenticating the User ....................................................................................... 4 

Windows Authentication................................................................................... 4 
Passport Authentication................................................................................... 5 
Forms Authentication....................................................................................... 6 
Authentication and Resources not Controlled by ASP.NET ............................. 6 

Securing Communication .................................................................................... 7 
Prevent Specific Attacks...................................................................................... 7 

Buffer Overflow................................................................................................ 8 
Cross site Scripting prevention ........................................................................ 8 
SQL Injection Prevention ................................................................................. 9 
Canonicalization .............................................................................................. 9 

Do Not Leak Information to the Client................................................................ 10 
Conclusion ........................................................................................................ 10 
References........................................................................................................ 12 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 3 

Abstract 
The purpose of this paper is to outline certain security concerns that need to be 
addressed when deploying an ASP.NET application on the World Wide Web. In 
particular, it will cover how to prevent sensitive data from falling into the wrong 
hands by means of authentication and secure communication. It also explains 
how sensitive information can be protected by preventing common security 
attacks and not leaking data when an error condition arises in the application. 

Introduction 
With ASP.NET, Microsoft has provided a powerful framework to develop web 
applications for company intranets, extranets, and the Internet.  However, there 
are several things to consider before deploying an application to the World Wide 
Web.   

One consideration is what Authentication mechanism will be used.  Some sites 
may be designed to be accessible to any visitor, and contain data we will allow 
anyone to see. But, often, we will also need to restrict certain resources and data 
to specific users. To know whether someone should be able to access a certain 
resource, we first have to know who they are by means of authentication.  
However, the more secure authentication mechanisms available to ASP.NET do 
not always work well in an Internet setting. 

Another consideration is how to get sensitive data from the server to the client.  
This is extremely critical as this information is not being transferred over a private 
network, but over the public Internet where there is an even greater chance of 
someone trying to intercept our sensitive information. 

By putting our application on the Internet we are also greatly increasing its 
exposure to specific hacking attacks such as buffer overflows, cross-site scripting 
(XSS), SQL injection, and Canonicalization.  These attacks, if successful, could 
allow sensitive information to fall into the wrong hands.  Thus an ASP.NET 
application on the Internet needs to take precautions to prevent these attacks. 

Finally, if an application should error or fail, it can reveal sensitive information. 
Thus, care should be exercised so that the application does not provide a client 
with valuable information as a result of an error condition. 

While these matters are hardly the only security considerations when deploying 
an ASP.NET application to the Internet, they are certainly critical. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 4 

Authenticating the User 
If the pages you create for your website are to be public and are designed to be 
accessible to any visitor, the default authentication and authorization settings for 
ASP.NET pages may be sufficient. They allow anyone to access the pages from 
anywhere on the network or Internet. (Anderson) 

However, there is often content that we don’t want readily available to the public 
in general.  To determine whether a visitor should have access to a specific page 
or resource on your site, you first have to determine who it is that is trying to 
access that resource.  To do this, the client’s identity must be validated. This act 
is called authentication. (Peiris)   

ASP.NET provides three types of authentication in addition to the Default IIS 
(“None”) authentication.  They are: 

1) Windows built-in (“Windows”) authentication, 

2) Passport-based (“Passport”) authentication, and 

3) Forms-based (“Forms”) authentication  

(Anderson)  

The challenge of choosing a method for authentication for an ASP.NET Internet 
application is choosing one that will be compatible with the greatest number of 
potential clients, while at the same time protecting sensitive resources and data, 
including the client’s credentials. 

