
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Security Testing of web applications : Best
Practices and Tools

Author : Sridhar Ponnapalli
Date Submitted : November 14, 2004

GSEC Practical Assignment
Version v.1.4c

Option 1

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 2 of 25

1. Abstract

In today’s increasingly inter-networked world, businesses heavily depend on web-based
applications to conduct their business, and bring revenue. Applications like company
web sites and portals, CRM and sales sites, web services, and EDI have become the
backbones for successful running of a modern organization. As sophisticated as today’s
applications are, the hackers or the “Bad guys” have become even more sophisticated
to exploit any possible application vulnerabilities, to compromise company’s resources
and to damage company’s ability to conduct business. In the lifecycle of software
development, the architects and designers may come up with a secure architecture and
design, developers may write secure code, but if security is not made a part of testing, a
functional but vulnerable system will be rolled out, with a potential to cause huge
revenue losses.

This paper proposes best testing practices and useful tools for security testing of web
applications against various vulnerabilities, and within different components of web
applications, that can wreak havoc on the critical infrastructure of a company. It also
refers tools that can be handy in performing security testing efficiently. “web
applications” for the purpose of this paper include any intranet, extranet or internet
applications built within an organization, that face internal or external customers. The
targeted audiences for this paper are testing or Quality Assurance team, developers,
security professionals, or any IT professional from an organization that participates in
security testing of web applications.

2. Security testing – A neglected child

Most corporations usually make significant investments in robust network security
solutions, like firewalls, IDS (Intrusion Detection Systems), IPS (Intrusion Prevention
Systems). Most organizations also invest precious resources in various essential
security efforts like risk assessments, certification, security architectures and policies,
penetration tests etc, but are usually tempted to ignore or give low priority to thoroughly
testing web applications for security holes, prior to deployment. While general or
network level security tests bring out gaps like application server patch levels,
vulnerabilities in third party software etc, they are not aimed at revealing application
layer security flaws in home grown web applications. Organizations need to understand
that vulnerable applications can be a hacker’s gateway into private networks. It is an
established fact that dealing with a major or even a minor attack after it hits, can be very
expensive and can severely undermine the reputation of an organization. This makes it
imperative that organizations mandate security testing without exceptions, for all of their
web applications prior to deployment, and make security testing an integral part of
Software Development Lifecycle, from a very early stage.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 3 of 25

3. Attack Types and Testing Recommendations

This section discusses some of the most common threats web-based applications face
in today’s world, and provides testing recommendations, for each threat. Each sub-
sections also refers tools that can be used to test web applications for specific
vulnerabilities, and some of the referred tools are discussed in detail in section 6 Useful
tools for web application security testing.

This section is not intended to be a comprehensive list of threats for web-based
applications, and threats/vulnerabilities that are not related to web applications (like
network vulnerabilities etc) are beyond the scope of this discussion.

3.1 Buffer overflow

“Buffer overflows account for nearly 80% of the security vulnerabilities reported in
software” (Whittaker & Thompson, p.171)

Problem : Buffer Overflow occurs when larger input data is provided to a program than it
is prepared to hold. For example, if a string is declared to be of size 20 in the
application, and a 40 character input is provided to that, this may result in a buffer
overflow. The excess data overflows or spills into adjacent buffers, which is the program
area, causing the application to surrender control to the user. An attacker may use this
cleverly to insert his/her own covert commands into the program stack, by making them
a part of the large input provided, and run them on the host server. Once an attacker is
able to run one or more rogue processes on the host server, in most cases, he/she can
get root or Admin rights on the host server, which can lead to catastrophic
consequences. Even if the attacker is not able to run malicious code on the host server,
harm can still be done if the attacker can make the system hang by repeated
invocations using large input values. This can lead to Denial of Service attack, which is
discussed later in the document. Though buffer overflows are more common in
applications built using C/C++ programming languages because of a lack of inherent
bounds checking on variables and arrays, they are nevertheless possible with other
programming languages too (like Java, VB, Perl etc).

Testing Recommendations :

 Testing team needs to understand the boundary conditions for each input field.
Application developers should provide the testers with the size, type and format
of each input field along with the expected behavior when boundary conditions
are violated on the field. Testers should then prepare test cases based on this
information and run those test cases to check the behavior of the application
when boundary conditions are met or exceeded.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 4 of 25

 Testers should run test cases for each input value, where the type of data differs
from the type the application is expecting. For example, making sure the
application gracefully handles situations in which an alphabet is passed for input
where the application is expecting a numeric.

 As Buffer Overflow attacks are platform specific (dependent on hardware, OS,
system software), chances of attack can be reduced by denying an attacker the
platform-related knowledge. Negative testing needs to be performed to make
sure the application is not giving away platform related information, for malicious
requests. This topic is covered in more detail in the sub-section Improper error
handling.

 Testing for buffer overflow should include making sure that any overflows are
detected and handled by the application at a very early stage in the process, and
not after quite a bit of processing. Bounds-checking for input variables should be
done by client-side code or at least, at the very beginning of server-side code,
rather than at the database level, after already running some business logic at
the application-level.

 Testers are encouraged to test the application by inputting different types of
Unicode characters like Japanese and Chinese characters, by copying these
from other web sites, as sometimes Buffer overflow can be caused by feeding
such characters to the application.

Several code scanning tools are available in the market that can be used to detect
buffer overflows in application code. Cenzic Hailstorm and Watchfire AppScan are two
such tools, and both these are discussed more in section 6.

