
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Trends in Bot Net Command and Control

GIAC General Security Essentials (GSEC)
Practical Assignment Version 1.4C

Option 1 – Research on Topics in Information Security

Will Longman
March 17, 2005

Abstract

Since 1999, hackers have harnessed the power of compromised computer
systems by arraying them into networks that are intended to launch attacks and
gather intelligence. The ability of these illicit networks to function while remaining
covert is primarily a function of their command and control architecture. That
architecture has evolved in sophistication over the years in terms of detectability
and overall robustness as attackers attempt to evade improved defensive
security strategies and aggressive rival hacker takeovers. This paper will follow
that evolution by analyzing representative command and control topologies and
then providing a glimpse into some new “bleeding edge” approaches.

Introduction

Hackers assemble captive computer systems into networks in order to
accomplish a variety of tasks, initially and most notably the launching of
distributed denial of service (DDOS) attacks. Originally known as DDOS nets,
these networks are now more commonly called bot nets in reference to the
automated software agents or bots that are embedded in each of the captive
hosts. The ability of these networks to carry out their functions and remain covert
is primarily a function of their command and control or “c2” architecture.

Bot net c2 systems all share a common objective – they provide the network with
a communications channel and a command set protocol that together enable the
individual bots to accomplish the intended tasks. Each of the representative c2

topologies detailed in this paper will be shown to possess the following three
basic attributes in support of this objective:

• A control channel to provide a conduit for reports, commands, and
acknowledgements.

• A method for the bot to join the control channel.

• A command shell that will enable the bot to receive commands and
transmit acknowledgements as well as status reports.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The manner in which a specific bot net implements these attributes can be used
to place them in an evolutionary taxonomy. Using this taxonomic approach, c2

topologies can be divided into three main classes: handler/agent, IRC-based,
and peer-to-peer.

Handler / Agent Control Topology

As documented by the CERT Coordination Center [1], the first real DDOS net
command and control architecture emerged in 1999 and was a three tiered
structure referred to as a handler / agent topology. At the top level was the
“master,” a system operated directly by the hacker and which in turn controlled a
small number of “handler” systems. These handlers formed the middle tier and
each served to relay the master’s commands to a subset of the remaining captive
host systems. That latter group of hosts comprised the third tier and contained
the software “agents” used to receive, acknowledge, and execute the master’s
instructions as relayed by the handlers. These commands were sent and
received using custom TCP (Transmission Control Protocol), UDP (User
Datagram Protocol), or ICMP (Internet Control Message Protocol) services.

Using these nonstandard ports as communication channels, the middle tier
systems acted as communications hubs by listening for connections from the
master on one channel while simultaneously operating a bi-channel structure
with its agents. The master would contact the handlers in order to determine
how many active agents there were, to cause them to execute specific tasks, to
turn them off, and in some cases, even to download updated versions of agent
code. An agent would contact the handler on one channel in order to identify
itself to the network and then listen on a second for commands back from the
handler.

Although effective for controlling the DDOS net, this command structure also left
the illicit network quite vulnerable to detection and elimination. Network intrusion
detection systems were able to detect the nonstandard ports as they were being
used to relay the commands. Port scanners could also be used to identify
systems that were listening for these same custom services. The discovery of
just one agent system could then be used to unravel the entire hacker network.
This is because each agent held the hard coded IP (Internet Protocol) address of
at least one handler in order to communicate with the middle tier. Conversely, a
handler system had to contain the IP addresses of every one of its agents. So,
by detecting and then analyzing just one agent, one or more handlers could be
revealed which in turn compromised most of the network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Handler / Agent Example – The Stacheldracht DDOS Tool

This section will detail a typical implementation of handler / agent bot net control
architecture. The “stacheldracht” (German for “barbed wire”) DDOS tool was
selected as an example of this particular c2 topology as it was a mature variant
that also possessed several unique and interesting features. The technical
information that follows was extracted from an analysis performed by Dave
Dittrich of the University of Washington [2].

In late 1999, the stacheldracht tool began to emerge as a method of delivering
various forms of DDOS attacks. This tool established a three tiered bot net that
was implemented through the following programs embedded in infected hosts:

• “telnetc/client.c” - the master.

• “mserv.c.” - a handler.

• “leaf/td.c” - the agent.

The control channel between the master and handlers used a fixed nonstandard
TCP port (default was 16660). One interesting improvement over earlier variants
of this c2 architecture was the encryption of this connection. By hardening the
master/handler control channel in this manner, susceptibility to TCP reset attacks
and session hi-jacking by rival hackers was eliminated. The “telnetc/client.c”
program initiated the symmetric key encryption for these sessions.
Authentication via an encrypted password was required for the master to execute
commands at the handler. The password itself was then Blowfish encrypted
using the passphrase "authentication" before being sent over the network to the
handler.

The “mserv.c” program for each handler was coded to control a maximum of one
thousand agents. A bi-channel structure was used for communication between a
handler and its agents. Commands were sent to the agents over a TCP port
different than that used for master/handler communications (default 65000) while
responses from the agents came back embedded in ICMP echo_reply packets.
Use of ICMP was another development that was unique to stacheldracht among
handler / agent command and control systems. All these communications were
also Blowfish encrypted using the same passphrase as above.