Windows Authentication 

Windows authentication provides the most secure way of controlling access and 
securing your ASP.NET applications. With Windows authentication, IIS performs 
the initial authentication.  Requested resources are then accessed under the 
context of this account. For many reasons Windows authentication is an 
excellent choice for authenticating users on a corporate intranet. (Anderson) 

However, it does present some issues for the Internet.  One is that for each user 
that will use the Internet, an account needs to be created in Windows, and the 
user needs to be provided with that username and password so that they may be 
able to log onto the site. This means that you need to know in advance which 
users will be accessing your site. (Anderson)  



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 5 

Additionally, when choosing Windows authentication, you additionally need to 
choose how IIS will perform the initial authorization. The choices are Basic, 
Digest, or Integrated Windows. Basic Authentication, which is based on a 
proposed Internet standard, is supported by most browsers found on the Internet.  
It requires the user to supply credentials in the form of a user name and a 
password to prove their identity, and then the user’s credentials are transmitted 
from the browser to the Web server in an unencrypted Base 64 encoded format. 
Because the credentials are passed unencrypted, however, the user names and 
passwords can easily be intercepted with a network sniffer. (Anderson)   

Digest authentication is like Basic authentication, but more secure in that instead 
of transmitting the user’s credentials in unencrypted form, it sends a hash of the 
credentials. The drawback is that Digest Authentication requires Internet Explorer 
5.0 or later and specific server configuration. Integrated Windows Authentication 
uses a cryptographic exchange based on Kerberos or NTLM  to confirm the 
identity of the user. It is also only supported only by Internet Explorer. (Anderson)   

As we can see, the two most secure methods are often not feasible for a site on 
the Internet because they severely limit compatibility with the potential target 
audience by requiring Microsoft’s Internet Explorer. Although, a corporation may 
mandate the use of Internet Explorer for all users on its corporate intranet, the 
World Wide Web presents a different situation.  Users may want to access your 
site with any one of a number of alternative browsers including, but not limited to, 
Netscape, Mozilla, Firefox, Opera, or Safari. 

What is the solution for using Windows Authentication on the Internet?  Basic 
Authentication provides the best compatibility with the largest numbers of users, 
but it should never be used alone because of its use of unencrypted credentials.  
However, when combined with a secure channel (most commonly SSL) to 
encrypt the transmission, it becomes feasible for Internet applications. When 
using Basic authentication, IIS should be configured to require that SSL be used 
not only on the logon page, but all subsequent requests because credentials are 
passed with each subsequent request.  (Meier) 

Passport Authentication 

Passport authentication uses Microsoft’s “Passport Service” to authenticate users 
on any passport-enabled site, anywhere on the Internet. It enables the use of a 
single-sign-on across multiple sites on the internet, even ones that you may not 
provide yourself. When a user logs onto a participating site, their browser sends 
the credentials to the passport service, which then authenticates them and 
places a secure cookie on their machine allowing them to access participating 
sites for the length of the session. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 6 

Unfortunately, passport authentication requires a paid subscription to the service, 
and special software installed on the web server. (Anderson) This will no doubt 
limit its use for many potential Internet web applications. 

Forms Authentication 

Forms-based (“Forms”) authentication is the most popular authentication choice 
for applications that will be deployed to the web. Unauthenticated requests are 
redirected to a form page where the user can provide their login credentials.  
Upon authenticating the request, the system issues a cookie that contains their 
credentials that the browser then sends with all subsequent requests. (Anderson) 
This form of authentication is also often referred to as cookie-based 
authentication. 

Forms authentication has many advantages for Internet applications. For one, 
forms-based authentication allows you ditch the ugly Windows Logon dialog, and 
replace it with an attractive custom form. (Anderson) Also, it is compatible with a 
large number of web browsers. Finally, it is ideal because it does not require 
users to have Windows accounts--any data store can be used to validate user 
credentials, including a SQL Server database, which is perhaps the most 
common solution. (Meier) 

Although Forms Authentication has many points in its favor, there are still 
considerations that should be kept in mind. Again, with this solution, you will want 
to use it in combination with SSL, at least to protect the initial logon credentials.  
On subsequent requests, you will also want to use SSL  to protect the forms 
authentication ticket. Alternatively, you can encrypt the form’s authentication 
ticket by configuring the protection attribute of the <forms> element to “All” or 
“Encrypt” in the web.config file, and by using the Encrypt method of the 
FormsAuthentication class to encrypt the ticket. (Meier) 