For more information regarding buffer overflow attacks and countermeasures, please
refer to the following articles.
http://www-106.ibm.com/developerworks/security/library/s-overflows/
http://www.rsasecurity.com/rsalabs/node.asp?id=2011

3.2 Denial of service (DoS)

Problem : Denial of service is an attack on a web site or service, inundating it with high
number of malicious requests to consume all of the system or network resources, to
make the site/service unavailable to legitimate users. For example, a hacker may
generate thousands of automated requests to a web site that provides free e-mail
service on the internet, filling up available space, and shutting down the service. Denial
of service attacks can lead to lost revenue, and impaired customer confidence. The
most common target resources for this attack include memory, network bandwidth,
application connections, database connections, CPU or disk space. In case of web
applications that haven’t been load-tested, a denial of service scenario can occur even
without any malicious attempts, because of lack of available resources to handle all
legitimate users, i.e. many innocent concurrent users can bring the system/service
down.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 5 of 25

Denial of Service may sound as an entirely network related vulnerability, but is
discussed in this paper, as applications have a good role to play in being designed,
developed and tested to be resistant to these types of attacks. So, only the application
side of DoS attacks is covered here, and discussion of pure network type of DoS
attacks like port flooding or SYN flooding, and of the tools to prevent or detect such
attacks, is beyond the scope of this paper.

Testing Recommendations :

 Implementing client session timeouts and releasing associated resources is an
important factor in securing a web application against DoS attacks. Without client
timeouts, the application can reach its thresholds faster, as it keeps all sessions
open, consuming valuable resources. This should be tested thoroughly by the
testing team to make sure client sessions are being timed out, and resources are
being released in a timely manner.

 Testers should understand from design, the exhaustion limits on resources such
as memory, CPU, disk, database connections or any other application resources.
Testing should include simulating load for the expected number of maximum
concurrent users, effectively meeting or exceeding resource limits to validate the
application behavior in these cases. It may not be trivial to simulate high loads,
but should be possible, using automated tools, as referred subsequently in this
section

 Testers should check if the application is enforcing user-level thresholds as
against global thresholds, wherever possible. User-level thresholds are better
because they make it difficult or sometimes impossible for a hacker to consume
other users’ resources. For example, by setting a database parameter that
determines the maximum number of concurrent database connections that can
be open per user, a hacker can only fill up his connections, but cannot consume
connections from other legitimate users.

 When errors occur in a web application, test to verify that application exits only
after completing all housekeeping tasks. For example, closing any open files,
open database connections, database cursors opened by application etc. If not,
this increases the likelihood of accidental denial of service, without any malicious
attempts

 Ensure that redundancy of service is implemented in the application, but keep in
mind that if network bandwidth is choked as a result of DoS attack, failover
mechanisms will need a whole separate redundant network for business
continuity. Testing redundancy can be accomplished by bringing down the
components of the web application one at a time, and checking the application
response.

 Testing team should check the verbosity of the logs generated, which is usually
made a configurable parameter (turn on/off, or different levels). If verbose output
is always on, or if certain modules of the application generate extremely verbose
log entries, an attacker may exploit this, to fill out the disk space very quickly

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 6 of 25

 As mentioned in the CERT article referenced below, testing should include
verifying that emergency procedures are defined and understood, to handle
situations where a DoS attack disables most or all of the privileged logins of a
server, through failed login attempts.

 It is increasingly becoming a common practice to incorporate anti-automation
techniques in web sites and applications, to prevent DoS attacks, which almost
always need automation to succeed. Anti-automation is a technique that prevents
automated programs from exercising the functionality of a web site, service or
application, by having a test that only a human would pass. For example, when
you try to create a new account with Yahoo, you are required to enter the code
from an image displayed, failing which you won’t be able to register. If
implemented, anti-automation techniques should be tested extensively by testing
team, by trying to invoke the application through scripts or programs.

Load testing tools like Mercury LoadRunner
(http://www.mercury.com/us/products/performance-center/loadrunner/),
or Empirix e-Load
(http://www.empirix.com/Empirix/Web+Test+Monitoring/testing+solutions/web+applicati
on+load+testing.html) can be used to simulate high enough user load to meet or exceed
boundary conditions, to verify the application behavior under high load.

For more information on Denial of Service vulnerability, please refer to the following
CERT article
http://www.cert.org/tech_tips/denial_of_service.html

3.3 Improper error handling

Problem : Every application handles error conditions and throws out error messages. If
the error messages from a web-based application are too detailed, this may make the
application vulnerable, as hackers will attempt to learn valuable system related
information, which will mean a high “Hit Rate” for an attack. For example, returning the
source code of a failed SQL statement, name or version of the web or application
server, or operating system version on which the application is running, will provide an
intruder with crucial information that can increase the likelihood of a successful attack.
Denying sufficient knowledge of the operating platform of a web application handicaps
an attacker attempting almost any type of attack on applications.

Testing Recommendations :

 Development team should prepare and pass on to the testing team, a
comprehensive list of error conditions along with the detailed messages output
by the application, as a part of test entrance criteria. This list should contain not
only functional errors, but also internal conditions like database or web server
being down, network errors, out of memory errors etc. Testers should work with
development and other teams as required, to create these scenarios for testing.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 7 of 25

 Application should be tested for all types of error messages, even the ones that
may not be documented in the design documents, like null pointer exceptions,
core dumps, failed database connections etc. There is no definite checklist for
this type of testing, except trying arbitrary input values, URL strings, parameters
etc with the application, preferably ones that include non alphanumeric
characters, and validating that the system messages are generic enough.

 Testing team should validate that web applications are following a principle of
most generic error message. For example, applications should provide
messages like problem processing request. Please contact…, wherever possible,
while providing more detailed diagnostic information in the log files, to help
troubleshooting.

