
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

1 Quote taken from http://www.cuddletech.com/veritas/vxcrashkourse/vxcrashkourse.pdf page 3.

Veritas Volume Manager
and a Storage Area Network

Joseph Bell
January 19, 2005

Abstract

This paper will discuss the task of installing, configuring and securing Veritas
Volume Manager (VxVM). VxVM is an “advanced, system-level disk and storage
array solution that alleviates downtime during system maintenance by enabling
easy, online disk administration and configuration. The product also helps
ensure data integrity and high availability by offering fast failure recovery and
fault tolerant features.” 1 Additionally, I will discuss incorporating the VxVM
resources into an existing Veritas Cluster Server (VCS) configuration. The
purpose of this paper is not only to walk the reader through what I’ve presented
above, but to also provide information that I wasn’t able to find in a text or on the
Internet and was only able to learn by way of trial and error. I’ve also supplied
the Perl code I wrote to perform the installing, patching and configuring of VxVM.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.2

Before Snapshot

I’ll provide some background information by defining and describing the tools
used and the hardware configuration of the system utilized. Then, I will describe
my task and give the reader an idea of my starting conditions and knowledge.

Veritas Volume Manager

According to the VxVM 3.5 Admin Guide (1), VxVM is defined as “a storage
management subsystem that allows you to manage physical disks as logical
devices called volumes.” The key word in that definition is “logical” and the
reference to a volume requires a considerable definition in itself. A volume is a
logical device, which is composed of one or more plexes. A plex is another
logical device and is most commonly referred to as a mirror. Two plexes that
are contained within the same volume are mirrors of one another. However
many plexes you have within a volume is up to you. The more plexes you have
simply increases availability of the data they contain and reduces the chance
that you will loose that data, but at the cost of increased storage. A plex is
composed of one or more subdisks, another logical device. A subdisk resides
on a VM disk, another logical object. One or more subdisks can be associated
with a single VM disk. A VM disk is composed of a “real” device as per the
operating system’s view. I quote the term real because the device the operating
system sees may be a local hard disk or it may be a volume on a storage area
network, which is managed by another product entirely. The later case is my
situation. I have a storage area network managed by a product called
SANtricity. A thorough definition of SANtricity is outside the scope of this paper.
I will simply define it as a COTS product that manages RAID volumes.
SANtricity is offering up multiple volumes to the operating system with each
volume appearing as a single device. A collection of VM disks with a common
configuration is called a disk group, which is a logical device. It is this device
that allows for a group of disks to be utilized as a single entity and allows a user
or application (VCS) to move the disk group and its components from one host
to another. To recap, a disk group is actually at the top of the VxVM logical food
chain. It is composed of one or more VxVM volumes; not to be confused with
the volumes offered up by SANtricity. Below is an illustration of the logical
devices previously described.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.3

2 Figure taken from Veritas Volume Manger 3.5 Administrator’s Guide, pg 13.

2

Dirty Region Logging (DRL) is VxVM’s fault recovery mechanism, which you
won’t really appreciate unless you are mirroring large volumes and your system
crashes. The reason for this is that the larger the volume, the longer it takes to
re-mirror. In short, DRL keeps a log of what has changed across an entire
volume all within a bitmap. The bitmap represents the entire volume with each
bit corresponding to a region of the volume. Before a region of the disk is
written to, the corresponding bit is marked dirty. So, if your system crashes and
you have DRL enabled, the time to recover the mirrored volume can be
considerably shorter than with it not enabled because only the regions marked
dirty need to be accessed. This can greatly reduce the time required to get a
system back to an operational state in the event that something causes your
system to panic and forces a reboot.

Rebooting is another issue of note. I made the mistake of issuing a reboot

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.4

command and learned the hard way that VxVM much prefers an ‘init 6’ call. A
reboot doesn’t allow the shutdown scripts in the /etc/rcX.d directories to
executed. It is those scripts that shut down VxVM and its resources gracefully.
This allows for those resources to come up as expected on reboot. This is
similar to the operating system syncing the file systems on reboot.