Authentication and Resources not Controlled by ASP.NET 

One thing to remember when using an ASP.NET authentication mechanism, is 
that the authentication process used by ASP.NET only applies to resources 
associated with ASP.NET.  This means that access control is only applied to files 
defined as “application” files. These include such files as .aspx pages, .ascx 
components, and .cs and .vb code files.  It does not apply to resources such as 
images, Word documents, zip files, PDF files, and other types of files. (Anderson) 

This presents an obvious security problem if you have if you have non-
application files that you wish to protect. Although, the user would likely not know 
where such resources are located, relying on obscurity is not a good security 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 7 

practice. Potentially, a user could guess the path to such an unsecured resource, 
effectively circumventing authentication. 

A good practice would be to never place anything in the Web root that you aren’t 
absolutely comfortable letting a hacker see unless the file extension is mapped to 
an ISAPI handler that restricts access to files such as the previously mentioned 
.aspx, .ascx, .cs, and .vb files. (Adams) When using Windows authentication, you 
could restrict access to such files by using standard Windows techniques and 
ACLs. (Anderson)  To secure images and other such files under Forms 
authentication, you may need to create a special gatekeeper such as described 
at http://www.codeproject.com/aspnet/imagehandler.asp. (Coleman) 

Securing Communication 
Restricting access to certain users is one way of protecting sensitive information.  
However, often sensitive data will be passed between an authenticated client and 
a web application over the Internet. This sensitive data could include a user’s 
credentials as mentioned in the previous section, possibly credit card numbers, 
banking transactions, or any other piece of sensitive information. Certainly, 
transmitting such information over a public resource such as the Internet in an 
unencrypted form would be unwise, as it would be susceptible to interception. To 
guard against unwanted disclosure of and unauthorized modification of the data, 
there must be secure communication between the client and server application. 
(Meier)  

A basic requirement for security on the Internet is privacy. That is, it is essential 
that sensitive data transmitted over the web remains private and confidential. 
This is usually accomplished by means of encryption, (Meier) and the standard 
for such secured communication on Internet is SSL. That remains true when the 
information is served over the World Wide Web by an ASP.NET application. SSL 
is used to establish the secure channel between client and server.  

SSL configuration occurs on the IIS Web server, and requires a server 
authentication certificate to be installed on the server. All connections between a 
browser and the server that pass sensitive information, including any 
unencrypted user credentials, should be secured with SSL. 

Prevent Specific Attacks 
A number of attacks may come upon an ASP.NET application that is exposed to 
the Internet.  Many of these attacks are done by embedding malicious strings in 
query strings, form fields, cookies, and HTTP headers.  These attacks may 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 8 

include buffer overflow, cross-site scripting (XSS), SQL injection, and 
Canonicalization, among others. (Meier) 

Fortunately, the risk from such attacks can be minimized with proper care.  In fact 
risk from all of these attacks can be practically eliminated with proper input 
validation. An application should validate and clean all user input before 
processing it, and should never directly output user input to the browser. 
ASP.NET’s powerful built-in validator controls can be very helpful in this regard to 
clean user input before processing it. (Adams) Input should be validated for type, 
length, format and/or range. (Krishnan)  

Buffer Overflow 

In a buffer overflow attack, an attacker sends too much data, and if the program 
does not check the size of data, the extra or overflowed data may be executed as 
if it were a set of command instructions. Fortunately, ASP.NET minimizes the 
threat of this happening, because in managed .NET, code array bounds are 
automatically checked.  Thus, some may feel that there is no need for concern 
with buffer overflows in ASP.NET. However, ASP.NET is still susceptible to 
buffer overflows where managed code calls unmanaged APIs or COM objects. 
(Krishnan) 

Thorough input validation will eliminate the risk of buffer overflows.  Additionally, 
a good practice is to limit the application’s use of unmanaged code by sticking to 
.NET’s managed API whenever possible, and when calling unmanaged code 
check all values that are being passed. (Krishnan) 

