
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Port Knocking: Beyond the Basics

Dawn Isabel
GIAC Security Essentials Certification (GSEC)

Practical Assignment Version 1.4c
Option 1 – Research on Topics in Information Security

Submitted March 9, 2005

Abstract

Port knocking has recently become a popular and controversial topic in security.
A basic overview of port knocking is given, and it is assumed that when carefully
implemented, port knocking can be a useful tool in some situations. Two
problems with static port knocking - detection and replay - are described, and
three solutions are proposed: covert knocks, dynamic knocks, and one-time
knocks. Four current implementations of port knocking are analyzed to
demonstrate these solutions. An implementation using Net::Pcap generates
static covert knocks over DNS. Cerberus encapsulates knocks in ICMP ping
packets and uses one-time passwords for authentication. The SIG^2 Port
Knocking Project implements dynamic knocks that are generated randomly and
as needed. CÖK implements the One-Time Password specification to send one-
time knocks over UDP. The improvements of these implementations over static
port knocking mitigate some threats, but several concerns still exist.
Implementations aimed at the enterprise environment will need to address
additional needs. In conclusion, port knocking deserves future consideration
and can be a valuable layer in defense-in-depth.

Overview of Port Knocking

There are a variety of definitions available for port knocking. Perhaps the
broadest - and least implementation-specific - is expressed as "a method for
delivery of information via closed ports on a networked computer" (Maddock,
p.1). The concept of "closed ports" is key - in port knocking, information is
passed to the recipient without establishing a direct connection to the recipient
over an open port. This information - the "knock" - is used to trigger an event on
the server. The goal of communicating over closed ports is simple - if the ports
are closed, it is significantly more difficult to detect that any services are being
offered.

Consider the following example: a firewall server has the option of remote
administration using SSH on TCP port 22. The firewall's administrator only
sporadically needs to use the service, and does not want to draw the scrutiny of
attackers by keeping port 22 open all the time. The administrator sets up a
script to monitor incoming TCP SYN packets for a secret knock - when the script
sees connection attempts to the port sequence [333, 555, 222, 777] the script

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

1 See Jeff et al. for an example of this discussion.

will open port 22 on the firewall. Another sequence is defined to close the port.
As a result, the administrator can keep the port closed until needed, and can
open it from an arbitrary remote location.

Although port knocking has been discussed a great deal as of late1, it is not a
new concept. A well-known proof-of-concept, cd00r, was written in 2000 (FX).
However, the mainstream security community has been slower to take port
knocking seriously. Even now, debates rage - is port knocking a novel new
layer in defense-in-depth? Is it simply another means of security through
obscurity? This paper will not seek to put this debate to rest. Instead, it will
start with a few assumptions:

1. Port knocking will add value to some security postures. While port
knocking is undoubtedly not a panacea, there are situations that will
benefit from the extra layer of security. For instance, the need for
sporadic access to a service from an arbitrary location may preclude
static IP filtering as a defense, but port knocking might fit the bill.

2. Port knocking is one of many layers. A basic assumption is that the
event that is triggered by port knocking is appropriately secured. In the
case of a service that is opened, the service should be properly patched,
hardened, and logged.

3. Port knocking can be more than a layer of obscurity. The obscurity
argument is often advanced against port knocking for two reasons. First,
the stealth aspect of communicating over closed ports is often the main
focus of port knocking discussions, overshadowing implementation
details. This encourages the notion that the singular goal of port
knocking is stealth, which in fact is not always true. Secondly, this
argument is often applied to port knocking implementations where the
knock is a static sequence that must be shared by the pool of legitimate
users. This form of authentication is very weak, equivalent to a shared
password or perhaps an obscure command. However, when strong
authentication is incorporated into the port knocking implementation, the
common example of offering a service in response to a valid knock is
closer to the concept of least privilege than obscurity. In such a case, the
service isn't hiding in plain sight. Instead, it only exists to the people who
need it (authenticated users) for the amount of time necessary.