 Sometimes, detailed messages divulging potentially harmful system information
are found not on the web page that appears, but on a linked page or in the HTTP
header. Testing team should check all links, as a part of negative testing, to
verify such gaps are not left unnoticed. Testing team should also work with
developers to dump HTTP request and response headers into text files, to
ensure they don’t contain error messages revealing sensitive information.

 It is a very common practice for an application to have debug messages
providing a lot of information, during the build stage. Testing should validate that
all the debug messages are removed from the application, prior to deployment.

Cenzic Hailstorm is a tool presented in section 6, and can be used to detect improper
error handling vulnerability in application code. Alternatively, generic test scripting tools
like eValid from Software Research Inc (www.soft.com) can be used to create scripts to
generate all kinds of errors from the application with various input values, and validate
resulting messages and HTML for any leakage of confidential information

For more information on improper error handling vulnerability, please refer to the
following OWASP article
http://www.owasp.org/documentation/topten/a7.html

3.4 SQL injection attack

Problem : SQL injection attack occurs when a hacker “injects” malicious code into
dynamic SQLs through web forms, to be queried directly against the database. A
successful SQL injection attack exploits code that doesn’t properly filter input, and can
inflict quite a bit of damage, like destroying the database or bringing down the web
application. To study how SQL injection works, consider the following piece of code,
used to build a dynamic SQL

myQuery = “select username from users where username = ‘” & inUser & “’ and password = ‘”
& inPassword & “’”

Normally, if you enter a valid login/password, this code builds a query like the following,
to be run against the database.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 8 of 25

select username from users where username = ‘abc’ and password = ‘xyz’

If the user enters abc‘ or 2 > 1-- into login field, the SQL gets changed to

select username from users where username = ‘abc’ or 2 > 1 -- …..

‘--‘ comments out the rest of line in the query in some database servers (for example,
SQL server). In this context, the last query above will be always true because of the
universally true predicate 2 > 1 being OR’ed with any other condition, and may bypass
authentication to allow access to the web site or the database, even if a blank or wrong
password is provided. Once an attacker is able to run arbitrary queries at will, in most
databases, he/she can then run special database procedures that grant them command
execution privilege at OS level.

Testing Recommendations :

 Testing by inputting special characters should be made a part of the test cases to
validate that the application is handling known attack methods, and denying
access to an attacker. Try typing characters like -- (double-hyphen), ; (semi
colon), ‘ (single quote), “ (double quote) and other similar characters of special
meaning in different flavors of SQL (Oracle, MS SQL server etc), into input fields
of the application. The next step could be to proceed with appending universally
true expressions like the one mentioned above, at the end of all valid input fields
using different expressions coupled with a variety of SQL keywords like AND,
OR, UNION etc, to simulate an attack. SQL injection attacks can also happen by
injecting malicious code into the URL. For example, by adding ?userid=xyz’ or 2
>1-- at the end of a URL that is expecting userid as the first parameter, may give
away access to the user, without a valid password

 Testers are encouraged to work with developers and DBAs to find out if the
application needs special system or built-in database procedures that can grant
command execution privilege at OS level, for its functionality. If the application
doesn’t need it, it is better to delete such procedures from the database, to help
enforce principle of least privilege and reduce exposure, in the event a hacker
breaks in.

 Testing should include validating that all web database users for the application
have limited privileges, only to perform the required transactions. It is advised to
create a separate user or role for web users, because their privilege levels are
different from application developers, DBAs or internal users. This can help
reduce the damage when an attacker breaks in.

 In case of SQL injection attacks, passwords stored in clear text in the database
can drastically expand the scope of attack, as once the attacker is in, he/she can
gather passwords for a variety of systems/applications to inflict damage. Testers
are encouraged to sweep the tables in the application schema, especially the
ones with indicative names like USERS, USER_PROFILE, USER_INFO etc, to
ensure that sensitive information is not readily available.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 9 of 25

Some of the useful tools for testing web application code for SQL injection vulnerability
are :

 SPI toolkit from SPI Dynamics
(http://www.spidynamics.com/products/Comp_Audit/toolkit/index.html)

 Spike proxy from Immunity
(http://www.immunitysec.com/resources-freesoftware.shtml)

For more information on SQL injection vulnerability, please refer to the following white
paper
http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf

3.5 Cross site scripting (XSS)

Problem : Cross site scripting is an attack that involves web sites inadvertently including
malicious HTML tags or script in a dynamically generated page based on unvalidated
input from untrustworthy sources (CERT2). The hacker sends bait usually in the form of
an attractive link on a web site, sent in an e-mail, or as a malicious message posted on
a discussion group. When the unsuspecting user clicks the link, response sent from the
host contains malicious commands within scripting tags like <SCRIPT>, <OBJECT>,
<APPLET>, <EMBED> etc, which are run on the user’s computer. This can result in a
variety of threats, including cookie harvesting, session hijacking, impersonation etc.
Kevin Spett (Spett2) mentions the following in his article Cross-Site Scripting. Are your
web applications vulnerable ?

Cross site scripting can potentially impact any site that allows users to enter data
like :

 Search engines that echo the search keyword that was entered
 Error messages that echo the string that contained the error
 Forms that are filled out which later present the data entered to the user
 Web message boards that allow users to post their own messages

Testing Recommendations :

As XSS attacks are triggered by a vulnerable application and client-side actions, care
should be taken on both client and server sides to minimize the likelihood of these
attacks

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 10 of 25

 Web applications should thoroughly validate all dynamically generated output

HTML, using inclusion logic, rather then exclusion logic. This means that data
used to generate dynamic HTML will be validated against a set of valid
characters expected for each field, and will reject any value that doesn’t meet this
criteria. This will help filter out special characters like <, > etc, which are used by
attackers in scripting tags, thereby minimizing the exposure to such attacks.
Though extensive field-level validation can belabor coding and can adversely
impact performance to some extent, this is still advised, as it provides an
excellent security net for web applications

 One workaround from a client side is to disable scripting languages like
Javascript, VB script, ActiveX or Java applet in the browsers of each user. This is
considered by many as the most effective solution against XSS attacks, but has
the potential to render many web sites unusable, as quite a few sites use client-
side scripts heavily for their functionality. If this is the approach taken, it needs to
be tested extensively by the testing team by disabling scripts or active content in
the client, to confirm that critical functionality of the application is not impaired for
clients that disable scripts.