Storage Area Network

A storage area network (SAN), as a subject, is far too vast to fully address within
this paper. A semi-formal definition of a SAN is, “a storage area network (SAN)
can address several challenges faced by system administrators. Unlike direct-
attached storage (DAS), sans allow the administrator to manage a central pool
of storage and allocate it to individual hosts as needed. Furthermore, the optical
nature of SANs provide flexibility not available with direct-attached storage which
typically uses electrical signaling” (2). My need of a SAN is most easily defined
as a central repository for data in a networked environment with a need for fibre
optical connections due to the file sizes being utilized. I need a SAN to place
files for a short period of time. Other servers on the network will retrieve those
files when their resources permit them to. The actual time these files will be on
the SAN is determined by those servers receiving them and can take a
considerable amount of time to process as the files are on average 50 gigabytes
in size. The total space on my SAN is a little more than 4 terabytes, which may
sound like a lot of space unless you are dealing with 50 GB files.

Veritas Cluster Server

VCS is a application used primarily to create and manage nodes (servers) within
a clustered network and the applications that run on those servers. The true
benefit of VCS is found in its ability to perform what is called failover. Failover is
best described as the process of bringing a resource down on one server and
then bringing that resource up on another server with no user interaction
required. This functionality is particularly useful when an application is under
VCS control and that application fails on a particular server. VCS will sense this
failure and can attempt to bring the resource back up on the same server or on
another server depending on how you have it configured to handle failure. An
administrator places the resources they want managed by VCS under VCS’
control. Each resource type has an agent that is responsible for managing and
monitoring that resource. A few examples of resource types are mount, disk,
disk group, and share.

My Scenario

I have two SunFire 6800 servers with read-write access to a SAN with ten

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.5

clients. Each client has read-only access. The two 6800’s are called srvr-A and
srvr-B. I have a set of disks that are to be used exclusively as metadata disks.
Metadata is basically data about data, which in this case contains the
classification of the file on a scale of 1-10 and the size of the file. While the
operating system does maintain the size of the file within that file’s inode, I need
it kept separately as part of the metadata so that the software transferring the
actual data file can verify that those two numbers stay consistent as the file
propagates through the system. Doing this allows the integrity of the file to be
verified at multiple places as the file propagates through the system and allows
for alarms to be generated in the event that the file becomes corrupted. I need
the data on those disks mirrored, which is where my need of VxVM comes in. It
should be noted here that there are multiple products that will provide this
functionality and do so much more cost effectively, but using VxVM is an actual
program requirement. It’s overkill to use VxVM in just this manner as it does so
much more, but I’m just the engineer. What do I know? Additionally, the
licenses I’ve been supplied with did not come with the cluster support feature,
which means I can’t use these metadata disks as shared storage between srvr-
A and srvr-B. Again, I’m confused. Why buy a product as expensive as VxVM,
require so little of its functionality and then take the cheap route on the licenses?
Not my decision to make and my opinion wasn’t requested, but a point I would
certainly have tried to make if given the opportunity. The only real plus is that
VxVM is very easy to use when configured correctly and ports well into other
Veritas products (VCS and Veritas File System, VxFS). A license without
cluster support means that only one the servers can have the VxVM disk groups
imported for use. This turned out to not be much of a problem due to the
compatibility of VCS and VxVM. I’ll address that later. The two servers are
running Solaris 8 with the ufs file system. The SAN itself has sammfs as its file
system. The clients who ultimately retrieve the data files are using ufs as their
file systems. It is this progression of the data file going from ufs->sammfs->ufs
that the size of the file must be kept as part of the metadata. My tasks were to
install and configure VxVM version 3.5 to mirror the metadata disks, integrate
the disk groups created by VxVM into an existing VCS configuration and secure
VxVM by installing only the required packages and to ensure that the
functionality was restricted in use to those users absolutely necessary.
Additionally, I had to do all of this in the form of Perl scripts so that the process
would be repeatable and every step documented, as those scripts were to end
up in a configuration management system. My initial knowledge of VxVM was
simply that I knew it was a product of Veritas and nothing more. I had previously
attended a training class on VCS about a year prior to this task, but hadn’t been
able to apply the knowledge gained there to any system. Therefore, I knew very
little of the existing VCS configuration on the target system. I’d spent that year
working on firewalls. I had no idea where to start when I was ready to integrate
the VxVM disk groups into the existing VCS configuration. Let me add that the
VCS configuration was full of undocumented custom agents that I knew nothing
about other than their existence. The only thing I really had on my side was a
fair understanding of Perl and knowledge of the security requirements of my

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.6

program. One other thing…I was given a month to get this done.