The previous example of an SSH server on a firewall is typical of simple
implementations of port knocking in that it relies on a static knock using TCP
SYN packets - a system analogous to authenticating with a simple shared
password. In the example, we are essentially sending the shared password in
clear text - not an ideal situation! However, even if we encrypt the knock, we are
not necessarily safe from attack. There are two main problems with static
knocks: they are easy to detect, and once detected can be replayed by an

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

2 One way to accomplish this with time-synchronized systems is to include a timestamp when
calculating the knock.

attacker.

The Trouble with Static Knocks

Martin Krzywinski brought port knocking into the limelight in 2003 with several
articles on his own implementation, which uses static TCP SYN knocks. In a
critique of Krzywinski's implementation, Arvind Narayanan notes that traffic can
be sniffed to obtain a valid knock sequence ("A critique of port knocking").
While Krzywinski recognizes this in his rebuttal, he also asserts that
communication over closed ports is useful when the packet payload is being
sniffed - so long as the attacker does not realize that the knock is transmitted in
the port numbers ("A Critique of Port Knocking – Author's Response"). It is
probably safe to assume that by analyzing the traffic patterns involved, a
dedicated attacker would eventually recognize that port knocking is being used.
Krzywinski has an excellent example of such traffic - if an attacker notices SYN
packets with no response, followed by traffic to an SSH port that usually
appears to be closed, making the deduction is probably trivial ("A Critique of
Port Knocking – Author's Response"). But there are other motivations for
avoiding detection: circumventing intrusion detection systems is one; minimizing
log fingerprints is another. In order to accomplish this, the knock must blend in
with normal traffic patterns as much as possible.

Once an attacker has sniffed enough traffic to detect the valid knock sequence,
the knock could be replayed to the server. Encryption will not necessarily guard
against replay in and of itself. A knock that is encrypted using a one-way hash
algorithm such as MD5 will create the same ciphertext every time, and can be
replayed directly to the server without knowing the plaintext knock. In order for
encryption to be useful, it needs to generate a different ciphertext each time. In
challenge-response protocols, this is typically dealt with by sending a unique
nonce to the client in the challenge. The nonce is then transformed in some
manner and sent back to the server, which performs the same transform and
compares the results to authenticate the client. The nonce is different for every
challenge, preventing an attacker from replaying the response. However, port
knocking usually requires one-way communication to the server. The server
cannot issue a nonce in a challenge; therefore the only way to incorporate some
random data into the knock is for both the client and server to know the data
ahead of time, and be able to calculate the knock independently2. Alternatively,
the knock must be randomly chosen by one party in the communication, and
communicated to the other securely.

Guarding Against Detection and Replay

There are a variety of ways to address the issues of detection and replay.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Covert Knocks
While the concept of port knocking is often described as covert, the
implementations often are not. As previously noted, the "closed ports" that are
used to communicate the knock are typically TCP ports. Using a knock
sequence of TCP SYN packets to known closed ports will look anomalous to
anyone monitoring the wire - especially if it is used repetitively. A better option
is to encapsulate the knock in otherwise normal traffic. Using connectionless
protocols like UDP and ICMP reduces the noise of the knock without sacrificing
the stealth of traditional port knocking. In addition, traditional TCP SYN knocks
rely on the packets arriving in the correct order - something that cannot be
guaranteed without establishing a connection. If the knock is sent using a
single packet, ordering is no longer an issue. The use of DNS requests and
ICMP packets to send knocks will be explored in our overviews of Net::Pcap,
Cerberus, and CÖK.

Dynamic Knocks
We have seen that static knocks are susceptible to replay. One way to combat
this is by varying the knock itself for each session. If the knock is different each
time, replaying it will only serve to notify the target that it is being sniffed. A
dynamic knock is chosen on the fly, on an as-needed basis; ideally, it is
random. The chosen knock is then communicated to the other party in the
exchange, preferably using an out-of-band communication medium. As we will
see in our overview of the SIG^2 Port Knocking Project, there are two difficult
problems with dynamic knocks: how to choose the knock, and how to
implement the negotiation of the knock securely between the client and the
server.