As a preventive measure (not for testing), users should be educated about the
ramifications of promiscuous browsing, and should be advised not to click on untrusted
links in web sites, discussion groups, emails etc. This should be in line with the security
policies of most corporations.

There are several good tools available to assist security testers in testing applications
for cross site scripting vulnerability, like Cenzic Hailstorm and AppScan discussed in the
section Useful tools for web application security testing, as well as tools like KSES
(http://sourceforge.net/projects/kses)

For more information on Cross site scripting vulnerability, please refer to the following
white paper
http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf

3.6 Privilege Elevation

Problem : Privilege Elevation vulnerability can be defined as the ability of a user with no
or restricted privileges on an application or network, to illegally gain unauthorized
higher-level privileges. The risk of Privilege Elevation attacks is high partly due to the
fact that most of today’s web or application servers require their processes to be run as
root (for Unix servers) or administrator (for Windows servers). Once an attacker breaks
in, he/she is normally able to get server level access with the privileges of the process
that was used to break in. This obviously gives the hacker complete access of the host
server, and hence has potential for irreparable damage.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 11 of 25

Testing Recommendations :

 Testers should check if the application enforces the principle of least privilege.
For example, does the application easily allow creation of user groups with
different access roles ? This not only makes it easy for the administrators to have
tighter controls on the privilege levels, but also makes it non-trivial for attackers
to elevate privilege levels at will, even if they break into the network. Testing
should ensure that :

a) All privilege levels are properly defined in the system requirements, before
starting the testing

b) Each privilege level defined within the system requirements is
implemented accurately, i.e. can perform only the set of transactions that it
is entitled to, and does not have any privileges to perform transactions of a
higher privilege level. Testers can test this by trying to perform each
transaction with one less privilege level than the role or group that is
entitled for the transaction and check if it goes through.

 Testers are encouraged to check the URL immediately after logging into a web
application. Sometimes applications use constructs like usertype=user, as a part
of the URL. In such cases, a good way of negative testing is to change this to
usertype=admin, or usertype=root and see if they can get more privileges just by
tampering the URL.

 Web applications should implement a proactive warning system, to send out
automatic notifications if a job that usually gets executed by a normal user, gets
kicked off by an Administrator. If implemented, testing should verify that this
functionality is working as expected.

 Are all the off-the-shelf components like database, web server, browser etc, used
by the application kept up to date with security patches ? This is very critical for
the overall security of a web application, and should be verified by the testing
team, prior to deployment.

The tests recommended above for privilege elevation are best done manually. However,
in case of very large enterprise systems, general test script automation tools like
Empirix e-Test suite
(http://www.empirix.com/Empirix/Web+Test+Monitoring/Testing+Solutions/Integrated+W
eb+Testing.html) can be used to create automated scripts to test for privilege elevation
vulnerability.

Please refer to the article http://www.watchguard.com/infocenter/editorial/135144.asp
for more information on privilege elevation attacks

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 12 of 25

4 Best practices for testing application components

Every web application is built on several architectural components. The components of
a typical web application include the client (browser), web server, application server,
and the database server. Each of these components serves a specific purpose, faces
different security challenges, and needs to be tested specifically for that component’s
functionality. The previous section discussed how to test applications for some of the
most prevalent application-level security vulnerabilities that exist today. However,
security testing of web applications is not complete by only testing for vulnerabilities,
and should necessarily include testing of the individual components. This section
attempts to provide best practices for security testing of each of the application
components.

4.1 Client Security

Client security is a very important part of the overall functionality of a web application.
Following are some best practices that specifically target ensuring security of the client
component of web applications. Note that a web application is only as secure as its
most insecure link, and don’t let that be the application’s client!

 If the application uses cookies to implement stateful connections, verify that the
application uses SSL to encrypt the username, password and any other sensitive
information in all communications, and that cookies are stored encrypted on the
client. Sometimes replay attacks may be executed by copying contents of stolen
cookies (like userid, password, session id etc), either in encrypted or
unencrypted form into URLs, or HTML forms. Testers are encouraged to try this
technique, in an attempt to simulate replay attacks.

 Testing team should test the navigation of the web application thoroughly, to
verify visitors cannot jump all over the place to breach the navigational integrity of
the application. For example, an e-commerce application that allows users to go
directly to the order submit page, without going through the payment and
shipping pages, through some combination of Go, history, browser’s back button
etc, can cause serious data integrity problems on the backend, and opens the
web site or application for illegal use (Splaine, p. 118).