During Snapshot

My preferred method of using a new product is to read as little as possible and
go straight to the hands on approach. I’ve had great success with this method
and have had several kernel panics, complete failures of the operating system,
which resulted in reinstalling the operating system, and many other similarly
devastating results. I do recommend reserving that method for your own
personal equipment and not your employer’s. Since this is my employer’s
equipment, I decided that the best place to start would be the Veritas Volume
Manger™ 3.5 Administrator’s Guide. Here, I learned that VxVM does so much
more than what I was to ask of it. The information provided was pretty raw,
unfriendly and certainly not written for this newbie. This posed a problem in the
sense that I was in something of a time crunch and needed to get directly to the
information concerning mirroring. I managed fairly well with the administrator’s
guide, but still had many questions that the guide simply didn’t address. My
questions loomed mostly around an apparent division in the way to accomplish
volume configuration; vxassist or vxmake. The Internet was where I next went
for those answers. There, as you might imagine, I was able to find a plethora of
VxVM articles and tutorials. One of the most useful was from the Cuddletech
website (4). Although they discuss a previous version of the product, I was able
to solidify my understanding of the VxVM logical objects and gain a much better
understanding of the vxmake and vxassist methods of configuring a system.
The major difference between the two is that vxmake allows you complete
control over object creation, but you must specify everything (and I mean
everything) concerning that object in precise detail. The vxassist way makes a
lot of decisions for you, but is much easier to use.

Installation and Patching VxVM

While researching and learning all I could, I had to keep in mind that I was to
eventually script all of this and I had to find areas where I could harden this
product as well as how to test the product to verify proper operation. The
installation guide (5) provides instructions to install all of the VxVM packages and
to in install them in a particular order. After examining each package and
learning the functionality they provided, I wondered if only installing what I
needed and omitting the others would be sufficient. I decided that all I needed
was the licensing utility, the man pages and the actual VxVM binaries. Those
packages are respectively VRTSvlic, VRTSvmman and VRTSvxvm. I have no
need of adding the VxVM GUI packages, as the servers do not have video cards,
which doesn’t allow for a GUI. I do recommend using the GUI if it is at all
possible. GUI management of the VxVM resources is significantly easier than

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.7

using the command line. VxVM management via the command line requires
significant knowledge of several commands of which I’ll discuss shortly. I
manually added each package and then wrote a Perl script to do this for me.
After extensive testing of the system, the three packages I chose to install
worked as expected without any complications. So, my first step at product
hardening was to remove any unneeded packages or in this case to never
initially install them.

There is a program that VxVM requires to be executed before anything can be
done with VxVM. That program is vxinstall. Then the root disk group, rootdg,
must be created. It is a mandatory/default disk group and in my opinion is
something of a dummy disk group, as VxVM doesn’t allow you to deport it.
What follows is a step-by-step account of installing VxVM, executing the
vxinstall program and creating the root disk group.

Install necessary packages.1.

% pkgadd –d . VRTSvlic VRTSvmman VRTSvxvm

That completes the installation of the licensing utility, the man pages and
the actual VxVM binaries.

Run the vxinstall utility.2.
% vxinstall

This is an interactive process. I have described the questions and
provided the answers for my situation.

Are you prepared to enter a license key [y,n,q,?] (default: •
y) y
Enter your license key: ABCD-EFGH-IJKL-MNOP-QRST-UVWX•
Do you wish to enter another license key [y,n,q,?] (default: •
n) n
Do you want to use enclosure based names for all disks •
[y,n,q,?] (default: n) n
Hit RETURN to continue. <RETURN>•
Hit RETURN to continue. <RETURN>•
Select an operation to perform: 3 (This prevents •
multipathing and suppresses devices from VxVM’s view. This
is desired in my case because I’m using SANtricity for load
balancing and multipathing.)
Select and operation to perform: 5 (This prevents •
multipathing for all disks on a controller by VxVM.)
Enter a controller name [<ctlr-name>,all,list,list-•
exclude,q,?] all
Continue operation? [y,n,q,?] y•
Hit RETURN to continue. <RETURN>•
Select and operation to perform: q (This quits the •
vxinstall program.)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.8

That completes the vxinstall program. You will notice in the example
configuration file shown with the source code provided that where
<RETURN> is specified above, an empty line exists in the configuration file.