One-Time Knocks
A better way to implement varying knocks lies in the concept of the One-Time
Password (OTP). The One-Time Password system specification, RFC 2289,
was developed specifically to guard against replay attacks. To do so, it uses
iterative hashing to generate a list of passwords from a user’s passphrase.
Each password is used only once. The system works as follows: initially, the
user’s passphrase is concatenated with a server seed and run through a one-
way hash function n times. The resulting password, Pn, is stored on the server.
When the user wishes to authenticate, the server will send a challenge
containing the password number, in this case n-1, as well as the public server
seed. The user will use an OTP generator program to calculate the password
from the seed, the password number, and the user’s passphrase - the generator
will concatenate the seed and password, and apply the one-way hash function n-
1 times to get the new one-time password. When the server receives this one-
time password, Pn-1, it will apply the hash function to it once and compare it with
the stored password Pn. If the two match, the user is authenticated. The server
will then store Pn-1 for the next login. It will also store the next password

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

number, n-2. The security of this system depends on the fact that the one-way
hash cannot be reversed, so the hash algorithm must be selected carefully
(Haller).

One-time knocks use the same concepts as OTP, but eliminate the challenge-
response protocol. Port knocking implementations that use pre-determined one-
time knocks supply the next knock in a series of agreed-upon one-time knocks
to the server. Because the series is well-defined in advance, there is no need
for the client and server to negotiate the knock or further encrypt the knock
sequence. However, such a system also requires additional preparation prior to
execution to generate and distribute the list of knocks. The overviews of
Cerberus and CÖK will discuss the implementation of one-time knocks, as well
as some of their limitations.

Crafting a Covert DNS Knocker with Net::Pcap
In a series of articles for the Linux Security: Tips, Tricks, and Hackery
newsletter, Brian Hatch outlined a system that uses the Net::Pcap Perl module
to sniff for special DNS requests that contain a static knock. In his
implementation, a simple Perl program called watch_dns watches for UDP
packets destined for port 53 on a specific host. The program outputs the source
IP, destination IP, and the domain name to look up ("Sniffing with Net::Pcap to
stealthily managing iptables rules remotely, Part 1"). A second Perl program
tries to map the domain name to a command. If the domain name corresponds
to a command, the command will be executed. In the example, a request to
look up the domain "openssh" will result in the addition of a new rule to the
firewall that allows inbound SSH access for the source IP address ("Running
programs in response to sniffed DNS packets - stealthily managing iptables
rules remotely, Part 2").

One of the biggest advantages of this implementation of port knocking is ease of
use. Because DNS requests can be easily generated with standard tools like
nslookup and host, a special client tool would be unnecessary for generating
knocks. Hatch also suggests configuring an authoritative domain server to set
up what amounts to a "knock subdomain", called "magic.example.net" in his
example. The name server for this new subdomain is the server running the
DNS sniffer. As a result, the sniffer will see a DNS query for anything under
"magic.example.net". This greatly simplifies sending the knock - a request in a
web browser for "http://openssh.magic.example.net" will generate a DNS
request to the server running the sniffer. The sniffer can then look for a
command that is mapped to "openssh.magic.example.net" ("Running custom
DNS queries - stealthily managing iptables rules remotely, Part 3").

One of the biggest disadvantages of Hatch's implementation is actually a side
effect of its ease of use. The user is not required to supply a source IP in the
knock because it is taken from the UDP packet itself. While this cuts down on
typing, it also may unwittingly expand the pool of authorized users. If the tool is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

3 It is unclear from Epp's slides if this is implemented using iterative hashing in the manner
outlined in RFC 2289. The presence of a timestamp implies that iterative hashing is not used,
and that the server validates the one-time password by independently calculating it. It is also
appropriate to note that the server seed is probably not secret.

used from behind a NAT device or through a proxy server, the source IP that is
granted access may represent an entire company's pool of users! We will see
this problem crop up again in other implementations.