 If the client machine crashes in the middle of an application run, it may leave
sensitive information stored in cookies or temporary (session-level) files on the
hard disk of the user (Splaine, p.122). Processes should be setup to periodically
check into the directories or locations where application stores temporary data, to
make sure these areas are sanitized, and leave no clues for an attacker.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 13 of 25

 Testing should ensure that the application functions well with all supported

browser types, browser versions, and client-side security settings. This testing
gets easy in corporate environments where all clients are homogeneous, but gets
to be more difficult in public places like libraries, cyber cafes etc, where client
standards cannot be enforced. The application may not be fully functional or
secure, unless rigorous testing is performed with all the permutations and
combinations of the client settings. Testing should also include checking if
supported browser types and versions are clearly mentioned at a very visible
location on the web site (typically homepage of the application)

 If clients invoke the web application from behind a proxy server, this can cause
some information (like source IP address) to be masked by the proxy server, that
is required by the application (Splaine, p.113). Testing should include verifying
that design of the application addresses this scenario. For example, if a module
of the application requires the source IP address, that may not function as
expected in this context. Other similar scenarios like client accessing from behind
a firewall, client with content from multiple domains disabled, or server using
reverse proxy should also be included in testing

 Signing code is a suggested best practice for web application integrity. Code
signing or content signing involves generating a unique one-way hash of content
that is being signed, and assures that code hasn’t been tampered while being
transmitted over the network. Though code signing can be done for client or
server code, signing client components like ActiveX, Javascript, Applets etc is
considered more critical. This is because of the higher likelihood that client
components may be tampered as they are traversing through the internet, than
the server components, which reside and run on the server side. If code signing
is implemented, testing should ensure that signed code can run on all the client
machines without any issues.

4.2 Web server/Application server security

However strong an application’s client security is, or however robust an application’s
design is, needless to say that the application as a whole will be vulnerable if the web
server and the application server are not secure enough. Following defense-in-depth
approach, it is very essential to make sure that web server and application server
components are as secure as they can be, especially given the possibility that attacks
may sometimes bypass the client component. Following are some best practices to
verify that this very important aspect of web applications is secure.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 14 of 25

 Validating input values only on the client side leaves a big security hole in a web

application. Attackers can easily generate HTTP requests that bypass client side
logic, or there may even be a genuine need for an application to be invoked
directly from the backend. For example, a web application may have a daily
process that invokes application through a backend script, to repost transactions
that have failed during the day. Having some basic validation on the client side
may still be useful for performance, so that the number of invalid requests sent to
the server is minimized. But it is critical to validate all input values on the server
side, to make sure any requests bypassing the client logic don’t make their way
through the application logic.

 It is very important to validate that any files or resources on the same host as the
web server do not contain sensitive information. Is there a need for all the files
and information to be present on the same physical server as the web server ? If
not, move any files or sources of confidential information to separate servers,
including log files, configuration files etc.

 What does the application record about transactions ? Are logins, passwords
being written to log files in clear text ? Testing should include these checks,
because such security holes pose a threat not only from outside hackers, but
from insiders too.

 Test to ensure that all sensitive data used or created by the application server is
encrypted, and the keys are securely stored. Data like IP addresses, user
accounts, passwords, customer data, lists of prospects or leads, credit card
numbers etc should never be stored in plain text either in the database or on the
file system. This helps restrict damage level in the event of a successful attack.

 How does the application handle expired or revoked certificates ? The preferred
way of handling is to warn the user a few days/weeks before the certificate
expires, and when the certificate expires, to stop execution with a clear error
message, without executing any application logic. Testers need to validate that
the application is doing this at the very beginning of the process, and not
stopping in the middle, causing integrity problems. Also, if not properly tested,
application may give away sensitive information in error messages when
certificates expire or are revoked, causing improper error handling attacks.
Expired certificates for testing can be obtained from third-party certificate
vendors, or created by self-signing.

 Are all the services and features which are turned on, required for the application
to function ? Remember that every extra service/port open, could potentially
provide an additional access point for a hacker, and turning off unnecessary
services/ports tremendously helps reduce the security exposure of an
application. Testers are encouraged to get a list of all ports that are open for the
application, and ensure each of the open ports supports some functionality
specified in the functional or system requirements, and suggest removal of any
unused ports.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 15 of 25

4.3 Database Security

Protecting a database from attacks is very critical to the overall security posture of a
web application. In most real life web applications, databases store very sensitive
information, like user profiles, customer details etc, in addition to the application data.
Hence if the database is not secure enough, it leaves the security infrastructure of the
application incomplete and vulnerable. Following are some guidelines to testing
database security of a web application.

 It is a highly advocated and safe practice to have the database server behind a
firewall, and configured to allow requests to come in only from trusted hosts or IP
addresses (like web server, application server etc). Though this doesn’t make the
database server impregnable (as attackers can still inject code through the web
site), it will limit the points of exposure of the application from external, and
internal users. If implemented, this should be tested extensively by the testing
team to verify that requests only from trusted sources are accepted by the
database server, and any requests from untrusted servers result in very succinct
and generic error messages.

 Instead of assigning access directly to the tables, providing access through user-
created views or stored procedures goes a long way in securing a database
against attacks. This approach allows a user read-only or indirect access through
safe, pre-designed methods, thereby reducing or eliminating data manipulation
capabilities (Splaine, p.177)

 Locking down access control, and using principle of least privilege are critical to
secure a database against attacks. As discussed in privilege elevation section,
this can be done by creating roles in the database, and assigning users to one of
the defined roles.

 Is confidential customer information protected at the database level ?
Legislations such as HIPAA (1996), and the Gramm Leach Bliley Act (2001)
require corporations to take considerable precautions to keep customer records
private and secure. One way to accomplish this is to encrypt data in the
database, using a robust cipher with sufficiently strong encryption key. Keep in
mind that encryption is never a complete security solution by itself, because
encrypted data can still be tampered with or deleted, it only cannot be read.
Another suggested method is to deploy audit controls at the database and
schema level, so that any updates to the application data or to the schemas are
tracked. Most of the modern databases support audit trail features for database
updates and more, like being able to audit sensitive information retrieval, to help
monitor if anyone is trying to steal important data. Though it is not a preventive
measure, audit trail can be a powerful and effective feature for troubleshooting
after an incident, especially in environments where unique logins for each
database user and administrator are implemented. If implemented, data
encryption or database audit features should be meticulously tested by testing
team to verify their effectiveness.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 16 of 25

5 General testing guidelines for web applications

Security testing is a completely different animal compared to functionality or regression
testing of a web application. While functionality testing involves testing the system
against a definite test plan and measurable test cases, security testing requires the
tester to think like a hacker, and look for any abnormal behavior from the application.
Testers need to think unconventionally or “out-of-the-box” when testing web applications
for security, and should perform negative testing, trying hard to break the system, by
providing unexpected input etc. Testing team should also be aware of organizational
and legislative security policies and standards, and make sure that the application is in
compliance with those.