Disable VxVM configuration daemon so that further manual configuration 3.
may be applied.

% vxconfigd –k –m disable

Initialize the volume configuration daemon.4.

% vxdctl init

Create the rootdg disk group.5.

% vxdg init rootdg

Allow VxVM to see device.6.

% vxdctl add disk c10t210d0

Write a header to the disk making useable by VxVM.7.

% vxdisksetup –i c10t210d0

Initialize the disk. This erases all information.8.

% vxdisk –f init c10t210d0

Add device to the rootdg disk group.9.

% vxdg adddisk c10t210d0

Enable the VxVM configuration daemon.10.

% vxdctl enable

Remove the file, install-db.11.

% rm /etc/vx/reconfig.d/state.d/install-db

The removal of this file will allow VxVM to come up after the reboot.

Note: For more information of the commands given here, there exists a man
page on each of them on the system you are using after you have installed the
VRTSvmman package.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.9

Next, I needed to patch the newly installed binaries and script that as well. No
problems here to mention. This is just standard Solaris patching with the
patchadd command. The only item of note is that due to installing only what is
absolutely necessary you will see entries in the patch log indicating failures.
Verify that those failed entries are the result of that actual binary not being
present on the system.

Configuring VxVM

As stated above, I chose the vxassist method to create my disk groups and
volumes. After a trial and error phase with vxmake and vxassist, I decided I did
not need the level of control over object creation offered by the vxmake utility.
The scripts I’ve included with this document are configuration file dependent.
Since the vxassist utility does so much behind the scenes, I was able to keep
the configuration file contents to a minimum and reduce the complexity of those
files. I have a personal goal when developing any code.

Below is an explanation of each step of the configuration process. The Perl
scripts provided reflect the procedures given here.

Initialize the disks or in this case, what appears to the OS as disks.1.

% vxdisksetup –i c10t210d5
% vxdisksetup –i c12t240d3

The targets listed above have been initialized and can now be seen by
VxVM as useable disks. The targets shown here are actually being
offered up by SANtricity, which is the software that manages the RAID
volumes on the SAN.

Note: There are two ways to incorporate disks into VxVM. The way I
have chosen is to initialize the disks, which erases any data previously on
them. The other method is to encapsulate the disks, which preserves any
data previously residing on the disks.

Create the disk group, create VM disks and associate those objects with 2.
the newly created disk group.

% vxdg init metaDG metadisk1=c10t210d5 metadisk2=c12t240d3

The name of the disk group created is metaDG. The names of the VM
disks are metadisk-01 and metadisk-02 and are associated to
corresponding real disks.

Create the volume (vxassist).3.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.10

% vxassist –g metaDG make metaDGvol 6291456 alloc=metadisk1

The volume size is 6291456, which is the number of 512 byte blocks.
This allows for a total size of 3 GB for the volume.

What did vxassist just do? It created a sub-disk that it named metadisk1-
01, associated that sub-disk to metadisk1, and created a plex it named
metaDGvol-01. Then it created a volume that I named metaDGvol and
placed the plex it created within that volume. Notice where vxassist
names the objects it creates. When vxassist creates objects, the names
it gives those objects always resemble the object they are most closely
associated with.

Create the mirror (vxassist).4.

% vxassist –b –g metaDG mirror metaDGvol alloc=metadisk2 \
init=none

The –b switch backgrounds the mirroring process, which takes about 10
minutes with this size volume on my system.

What did vxassist just do? It created a sub-disk it named metadisk2-01,
associated that sub-disk to metatdisk2, and created a plex named
metaDGvol-02. Then, it placed that plex into the metaDGvol volume,
which is what makes it a mirror of the other plex. Notice how I didn’t have
to specify the size of the mirror. It takes the size of the volume it created
in step 3 and uses that number. A note of clarity here concerning space;
the disk group, metaDG, now consists of a total of 6 GB of space. The
volume itself is just a logical object and will show a size of 3 GB as do
each of the plexes it contains.

Wait for mirroring to complete.5.