Another disadvantage is that while using DNS requests as knocks may not
arouse suspicion from an intrusion detection system, an alert attacker sniffing
the traffic would no doubt figure out the trick from studying the traffic patterns. In
addition, there is no attempt to authenticate the source of the request. As a
result, an attacker can easily re-create our DNS requests with a web browser,
taking advantage of the ease of use of the implementation. However, Hatch's
specific situation - allowing limited SSH access on demand, without enabling
constant inbound access - doesn't require a very high level of additional security.
If an attacker can supply a valid knock in this situation, all she gets is a login
prompt, not total access to the system. What if we wish to use port knocking to
trigger an event, not to enable access to a service? The next implementation,
Cerberus, adds authentication to the concept of covert knocks to create a more
appropriate solution for event triggers.

Cerberus: Covert One-Time Knocks over ICMP
The ICMP port knocker Cerberus is quite possibly one of the oldest publicly
known variations on port knocking, having been written by Dana Epp for private
use around 1999. Cerberus is a daemon that watches for ICMP ping packets
that contain knocks. Like the Net::Pcap implementation, Cerberus does not
require a separate knock generator to be installed - a ping tool, like those that
come standard on Linux, Unix, and Windows, is all that is required. Using ICMP
ping packets to send the knock has the advantage of looking like common
traffic, which makes it more likely to pass through intrusion detection systems
and firewalls without tripping alarms (Epp).

While the Net::Pcap implementation uses static knocks with no real
authentication, Cerberus uses a variation of the one-time knock concept to
authenticate the user. To generate a knock, an MD5 hash is constructed from
the current date and time to the minute, a server seed, the user's password, and
the IP address that will be allowed access (Epp). The last 16 characters of the
hash are used as a one-time password, and sent in the ping packet along with
the user ID and IP address in plaintext3. In order for an attacker to craft a valid
knock, she would need to know both the server seed and the user's password.

While using a one-time password mitigates the risk of replay, and use of ICMP
may aid in stealth, there are known disadvantages to Cerberus. The most
worrisome is probably the risk of denial of service - a ping flood could easily
overwhelm the daemon. To mitigate this risk, an intrusion detection system

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

could be layered over the port knocking system to filter these sorts of attacks.
Another consideration is time synchronization. Since calculation of the one-time
password relies on both the client and server choosing the same timestamp,
measures need to be taken on the server to ensure that the time chosen upon
sniffing the packet will result in the correct hash.

The last and most important consideration is the user herself. Because
Cerberus allows the user to specify two pieces of information - the IP address
and the password - a great deal of the security in the system relies on the user.
If the user is sending a knock to activate access to a service, she must be aware
of the number of users that share the IP address she sends, and weigh the risk
accordingly. She also must select a password that cannot be trivially guessed.
To ensure that the password is strong, complexity requirements should be
enforced at the time of selection.

The SIG^2 Port Knocking Project: From Dynamic to One-Time
The port knocking implementation created by SIG^2 specifically seeks to
combat replay. The first iteration uses dynamic knock sequences that are
determined by the client and declared to the server prior to the actual knock.
The implementation also seeks to bolster the stealth inherent in port knocking
by randomizing the port that is opened to the client. The port actually forwards
the connection to a service that runs on localhost.

In the SIG^2 implementation, the client generates a random knock that consists
of three port numbers and three Initial Sequence Numbers (ISNs), encrypts it
with the user's password hash, and sends it to the server in a UDP packet along
with an MD5 HMAC to ensure integrity. The server will use a local copy of the
user’s password hash to decrypt the knock sequence, and then will wait for the
client to send the actual knock. The client sends the knock as three TCP SYN
packets that correspond to the ports and ISNs sent in the UDP packet. In
addition, it will send a second encrypted UDP packet to the server to check the
status of the knock. Once the server receives both the knock and the status
packet, it will send the client an encrypted UDP packet that contains the port
number that will be opened. To prevent an attacker from replaying all of the
packets in the exchange, a timestamp is included in all the encrypted packets
(Tan).

An immediate disadvantage to SIG^2's dynamic knock implementation is how
noisy it is - not only is the knock transmitted, but also three additional UDP
packets. This stands in stark contrast to the previous systems discussed, each
of which only required a single packet to send the knock.