Here are some general guidelines for security testing of web applications

 Developers should review the code to be deployed with security and testing
teams, prior to deployment. Reviews are useful to bring out any obvious
omissions or mistakes in the application code. Development and testing teams
are also advised to run the application code through code coverage tools, as
referred and discussed in section 6.2 Code Coverage Tools, to ensure that all
code branches of the application are tested. It goes without saying that untested
parts of code are much more likely to be vulnerable than tested parts.

 Is the application in compliance with the password rules of company’s security
policy, for creating and changing passwords ? This can include rules regarding
lengths of passwords, enforcing expiry of passwords etc.

 Verify how the application handles default permissions on files, database tables
etc. Sometimes, applications may give away privileges unless explicitly marked
‘No’ (like in configuration files), and letting the defaults ride in these cases may
lead to a front-door entry for attackers.

 Test how the application reacts to repeated failed attempts. A secure web
application should be implemented with a built-in proactive alarm system, that
generates real-time alerts for repeated failed attempts. ‘Real-time’ is important,
because if the application generates e-mails as its notifications, and a hacker
attempts to break into the system during a weekend, the generated e-mails may
go unread until the next business day, giving the hacker sufficient time to get his
job done. In this example, a smart alarm system would generate text pages, so
that attempts to thwart a possible intruder can be put in place right away.

 Testers need to be meticulous, and should have conservative criteria for test
case pass/fail, while testing web applications for security. For example, a test
case may pass as long as it doesn’t crash the application, but it may be causing
other undesired effect like holding a lock on a table, which can go unseen. In this
example, if the tester passes it because it is not crashing the application with a
single user, the application will crash and lead to DoS attack, once it is in
production, and is hit by thousands of users. Such “behind the scenes” activity
may be significant, and should be tested in detail, before the test is passed.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 17 of 25

 Every web application uses one or more off-the-shelf components like web
server, or database server. Make sure that the application team is subscribed to
the vendor’s distribution list for security updates, receives security advisories
from the vendor in a timely manner, and necessary security patches are applied
as soon as available.

 Special care needs to be taken in single sign-on environments, to protect
passwords, because in such environments, by cracking a single password,
enterprise-wide security can be compromised, as access is not limited to one
application or system. Security testing team is encouraged to take notice of this,
and to exercise extra caution while testing in single sign-on environments.

 Sometimes, forgotten password procedures can leave a backdoor open for
hackers, if weak identification procedures are implemented to authenticate the
user. For example, a web site that asks user’s Date of Birth, mother’s maiden
name and two security questions is much more robust than one that just asks
‘What is your favorite color’ to authenticate user. In this example, the latter can
be easily guessed or “brute-forced” by an attacker to gain illegal entry into the
web site. Testing team should perform negative testing to find out the robustness
of the forgotten password procedures, and to ensure that this is not the weakest
link of the web application.

6 Useful tools for web application security testing

Security testing of web applications can be a very time consuming and tedious task. A
number of free and commercial tools are available in the market, to automate various
aspects of security testing of web applications. This section presents some useful tools
that can be handy to testers for security testing of web applications efficiently. In
addition to the tools discussed in detail here, this section also refers other available
tools that belong to the same testing category.

Note that pure network security tools such as port scanners, network sniffers etc, are
out of scope of this paper, as they are not a part of web application testing.

6.1 Application vulnerability Management tools

6.1.1 Cenzic Hailstorm

Cenzic Hailstorm is an Application Vulnerability Management tool that aims at knitting
the Information security, Development and QA teams together, so that security policies
are established, and testing happens as a part of the SDLC, not as a separate or “after-
the-fact” initiative. It integrates with Mercury Interactive and other QA tools, and
provides the following features (as described in the white paper
http://www.cenzic.com/pdfs/CenzicWpBeyondScan.pdf)

 Hailstorm Policy modeler allows the information security team to create policies,
which can be shared across the organization

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 18 of 25

 Provides mechanisms for automatic testing of some of the most common
application security vulnerabilities like buffer overflow, unvalidated input, script
injection etc.

 Comes with a good database of security policies out of the box, that include
verification of access controls, data privacy and compliance with regulations like
HIPAA, Sarbanes Oxley etc.

 Can be used for testing at various levels of granularity, like application-level, web
page/form level, field level etc.

Hailstorm is a multipurpose web application testing tool, and following are some of the
application vulnerabilities, which can be automatically tested using Cenzic Hailstorm :

 Unvalidated parameters
 Broken access control
 Broken Account and session Management
 Cross site scripting flaws
 Buffer Overflows
 Command injection flaws
 Error handling problems
 Insecure use of cryptography
 Remote administration flaws
 Web application server misconfiguration

For details of how Hailstorm supports the above-mentioned application tests, refer to
the whitepaper http://www.cenzic.com/pdfs/CenzicWpImpAsPln.pdf. Hailstorm is
commercially licensed, and is targeted for business customers.