% vxtask list

The command given above will display the percentage complete with
respect to all existing VxVM tasks. It is extremely important that you
allow the mirroring to complete before doing anything with the disk group.
Attempting to access this disk group before the mirroring completes will
cause the mirroring to fail. This bit of information came to me painfully
and took while to figure out. In the process of my trial and error scripting,
I had created the disk group resource within VCS, but had the resource
offline within the VCS configuration. I knew that VCS verified periodically
that online resources were still online, but wasn’t aware that VCS verifies
that resources are offline as well. My mirroring kept failing and I was
convinced it was my suspect scripting skills. It turned out that when VCS
went to verify the disk group was offline and found it online it issued a

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.11

‘vxdg deport metaDG’ command. Not good. That command does what it
sounds like and removes the resource from the operating systems view,
which stops all activity to this disk group. The fix is to disable the
resource within the VCS configuration.

Set up DRL (vxassist).6.

% vxassist –g metaDG addlog metaDGvol logtype=drl nlog=2 \
alloc=metadisk1,metadisk2

What did vxassist just do? It created sub-disks on each of the specified
VM disks, allocated the appropriate space for the volume size on each
sub-disk (this is the DRL) and placed the sub-disks within the metaDGvol
volume.

That’s it. The configuration of the disk group and its resources is complete. The
targets are mirrored and Dirty Region Logging is setup. Next, I’ll explain how I
incorporated the VxVM resources into VCS. In the event that manual interaction
with these resources is required, importing, deporting the disk group and
starting/stopping the volume can be accomplished as such:

First, import the disk group.
% vxdg import metaDG
This brings the resource into the operating systems view. Next the volume
needs to be started.
% vxvol start metaDGvol
To make use of the volume, it must be mounted.
% mount /dev/vx/dsk/metaDG/metaDGvol /metamirr
The above command mounts the resource to the directory metamirr. That
directory can now be written to and accessed as any other directory.

To remove this resource, simply reverse the above procedures.
% unmount /metamirr
% vxvol stop metaDGvol
% vxdg deport metaDG

VCS/VxVM Inc.

With the VxVM configuration complete, the next task was to incorporate these
VxVM resources in to an existing VCS configuration. There is ample information
on setting up VxVM, but not incorporating it into VCS. I had another problem
with these new VxVM resources in that the license I was given didn’t support
cluster functionality, which meant I couldn’t share the metaDG disk group out.
Only one server at a time could have access to this disk group, but I needed
either server to be able to have this access (just not at the same time). This is
where VCS really shined. Since both products are from Veritas, I suspected
that they provided built in support for their other products within VCS. They do,

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.12

in fact, have a disk group resource that provided the functionality I needed. All I
had to do was to create the disk group resource and supply metaDG for the disk
group name property. The resource agent, which manages the resource, knows
how to import and deport the disk group. Only one of my two servers needed to
see this disk group at a time. So, if VCS were to failover the disk group from
one server to another, it would deport the disk group on one server and import
on the other. Make sure that you deport the disk group using the procedures
shown above before having VCS take control. The disk group resource agent is
expecting the disk group deported when it takes control.

VxVM Security

As stated above, I had two security requirements concerning VxVM.

Install only what was absolutely necessary. I was able to do that by 1.
installing only the necessary packages.

Restrict usage of product to the minimum number of users. I needed to 2.
ensure that what VxVM functionality was left to utilize was limited to the
minimum number of users. The only user that I believed required access
was the root user. So, I modified the permissions so that only root could
use any of the VxVM binaries.

As with any system, this system isn’t unbreakable and there may well be more I
could do and will if that information comes my way, but by not installing the
remaining VxVM packages I haven’t opened the system up to the existing or
future vulnerabilities of those packages. Unless someone gains root access,
the common user can’t utilize the VxVM functionality. A common user wouldn’t
even be able to issue a vxprint command to see what resources VxVM provides.

After Snapshot

Conclusion

Ultimately, the task was completed. The benefits gained from adding VxVM are
zero down time in the event a single device is lost from the operating systems
view and the ability of VCS to control the resources provides an additional
assurance of information availability. The security requirements were satisfied
and although no product can really be considered unbreakable it is fairly well
hardened and the risk of compromise has been reduced. The availability of the
metadata storage has been increased by a factor of at least two by having the
data mirrored in two places and by VxVM not interrupting the I/O in the event

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.13

one of the two plexes fail. Creating DRL logs will reduce volume recovery time
in the event of failure.