A potential problem in SIG^2's implementation is its use of encryption. While
the details of the encryption used for the UDP packets are vague, we know that
it is a two-way encryption algorithm that involves a shared secret - the user's
password hash. Given the amount of information that an attacker could sniff

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

from the exchange of packets, it is conceivable that the user's password could
be cracked. An attacker could sniff and collect the first and last encrypted UDP
packets and their corresponding "plaintext" values - matching the first packet
with the sniffed TCP SYN knock packets, and the last packet with the port that
the client eventually connects to. With this information, the attacker could
launch a known-plaintext attack to recover the user's password hash. A better
approach would involve using asymmetric-key encryption to encrypt and digitally
sign the UDP packets, ensuring both the integrity of the data and the identity of
the client.

Shortly after describing their dynamic knock implementation, SIG^2 posted a
second paper acknowledging several shortcomings in their implementation, and
proposing fixes. The first issue is similar to the denial-of-service concerns in
other implementations, but with a twist. The dynamic knock implementation
required the server to decrypt the UDP packets sent by the client. As a result, a
flood of properly crafted UDP packets could cause resource starvation on the
server by forcing a large amount of unnecessary decryption. Another familiar
issue involves the randomness of the knock sequence generated on the client.
Since the sequence is out of the control of the server, a weak random number
generator on the client could make the knock sequences predictable. These
two issues were resolved by having the server select the knock sequence, and
send it to the client. The decryption problem is then pushed off to the client
(Cappella).

But the most important issue is the timestamp used to prevent replay of the
UDP packets. Because time synchronization is difficult when the client
computer is not pre-determined, the timestamps were removed from the
packets in favor of using a variation of a one-time password system. In this new
implementation, a user is given an ID and password offline, and sent an
encrypted initial knock sequence via email. The user stores the encrypted
knock on the client computer. To generate a knock to the server, the knock is
decrypted using the user's password and sent to the server. The server sends
back an encrypted UDP packet that contains the port number that will be
opened and the next knock that the client should use. The next knock is
retained on disk until needed (Cappella).

The one-time knock implementation improves upon the noisiness of the
dynamic knock version, eliminating two of the three UDP packets. As a trade-
off, the user will now need to carry a copy of the next knock sequence if she
intends to connect to the server from a different computer. If the client computer
indeed varies, it will become more difficult for an attacker to correlate the
plaintext knocks to their encrypted counterparts, as they will not be transmitted
in the same session. However, the port number and corresponding encrypted
packet could still be collected and analyzed. It also appears that the new
implementation may have eliminated the MD5 HMAC that was originally sent in
the encrypted packets. If so, this reduces the complexity of cracking the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

encrypted packets.

If an attacker is able to obtain the user’s password, she can sniff the UDP
packet sent by the server that contains the next knock and use the knock
herself. Once the attacker does this, she will have successfully subverted the
series of knocks away from the legitimate user, since she will receive the next
knock in the series from the server directly. In addition, the legitimate user will
not realize that there is a problem until she tries to use the next knock, which
could be weeks or months down the road. Worse, if the system believes she is
trying to replay an old knock (since the knock she is using has already been
sent by the attacker), she may end up blacklisted.

It is also appropriate to point out that despite the name, this one-time knock
system is not an implementation of the One-Time Password system described
in RFC 2289. In that specification, the strength of the hash function is what
makes or breaks the system. In this one-time knock system, it is the
randomness of the numbers selected by the server that the system depends on.
The next section looks at an implementation that is directly based on the One-
Time Password specification.

CÖK: Cryptographic One-Time Knocking
A port knocking system that adheres more closely to the One-Time Password
specification was presented at the 2004 Black Hat conference by David Worth.
His implementation, called CÖK, makes a few changes to the specification for
simplicity. There is no challenge/response system - instead, the alphanumeric
seed in the OTP specification is replaced with a publicly known command that
specifies the action to be taken. In addition, the onus is on the user to
remember which knock from the list of one-time knocks should be used next.