Cross site Scripting prevention 

In a cross-site scripting (XSS) attack, someone could possibly be able to hijack 
information from visitors of your site by injecting client-side scripting into your 
application.  If you do not validate the input, you could be allowing your site to 
become a tool for someone looking to do a malicious act such as hijacking 
cookies, or a user’s session information. (Santry) 

Again ASP.NET’s validator controls can be helpful in cleaning user input.  
Additionally, another form of protection is provided by ASP.NET 1.1, and that is 
page validation.  This is done by adding a “ValidateRequest” attribute to the page 
itself, or in the web.config.  “ValidateRequest” checks for any type of script or 
html characters. With this validation in place, if someone were to enter a script 
into your application, no damage would occur, only an error would be displayed. 
(Santry) 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 9 

SQL Injection Prevention 

SQL injection attacks again take advantage of code that does not filter input that 
is being entered into a form.  A vulnerability can exist when direct user input is 
used to generate dynamic SQL that is executed on the back-end.  An attacker 
could enter SQL commands, or partial SQL commands, into a login form and 
receive potentially sensitive information.  If the correct SQL was entered into a 
login form, a hacker could possibly receive a positive logon allowing access to 
your site.  Inserting malicious SQL into any form that is not validated could 
possibly reveal database structure, user names and passwords, or other 
sensitive information from the database.  Again the first key to preventing this 
attack is to validate all user input to make sure the data entered matches the type 
of data expected. (Santry) 

You can add another layer of protection when using numeric fields in a database-
driven application, by actually casting the variables to a numeric type before 
using them.  If a user places something nonnumeric into the field an exception 
will be thrown. (Adams) 

SQL injection becomes a risk when using dynamically generated SQL. Thus, to 
prevent SQL injection, avoid dynamically generated SQL in your code.  Instead 
use parameterized queries which make SQL injection impossible. (Santry) 

Stored Procedures offer even more protection.  By using a stored procedure you 
can provide greater control of how the database is accessed.  Execution of 
stored procedures should be limited to specific accounts, and those accounts 
should be allowed to only execute stored procedures. You do not need to provide 
the account any other permission, such as write access. Thus any interaction to 
the database is always done using SQL in a stored procedure which you wrote. 
(Santry) 

Canonicalization 

Canonicalization is the process by which various equivalent forms of a name can 
be resolved to a single standard name, or the "canonical" name. For example, on 
a specific computer, the names c:\dir\test.dat, test.dat, and ..\..\test.dat might all 
refer to the same file. Through canonicalization such names are mapped to a 
name similar to c:\dir\test.dat. (Ballard) 

An application is susceptible to canonicalization issues when it makes a security 
decision based on the name of a resource that has been received as input. Files, 
paths, and URL are all susceptible to this type of vulnerability. To prevent this, 
avoid accepting file names as input, and if there is a need for accepting input, 
convert the name to its canonical form before providing security decisions.  



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 10 

Additionally, make sure the filenames that are received are well-formed and 
within your application’s directory hierarchy. (Krishnan) 

Canonicalization issues are involved in a recently reported on security 
vulnerability in ASP.NET that could allow an attacker to gain access to secured 
content. If the attacker includes a backslash ("\") in the URL they can bypass 
authentication and directly access a resource.  Microsoft recommends that Web 
site owners and developers programmatically check for canonicalization 
problems, or install a recently released HTTP module that will protect all 
ASP.NET applications on the server against known URL canonicalization 
problems. (Microsoft) 

Do Not Leak Information to the Client 
Secure exception handling can be used to prevent valuable system-level 
information from being returned to the client. In the event of a failure, do not 
expose unnecessary information such as stack trace details.  Instead, return 
generic errors to the client.  Detailed error messages can be sent to an error log 
with the client only receiving a minimal message. (Meier) 

Use exception handling to catch exceptions, which will prevent your application 
from being left in an inconsistent state that may lead to information disclosure. 
(Meier) 

Before placing an ASP.NET web application into production on the Internet, first 
check the configuration.  Disable tracing and debugging support, and make sure 
the “customErrors” tag in the web.config file is not set to “off.”  This will help 
prevent leaks of information such as filenames and paths, and possibly even 
source code, when an error occurs in the application. (Adams)  You likely do not 
want your users helping you debug your application, so why would you want to 
provide them with debugging information. (Santry) 

Conclusion 
When deploying an application on the World Wide Web it is important that 
visitors be able to access information that we decide they should have access to, 
while preventing access to sensitive information to which they should not have 
access.  