6.1.2 AppScan QA

AppScan QA is an Application vulnerability scanning software from Watchfire (originally
from Sanctum, which is now acquired by Watchfire). AppScan QA is an automated web
application vulnerability scanning and testing tool, that provides QA personnel with
comprehensive security defect analysis, and remediation information. AppScan
provides the following features

 Checks for known vulnerabilities in commercial products (like unpatched web
servers, application servers etc)

 “crawls” the web site or application, visiting links as an end user would, and
reports any faulty links, or links that have not responded as expected, in a high-
level report like below. Details of each category can be looked at, by clicking on
the explore category.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 19 of 25

 Clicking on Potential Vulnerabilities provides a detailed list of vulnerabilities
detected within the application like below

 Exploration can be done for the entire application or a part of the application
containing specific business processes. This feature can be very useful for
application security testing, in scenarios where an application is tested by several
testers, and each tester tests only a few modules

 Automatically creates test cases which the user can run, based on potential
vulnerabilities identified during the explore stage.

 Lets the user group test results using various grouping methods like category,
severity, link etc. Results can be drilled down to the level of an individual result
(index card), where you find detailed test description, test response, and fix
recommendation including helpful URLs.

 Allows the user to create a configurable report based on test results, that can be
configured for the look and feel, as well as the technical details. Generated
reports can be exported into PDF, Excel, HTML, RTF, text or Tiff formats.

 Allows user to create a report for compliance with various policies/regulations like
HIPAA, GLBA etc, or based on a user-defined regulation file. AppScan ships with
most of the recent regulations, and this data can be updated with regular
AppScan updates.

 Allows users to schedule automatic, periodic scans

The information and screenshots in this section (6.1.2) are from AppScan QA user
manual, which is bundled with the AppScan QA product.

AppScan is commercially licensed, and can be downloaded from
http://www.watchfire.com/products/security/appscan-qa.aspx

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 20 of 25

Following are some of the other application vulnerability Management or scanning tools
available in the market.

 WebInspect (http://www.spidynamics.com/products/security/WI/index.html)
 Reasoning (http://www.reasoning.com/)
 CodeWizard

(http://www.parasoft.com/jsp/products/home.jsp?product=Wizard&itemId=62)

6.2 Code Coverage tools

Code coverage tools primarily run through the application code and report which parts
of the code have never been executed during testing of the application. Security testing
should include running application code against code coverage tools, to make sure if
there are any untested parts, that may be exploited by hackers. Code coverage tools
can typically be categorized by the application platforms they cover (like .NET, java, C,
C++), or by the level of detail of code coverage (like path coverage, branch coverage,
line coverage etc). These tools, either by themselves, or working with compilers or IDE
platforms, implement a technique commonly called ‘instrumentation’ for inserting smart
probes in the code. These smart probes collect profile statistics for the code, like how
many times a piece of code has been executed etc. This profile information is useful in
many ways, for example for identifying which parts of code haven’t been tested, or
which parts of code are most used by users in production systems etc. There are many
commercial and freeware code coverage tools available in the market.

6.2.1 Rational Test RealTime

Rational Test Realtime is a code coverage analysis tool that provides code coverage for
Ada, C, C++ and Java. It provides the following features

 Code coverage, which identifies portions of the application code that have or
have not been executed during testing. You can create a new project
containing your application within Rational Test RealTime GUI, and Build the
application. Then, run it a few times with some test data, and a report like
below is produced containing the results of code coverage analysis at various
levels, like functions, blocks, groups, loops etc.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 21 of 25

After running some tests, a security tester can generate a report like this, and
refine his testing to include all portions of code that haven’t been tested.

 Memory profiling for C, C++ or Java code, including detecting possible
memory leaks and memory usage issues with the source code

 Performance profiling for C, C++ or Java, which measures performance of
each component or module, and detects bottlenecks

Note that code coverage through instrumenting may have some performance overhead
on the application, because of the inserted code. So a tradeoff is required between the
code coverage level and application performance, if coverage is implemented in
production systems.

Here is the link for more information regarding Rational Test RealTime, and to download
a trial version
http://www-306.ibm.com/software/awdtools/test/realtime/features/index.html

Following are some of the other code coverage tools available in the market.

 LDRA Testbed (http://www.ldra.co.uk/pages/testbed.htm)
A code analysis and coverage tool suite, that can be used for C, C++, C#,
Java, Visual Basic, Fortran, Pascal and other languages. Platforms supported
include Windows, Linux, and Unix flavors (Solaris, HP-UX etc)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 22 of 25

 Dynamic Code Coverage (http://www.dynamic-
memory.com/coverageanalysis.php)
A code coverage tool for Unix, this can be used for covering C/C++ code.
Platforms supported are Solaris and Linux

 Clover.NET (http://www.cenqua.com/clover.net/)
A code coverage analysis tool for .NET applications

6.3 Password auditing tools

Even though modern authentication methods like Biometric scans are increasingly
finding a place in business, undoubtedly the technique that is still most widely in use to
authenticate users is good old login/password. Password auditing tools are used to
“crack” or guess application passwords, and/or recover lost passwords. These tools are
typically used by hackers to get illegal entry into applications, and come in handy for
security testers, as they wear a “hacker’s hat”, to check if the passwords used can be
easily guessed. If passwords for an application are easily cracked (like dictionary words,
easily guessable passwords like name of the organization, or can be easily brute-
forced), security testers should suggest more stringent password policy, like making
them longer, or enforce combinations of uppercase and lowercase letters, digits and
special characters etc.