In Worth’s implementation, a daemon watches for UDP packets that contain the
next knock. A client tool in the form of a Java applet constructs the knocks by
prompting for the knock number, the user’s passphrase, the command to be
issued to the server, and the target port for the knock. The command and
passphrase are concatenated by the client tool, and the one-time knock is
calculated using the knock number provided. The knock is encapsulated in a
UDP packet and sent to the port specified. The client tool also supports sending
the knock in a DNS request (Worth).

The biggest disadvantage of this one-time knock system is the finite nature of
the one-time knock list. Eventually, the user will run out of knocks to use and
will need to re-initialize this list with a new password or new commands. This
may result in the user getting locked out of the system if she forgets that she is
out of knocks.

Another disadvantage of this specific implementation is that the server seed has
been replaced with a command. It is not clear from the documentation if any

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

time-sensitive data is added to the knock when it is calculated (like a
timestamp). If not, there could be a problem if an administrator sets up knocks
with the same password and same commands on two or more servers. The
resulting lists of knocks would be identical, which would make them susceptible
to replay. In addition, a user that recycles her password and command when re-
initializing the list of knocks would end up generating the same list over and over
again.

This implementation is probably the most robust of the group, but is also very
complex. In addition to the daemon and client, there is a knock manager that
allows for administration of knocks and commands. While it improves upon
other implementations of one-time knocks, and allows for more flexibility and
extensibility, this comes at the price of complexity. This added complexity is one
of several continuing issues in port knocking systems in general.

Continuing Issues

There are still some known problems with port knocking that future
implementers should be cognizant of:

Even with the use of one-time knocks, port knocking is still vulnerable •
to man-in-the-middle attacks. However, this is a well-known problem
for many programs, including SSL and SSH.
Spoofed traffic will probably cause problems for port knocking •
systems, but the scale depends on the implementation. An attacker
would probably use spoofed traffic to frustrate a valid knock (when the
knock contains multiple packets), or to send extraneous traffic after a
valid knock has been received.
Denial of service is a problem for port knocking across the board, but •
may be a bigger concern in systems where the server’s port knocking
daemon includes proactive techniques to ward off intruders. For
instance, Krzywinski suggests that intrusion detection systems can
block attempts from attackers to brute-force the port knocking
sequence by blacklisting the IP addresses of attackers ("Is Port
Knocking an Obscurity Hack?"). Unfortunately, this technique would
make it easy to deny service to a legitimate user by spoofing an attack
from the user’s IP address.
Finally, part of the attraction to port knocking has been the simplicity •
of the implementation. As implementations become more complex to
ward off the inherent weaknesses of static port knocking, it becomes
more likely that vulnerabilities will be introduced into the system. This
is a big problem if the system is authorized to manipulate critical
pieces of the infrastructure, as is the case when a port knocking
system is modifying firewall rules.

None of these issues are necessarily deal-breakers for port knocking; all are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

common problems for many networked services. But even without these
issues, there are other considerations that might deter administrators from using
port knocking in an enterprise environment – at least for now.

Future Work: Enterprise Port Knocking

Most current implementations of port knocking are proof-of-concepts, and as
such warn their audiences away from using the code in a production
environment. Another oft-repeated assertion is that port knocking should only
be used as a layer over an existing secure service, implementing an additional
stealthy layer of authentication. But when implemented with authentication that
is resistant to replay, is there a real reason that port knocking shouldn't be used
as a standalone authentication service? The complexity of implementing such a
system may make it overkill for the administrator who just wants to selectively
open ports, but in the context of triggering events on the server it would be a
good fit. Consider an administrator who needs to reboot a web server remotely.
Using a one-time port knock to trigger the reboot would be ideal, especially if
using a covert protocol. Such a knock could not be trivially replayed, and would
not be easily detected using traffic analysis – no ports are opened in response
to the knock, and no response is sent. In this case, the port knocking system
acts as an authentication service for potentially many triggers behind the scenes
that could be used for debugging, maintenance, and more – all without granting
shell access to the user. This has very powerful possibilities for collaborative
development and test environments, where several non-privileged users may
need to securely invoke very specific events on a server.