Source Code

The scripts provided will install, patch and configure VxVM and should be
portable to any UNIX based host requiring only edits to the configuration files.
There are a total of three scripts. A reboot of the system is required after
completion of the first two scripts. The reboots are required as the VxVM
binaries actually plug into the OS kernel and that only happens when the system
is rebooted. The scripts are configuration file dependent. This should allow an
administrator the ability to simply modify a configuration file and leave the
source code alone. Creating the scripts with configuration file dependency
proved extremely valuable in testing as some of the volumes would succeed
during the mirroring process and others would fail. I was able to just comment
out the successful entries and retry the failed entries.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.14

REFERENCES

1. Veritas Volume Manager 3.5 Administrator’s Guide – Solaris. August 2002.
<http://www.sun.com/products-n-solutions/hardware/docs/pdf/875-3356-
10.pdf>

2. “Storage Area Networking”. 2003. Unixway, LLC.
<http://www.unixway.com/san/>

3. “Dictionary.com/metadata”. 2005. Lexico Publishing Group, LLC.
<http://dictionary.reference.com/search?q=metadata>

4. “VXVM Kickstart – Enterprise Storage Management, Cuddletech Style”.
Rockwood, Ben. <http://www.cuddletech.com/veritas/>

5. Veritas Volume Manager™ 3.5 Installation Guide. July 2002.
<http://www.sun.com/products-n-solutions/hardware/docs/pdf/875-3355-
10.pdf>

6. Veritas Krash Kourse: The Land of Who’s Who of Vx Land. August 2002.
Rockwood, Ben.
<http://www.cuddletech.com/veritas/vxcrashkourse/vxcrashkourse.pdf>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.15

Source code for install VxVM:

#!/usr/bin/perl –w

filename: install_VxVM.pl

use strict;
$| = 1;

print “Beginning install_VxVM.pl\n”;

###
Add VxVM packages
###

print “Adding package: VRTSvlic\n”;
systemWrapper(“pkgadd –a ./noask_pkgadd –d . VRTSvlic”);

print “Adding package: VRTSvxvm\n”;
open FH, “| pkgadd –a ./noask_pkgadd –d . VRTSvxvm”

or die “ERROR: Can’t open pipe into pkgadd for VRTSvxvm: $!\n”;
print FH “8\n”;
print FH “y\n”;
close FH;

print “Adding package: VRTSvmman\n”;
systemWrapper(“pkgadd –a ./noask_pkgadd –d . VRTSvmman”);

run vxinstall
print “Beginning vxinstall\n”;
systemWrapper(“usr/sbin/vxinstall < response.txt”);
print “Completed vxinstall\n”;

create the root diskgroup
my $rootdisk = `cat ./rootdisk.txt`; chomp $rootdg;
systemWrapper(“/usr/sbin/vxconfigd –k –m disable”);
systemWrapper(“/usr/sbin/vxdctl init”);
systemWrapper(“/usr/sbin/vxdg init rootdg”);
systemWrapper(“/usr/sbin/vxdctl add disk $rootdisk”);
systemWrapper(“/etc/vx/bin/vxdisksetup –I $rootdisk”);
systemWrapper(“/usr/sbin/vxdisk –f init $rootdisk”);
systemWrapper(“/usr/sbin/vxdg adddisk $rootdisk”);
systemWrapper(“/usr/sbin/vxdctl enable”);
systemWrapper(“rm /etc/vx/reconfig.d/state.d/install-db”);

print “Completed install_VxVM.pl\n”;

exit 0;

#################
Subroutines
#################

sub systemWrapper {
my $cmd = shift @_;
my $ret = system “$cmd”;
if($ret) {
print “ERROR: Problem with $cmd: $!\n”;
exit 1;

} else { print “completed: $cmd\n”; }
}
END of install_VxVM.pl
Configuration files used by install_VxVM.pl

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.16

filename: response.txt
y
ABCD-EFGH-IJKL-MNOP-QRST-UVWX
n
n

3
y
5
all
y

q

filename: rootdisk.txt – This is an example. You should insert whatever device
you have available for the root disk group in place of what is given below.
c10t210d0

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.17

Source code for patching VxVM:

#!/usr/bin/perl –w

filename: patch_VxVM.pl
This script will apply the patches listed in VxVM_patches.txt

use strict;
$| = 1;

print “Beginning patch_VxVM.pl\n”;

my $ret;
my $patch;
open FH, “VxVM_patches.txt” or die “ERROR opening VxVM_patches.txt for reading: $!\n”;
foreach (<FH>) {
chomp;
print “Adding patch: $_\n”;
$ret = system “patchadd $_”;
if ($ret) {
print “ERROR with adding patch # $_: $!\n”;
exit 1;

}
}

print “Completed patch_VxVM.pl\n”;

exit 0;

END

Configuration files used by patch_VxVM.pl

filename: VxVM_patches.txt
112392-06

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.18

Source code for configuring VxVM:

#!/usr/bin/perl –w

filename: config_VxVM.pl

use strict;
$| = 1;

my $vxassist = “/usr/sbin/vxassist”;
my $vxdisksetup = “/etc/vx/bin/disksetup”;
my $vxdctl = “/usr/sbin/vxdctl”;
my $vxdg = “/usr/sbin/vxdg”;

print “Beginning config_VxVM.pl\n”;

See if invoked with ‘log’ option; setup logging if so.
if ($ARGV[0] eq “log”) {
print “Setting up logging.\n”;
systemWrapper(“cp /etc/init.d/vxvm-sysboot /etc/vxvm-sysboot.ORIG”);
open FH, “etc/init.d/vxvm-sysboot”

or die “ERROR opening vxvm-sysboot for reading: $!\n”;
my @log_lines = <FH>; chomp @log_lines;
open FH, “>/etc/init.d/vxvm-sysboot”

or die “ERROR opening vxvm-sysboot for writing: $!\n”;
foreach (@log_lines) {
s/^#opts=”\$opts –x syslog/opts=”\$opts –x syslog/;
s/^#debug=1/debug=9/;
print FH “$_\n”;

}

read in configuration file
open FH, “mirrors.conf” or die “ERROR opening mirrors.conf for reading: $!\n”;
my @conf_lines;
foreach (<FH>) { push @conf_lines, $_ if (!/^#|^\s*$/); }

my $dsk_grp, $vol, $vol_sz, $vm_dsk1, $vm_dsk2, $dsk1, $dsk2;

Need to allow VxVM to see the newly added disks from the SAN.
systemWrapper(“$vxdctl enable”);

initialize disks, create volumes, then create mirrors (vxassist way)
foreach (@conf_lines) {
($dsk_grp,$vol,$vol_sz,$vm_dsk1,$dsk1,$vm_dsk2,$dsk2) = split;
for (1..2) { systemWrapper(“/etc/vx/bin/vxdisksetup –f –i dsk_”); }
systemWrapper(“$vxdg init $dsk_grp ${vm_dsk1}=$dsk1 ${vm_dsk2}=$dsk2”);
systemWrapper(“$vxassist –g $dsk_grp make $vol $vol_sz alloc=$vm_dsk1”);
systemWrapper(“$vxassist –b –g $dsk_grp mirror $vol alloc=$vm_dsk2 init=none”);

}

wait for mirroring to complete (a cheap timer)
while(1){
sleep(10); # sleeping first gives VxVM time to get the mirroring process started
my @tmp = `vxtask list`;
last if ((@tmp == 1) && (print “\nMirroring complete.\n”;));
print “\nMirroring status…\n”;
print @tmp;

}

set up dirty region logging
foreach (@conf_lines) {
($dsk_grp,$vol,$vol_sz,$vm_dsk1,$dsk1,$vm_dsk2,$dsk2) = split;
systemWrapper(“$vxassist –g $dsk_grp addlog $vol logtype=drl nlog=2

alloc=$vm_dsk1,$vm_dsk2”);

print “\nCompleted config_VxVM.pl\n”;

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.19

exit 0;

##############################
SUBROUTINES
##############################

sub systemWrapper {
my $cmd = shift @_;
my $ret = system “$cmd”;
if ($ret) {

print “ERROR: problem with: $cmd\n”;
exit 1;

} else {
print “complete: $cmd\n”;

}
}

END

Configuration file format for config_VxVM.pl

Filename: mirrors.conf

#dg_name vol_name size vmdisk1 vmdisk2 disk1 disk2
metaDG metaDGvol 6291456 metadisk1 metadisk2 c10t210d5 c12t240d3