Here are some password auditing tools available in the market

 L0phtcrack (http://www.atstake.com/products/lc/) – Windows and Unix
password cracking and recovery

 John The Ripper (http://www.openwall.com/john/) – Windows and Unix
command line password cracker

 Cain & Abel (http://www.oxid.it/cain.html) – password cracker and recovery
tool for Windows

6.4 Use Google to check if sensitive information is exposed

Today’s search engines on the internet are very powerful, and sometimes this can work
against your organization by exposing sensitive information to the public. As Nitesh
Dhanjani advocates in his article Google your site for security vulnerabilities
(http://www.onlamp.com/pub/a/security/2004/10/07/googling_for_vulnerabilities.html), it
is a good practice to test your web site for any sensitive information left open by an
application or human. This is best accomplished by doing a site specific search on
Google for your site or application, searching for keywords like ‘password’, ‘userid’,
‘login’, ‘admin’ etc, and checking through the resulting pages. Here are some sample
search strings.
site:www.yoursite.com password
site:www.yoursite.com admin

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 23 of 25

7 Conclusion

Securing critical internet, intranet, and extranet applications of an organization is a
shared responsibility between system architects, developers, testers, quality assurance
team, security team and project management teams within an organization. Security
team should not be viewed as separate, standalone team for auditing applications, but
should be integrated with development and testing teams, right from the concept phase
of a project. Organizations should inculcate the doctrine “it is a matter of when, not if,
you are attacked”, in its employees, and make sure each employee plays a role in
defending the corporation against attacks. Adding robust security testing to the lifecycle
of web applications demonstrates defense-in-depth, as this adds one more important
layer to the defense infrastructure of the organization, in addition to network security,
and secure architecture, design and coding practices.

8 References

1. Splaine Steven Testing Web Security: Assessing the Security of Web Sites and
Applications Wiley Publishing Inc, 2002.

2. Whittaker A. James & Thompson H Herbert How to Break Software security

Addison Wesley, 2003.

3. Scambray Joel & Shema Mike Hacking Exposed Web Applications McGraw-Hill/
Osborne, 2002.

4. McGraw Gary & Viega John “Make your software behave: Learning the basics of

buffer overflows” March 2000. URL :
http://www-106.ibm.com/developerworks/security/library/s-overflows/
(12 September, 2004)

5. Frykholm Niklas “Countermeasures against Buffer Overflow Attacks” November

2000. URL : http://www.rsasecurity.com/rsalabs/node.asp?id=2011
(13 September, 2004)

6. OWASP Top Ten vulnerabilities, Improper Error handling

URL : http://www.owasp.org/documentation/topten/a7.html (15 September, 2004)

7. [Spett1] Spett Kevin “SQL injection. Are your web applications vulnerable?”.
URL : http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf
(17 September, 2004)

8. [CERT1] CERT Coordination Center “Denial of Service Attacks”

URL : http://www.cert.org/tech_tips/denial_of_service.html (20 September, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 24 of 25

9. [CERT2] CERT Advisory CA-2000-02 “Malicious HTML Tags Embedded in Client
Web Requests”
URL : http://www.cert.org/advisories/CA-2000-02.html (20 September, 2004)

10. [Spett2] Spett Kevin “Cross-Site Scripting. Are your web applications
vulnerable?”.
URL : http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf
(24 September, 2004)

11. Fallin Steve & Pinzon Scott “What We Mean by “Elevation of Privileges””
URL : http://www.watchguard.com/infocenter/editorial/135144.asp
(26 September, 2004)

12. [Cenzic1] “Beyond simple vulnerability scanning” May, 2004
URL : http://www.cenzic.com/pdfs/CenzicWpBeyondScan.pdf (2 October, 2004)

13. [Cenzic2] “Imperative Web Application Assessment Plan” May, 2004
URL : http://www.cenzic.com/pdfs/CenzicWpImpAsPln.pdf (4 October, 2004)

14. Dhanjani Nitesh “Google your site for security vulnerabilities” October 2004
URL :
http://www.onlamp.com/pub/a/security/2004/10/07/googling_for_vulnerabilities.ht
ml (15 October, 2004)

15. Watchfire Corporation “AppScan QA User manual” 2004

Links to Security Testing tools

16. Software Research, Inc Home page. URL : http://www.soft.com/ (15 September,
2004)

17. KSES download page

URL : http://sourceforge.net/projects/kses (25 September, 2004)

18. SPI toolkit from SPI Dynamics.
URL : http://www.spidynamics.com/products/Comp_Audit/toolkit/index.html
(18 September, 2004)

19. Spike proxy from Immunity
URL : http://www.immunitysec.com/resources-freesoftware.shtml

 (18 September, 2004)

20. Mercury LoadRunner Home page
URL : http://www.mercury.com/us/products/performance-center/loadrunner/
(21 September, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 Page 25 of 25

21. Empirix e-Load Home page. URL :
http://www.empirix.com/Empirix/Web+Test+Monitoring/Testing+Solutions/Web+A
pplication+Load+Testing.html (24 September, 2004)

22. Empirix e-Test suite Home page.

URL: http://www.watchguard.com/infocenter/editorial/135144.asp
(27 September, 2004)

23. Watchfire AppScan QA Home page

URL : http://www.watchfire.com/products/security/appscan-qa.aspx
(9 October, 2004)

24. SPI Dynamics WebInspect Home page
URL : http://www.spidynamics.com/products/security/WI/index.html
(10 October, 2004)

25. Reasoning Home page
URL : http://www.reasoning.com/
(12 October, 2004)

26. Parasoft CodeWizard download page URL :
http://www.parasoft.com/jsp/products/home.jsp?product=Wizard&itemId=62
(13 October, 2004)

27. L0phtCrack product homepage

URL : http://www.atstake.com/products/lc/ (14 October, 2004)

28. John the Ripper Home page
URL : http://www.openwall.com/john/ (14 October, 2004)

29. Cain & Abel Home page
URL : http://www.oxid.it/cain.html (14 October, 2004)