Even with robust authentication, port knocking will still need some work before it
is ready for the enterprise market. While most of the focus of port knocking
implementations is on keeping attackers out, it is only a matter of time before
one gets in. An enterprise-level port knocking implementation must address this
by working on privilege separation and ensuring that the system fails gracefully.
Some questions that implementers should be able to answer include:

Will a vulnerability in the port knocking daemon result in root access?•
What happens if the port knocking system is compromised or fails •
when it is in the middle of triggering an event?
If part of the system is disabled, will the other parts still function (or •
fail) gracefully?
If the port knocking system restarts unexpectedly, what effect will the •
re-initialization have on the predictability of the knocks?
Is enough logging supported to find the root cause in the event of a •
failure?

There are other good reasons that an administrator might not want to use port
knocking for a large group of users. In cases where a user sends port knocks
only sporadically, long periods will go by where the user's account is not being
accessed or maintained. One problem with this was illustrated in the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

discussion of SIG^2's implementation: if the account is quietly compromised,
the user would not notice until she tried to log on again – potentially weeks or
months down the road. To prevent this, administrators could use formal periodic
access reviews to ensure that accounts have not been subverted without the
user's knowledge. An enterprise port knocking system would need to ensure
that enough data is logged to conduct these sorts of audits. The system might
also be required to provide non-repudiation when critical events are involved.

The long periods between logins also create another problem in an enterprise –
password changes. It is common for password policies to require a password
change at 60 or 90 days. A port knocking system that enforces this must
provide a way for users to change passwords periodically, or must be
synchronized with a system that propagates password changes. While
synchronizing with an LDAP directory prevents adding an additional interface to
the port knocking system for password changes, it also increases the possible
points of vulnerability in the PK system. An attacker who wants to gain access
to the port knocking system could simply compromise a less secure application
to obtain a valid single sign-on password. On the other hand, using one-time
knocks for authentication would probably require the port knocking system to
manage password changes, since a password change is required whenever the
user runs out of valid knocks.

Finally, a port knocking system that allows access from anywhere, anytime may
give administrators headaches. While such a system gives remote users
significant flexibility, it also removes a lot of useful information that an
administrator may depend on to determine if something strange is occurring.
For instance, an administrator may normally depend on the location of an IP
address, the type of operating system used, or the time of day accessed as
clues to whether an unauthorized user may be using the system - for instance
with a compromised account or an attempt at replay. Since one of the selling
points of port knocking is the ability to authenticate from an arbitrary machine,
much of this information becomes far less useful. Enterprise port knocking
implementations could allow administrators to create rules that limit this
arbitrary scope using allowable IP ranges, OS fingerprinting to ensure that a
minimally secure configuration is being used, and enforcing "normal business
hours" for certain types of commands.

Overall, there is still much work to be done before port knocking will be a useful
tool in a production environment. In the end, the complexity required to meet the
needs of such an environment may not be worth the added security. However, it
seems logical to conclude that this is not due to any inherent weakness in the
concept of port knocking itself. For those who have more flexibility, port
knocking can be a novel solution to meet unique needs.

Summary

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

This paper has described the two major drawbacks of static port knocking -
detection and replay. To mitigate these risks, three solutions are proposed:
sending the knock over more covert channels such as ICMP or in DNS requests,
varying the knock dynamically, and incorporating the concept of one-time
passwords into knocks. Four very different implementations display some or all
of these characteristics with varying degrees of success. Covert DNS knocks
with Net::Pcap succeed at stealth but are still static and susceptible to replay.
Cerberus also does a good job of hiding the knocks in ICMP packets, and
seems to implement a strong one-time password scheme. SIG^2 implements
an interesting dynamic knocker that uses randomly selected knock sequences,
but their implementation is noisier than the others and may be vulnerable to
cryptanalysis. Finally, CÖK sticks closely to the One-Time Password
specification, but may have some problems with replay if no time-sensitive data
is incorporated into the knock generation. All port knocking implementations
still have to deal with denial of service risks and man-in-the-middle attacks, but
when properly implemented can be robust remote authentication mechanisms.
However, future implementers will need to work on ensuring that system failures
will not lead to full compromise, and that attacks on inactive accounts will be
noisy. As port knocking systems grow to meet these needs, implementers must
take care to ensure that the complexity of their system does not create more
risks than it mitigates.