This will require implementing an authentication mechanism in ASP.NET that is 
compatible with a wide variety of web browsers, and yet able to protect sensitive 
data. Additionally, it will require the use of secure channel to transmit sensitive 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 11 

information such as user credentials.  Most commonly this will mean the use of 
Forms authentication in combination with SSL. In the case of Windows 
authentication, this will usually mean using standard Basic authentication in 
combination with SSL. Additional precautions are required to prevent 
unauthorized access to non-application files such as images and PDF 
documents due to limitations in ASP.NET. 

Diligent user input validation is essential to minimize risks from attacks such as 
buffer overflow, cross-site scripting (XSS), SQL injection, and Canonicalization. 
Additionally, errors want to be handled in a graceful manner by use of 
exceptions, and ASP.NET should be configured not to reveal sensitive 
information in error messages. 

By addressing these challenges at the ASP.NET application level, your ASP.NET 
application is closer to being ready for the World Wide Web.



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 12 

References 

Richard J. Anderson, Brian Francis, Alex Homer, Robert Howard, David 
Sussman, and Karli Watson. “Professional ASP.NET 1.0: Securing ASP.NET 
Applications, Part 1.“ 24 May 2004. URL: http://securityadvisor.info/doc/14117 
(12 November 2004). 

Peiris, Gayan. “Developing Secure Web Sites with ASP.NET and IIS (Part I).” 4 
March 2003. URL: http://www.c-
sharpcorner.com/Code/2003/March/SecureSiteWithASPNET.asp (12 November 
2004). 

J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy. “Building 
Secure ASP.NET Applications: Authentication, Authorization, and Secure 
Communication.” November 2002. URL: 
http://msdn.microsoft.com/security/securecode/dotnet/default.aspx?pull=/library/e
n-us/dnnetsec/html/secnetlpMSDN.asp (12 November 2004).  

J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla 
and Anandha Murukan. “Improving Web Application Security: Threats and 
Countermeasures.” June 2003. URL: 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetsec/html/ThreatCounter.asp (12 November 2004). 

Adams, Lamont. “Learn to secure your ASP.NET applications with these tips.” 8 
July 2002 URL: http://builder.com.com/5100-6387-1044869.html (12 November 
2004). 

Coleman, James. ”Securing Images under Forms-Based Authentication in 
ASP.NET Applications.” 22 October 2002. URL: 
http://www.codeproject.com/aspnet/imagehandler.asp (12 November 2004). 

Krishnan, V.R. “Securing your ASP.NET web application.” 31 August 2004. URL: 
http://www.c-sharpcorner.com/Code/2004/Sept/securewebappl.asp (12 
November 2004). 

Santry, Patrick. “Securing Your ASP.NET App Against Cross-site Scripting (XSS) 
Attacks.” URL: 
http://www.wwwcoder.com/main/parentid/258/site/2885/68/default.aspx (12 
November 2004). 

Santry, Patrick. “Preventing SQL Injection Attacks.” URL: 
http://www.wwwcoder.com/main/parentid/258/site/2966/68/default.aspx (12 
November 2004). 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 13 

Ballard, Paul. “Canonicalization Security Vulnerability in ASP.NET.” 6 October 
2004. URL: http://www.theserverside.net/news/thread.tss?thread_id=29248 (12 
November 2004). 

Microsoft Corporation. “What You Should Know About a Reported Vulnerability in 
Microsoft ASP.NET.” 5 October 2004 updated 15 October 2004. URL: 
http://www.microsoft.com/security/incident/aspnet.mspx (12 November 2004). 

Microsoft Corporation. “Checklist: Securing ASP.NET.” January 2004. URL: 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/secmod/html/secmod98.asp (12 November 2004). 