Conclusions

Port knocking continues to prompt lively debate in the security world. While it
may not be the best solution for all circumstances, it seems apparent that port
knocking can be considered an extension of the concept of least privilege. Why
should a service that is meant for use by a limited group be open to the public
for probing? Does the public need to know it exists? However, port knocking
has applications beyond just hiding services, like triggering server events on-
demand from an arbitrary location. If the security community can keep an open
mind and continue to scrutinize the concepts and implementations of port
knocking, the result will be a robust new layer in defense-in-depth.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References

Cappella and Tan Chew Keong. "Remote Server Management With One-Time
Port Knocking (OTPK)". SIG^2 Port Knocking Project. 08 June 2004. 08 Feb
2005 <http://www.security.org.sg/code/portknock2.html>.

Epp, Dana. "Port Knocking with covert packets to secretly open your firewall."
SilverStr's Blog. June 2004. 08 Feb 2005
<http://silverstr.ufies.org/blog/Cerberus.ppt>.

FX. "cd00r.c - not listening remote UN*X shell." Phenoelit. June 2000. 08 Feb
2005 <http://www.phenoelit.de/stuff/cd00rdescr.html>.

Haller, N., et al. "RFC 2289: A One-Time Password System." IETF RFC
Repository. Feb 1998. 08 Feb 2005 <http://www.ietf.org/rfc/rfc2289.txt>.

Hatch, Brian. "Running custom DNS queries - stealthily managing iptables rules
remotely, Part 3." Hacking Linux Exposed. 25 Aug 2003. 08 Feb 2005
<http://www.hackinglinuxexposed.com/articles/20030825.html>.

Hatch, Brian. "Running programs in response to sniffed DNS packets -
stealthily managing iptables rules remotely, Part 2." Hacking Linux Exposed.
14 Aug 2003. 08 Feb 2005
<http://www.hackinglinuxexposed.com/articles/20030814.html>.

Hatch, Brian. "Sniffing with Net::Pcap to stealthily managing iptables rules
remotely, Part 1." Hacking Linux Exposed. 30 July 2003. 08 Feb 2005
<http://www.hackinglinuxexposed.com/articles/20030730.html>.

Jeff, et al. "Port Knocking For Added Security." Slashdot. 05 Feb 2004. 16
Feb 2005 <http://slashdot.org/article.pl?sid=04/02/05/1834228>.

Krzywinski, Martin. "A Critique of Port Knocking – Author's Response." Port
Knocking. 14 Nov 2004. 08 Feb 2005
<http://www.portknocking.org/view/about/critique>.

Krzywinski, Martin. "Is Port Knocking an Obscurity Hack?" Port Knocking. 13
July 2004. 08 Feb 2005 <http://www.portknocking.org/view/about/obscurity>.

Krzywinski, Martin. "Port Knocking." Linux Journal. 15 June 2003. 08 Feb
2005 <http://www.linuxjournal.com/article/6811>.

Maddock, Ben. "Port Knocking: An Overview of Concepts, Issues and
Implementations." SANS Institute. 2004. 08 Feb 2005
<http://www.giac.org/practical/GSEC/Ben_Maddock_GSEC.pdf>.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Narayanan, Arvind. "A critique of port knocking." NewsForge. 08 Oct 2004. 08
Feb 2005 <http://software.newsforge.com/software/04/08/02/1954253.shtml>.

Tan, Chew Keong and Cappella. "Remote Server Management using Dynamic
Port Knocking and Forwarding." SIG^2 Port Knocking Project. 02 May 2004.
08 Feb 2005 <http://www.security.org.sg/code/sig2portknock.pdf>.

Worth, David. " CÖK - Cryptographic One-Time Knocking." hexi-dump.org.
2004. 08 Feb 2005 <http://www.hexi-
dump.org/bytes/cok/blackhat04_printed_slides.pdf>.