With the control structure thus established, the next functionality required of a bot
net c2 architecture is a means for an agent to join the network. Following the
initial attack against a victim host that ended with the stacheldracht tools
downloaded to it, the agent program “leaf/td.c” would begin to execute. One of
the first activities initiated was for the agent to join the bot net. To join the
network, an agent needed the IP address of a handler that could control it.
These addresses were maintained in a master server configuration file also

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

deployed to the victim. This file was Blowfish encrypted using a second
passphrase, “randomsucks.” As back-up for a missing server file, there were
several default handler addresses hardcoded in the agent program itself.

Having read the IP addresses from either source, the agent then attempted to
contact the handlers one at a time by sending an ICMP echo_reply packet to
them with the value 666 embedded in the ID (identifier) field and the string value
“skillz” in the data field. Acknowledgement from a handler via echo_reply
indicated that the packet had been received and that the agent was enrolled in
the network. Interestingly, in comparison with the TCP control channels, no
stacheldracht ICMP transmissions were either authenticated as to source or
encrypted.

Once the agent joined the bot net, it then attempted to shift to a more secure
communications mode by spoofing its own IP address. This was only possible if
the host or victim network allowed spoofed outbound packets. So, the agent
tested for this condition by transmitting an ICMP echo_reply packet with a source
IP of 3.3.3.3 along with the values of 666 and the agent’s actual IP address
loaded into the data field. If the packet was successfully transmitted out of the
host network, the handler would reply directly back to the agent via another
echo_reply packet that had the values of 1000 and the string “spoofworks” in the
data field. Upon receiving this confirmation from the bot net handler, the agent
then set an internal variable indicating that all four octets of its own source
address could be fully spoofed. A time out on receipt of a reply from the master
caused the agent to set that same variable to a different value that meant only
the final octet could be spoofed.

With a communications structure established and the bot net populated with
registered agents, the only remaining element required to have a fully functional
c2 architecture was a rich command set. Again, thanks to David Dittrich’s work,
there is excellent documentation of the stacheldracht command shell. A
summary of the key network management and attack commands that could be
sent to agents by the master via a handler follows.

Key Stacheldracht Network Management Commands

Command Purpose

.distro user server Instructs the agent to install and run a
new copy of itself using the Berkeley
"rcp" (remote file copy) command, on the
system "server", using the account
"user." E.G. "rcp user@server:linux.bin
ttymon"

.killall Kills all active agents.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

.mping Broadcasts a ping to all agents to see if
they are alive.

.msadd Adds a new handler server (handler) to
the list of available servers.

.msort Broadcasts a ping to all agents to sort
out dead from alive agents. Shows
counts/percentage of dead/alive agents.

.msrem Removes a handler server from the list
of available servers.

.showalive Broadcasts a list of all alive agents.

.showdead Broadcasts a list of all dead agents.

Key Stacheldracht Attack Commands

Command Purpose

.madd ip1[:ip2[:ipN]] Add IP addresses to list of attack victims.

.mdos Begin DOS attack.

.micmp ip1[:ip2[:ipN]] Begin ICMP flood attack against
specified hosts.

.mlist List IP addresses of hosts being DOS
attacked.

.mstop ip1[:ip2[:ipN]] or .mstop all Stop attacking specific IP addresses or
all.

.msyn ip1[:ip2[:ipN]] Begin SYN (Synchronize) flood attack
against specified hosts.

.mtimer seconds Set timer for attack duration.

.mudp ip1[:ip2[:ipN]] Begin UDP flood attack against specified
hosts.

.setisize Sets size of ICMP packets for flooding.
Max = 1024.

.setusize Sets size of UDP packets for flooding
Max = 1024.

.sprange lowport-highport Sets the range of ports for SYN flooding
(defaults to lowport:0, highport:140).

Note that the network command “.distro” could be used by the master to direct
agents to delete their current image and then download updated agent code from
misappropriated space on a server cache. This ability to provide improved code
versions was yet another unique feature of the stacheldracht DDOS tools.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The stacheldracht tool is an advanced example of the handler / agent c2 model.
First, it satisfies the basic requirements for a bot net command and control
architecture by establishing a fundamental communication structure, providing a
method for newly infected hosts to join the bot net, and having a rich command
shell with which to direct the agents. Second, the network of captive hosts that
was established used the three tiered master / handler / agent hierarchy
characteristic of this first wave of DDOS nets. Finally, the stacheldracht network
displayed certain advanced features of which the most notable were encrypted
communications and the ability to upgrade agent programs.

IRC-Based Control Topology

A strikingly different approach to bot net command and control began to appear
as early as August 2000 [1]. This new topology replaced the middle tier of
handler systems with one or more IRC (Internet Relay Chat) servers such that
the master could use the IRC protocol to communicate with the software agents
embedded in victim hosts.

As defined by IETF RFC 2810 [3], IRC is a client-server application that provides
text-based, real time, Internet conferencing services. Individual users run a client
program which connects to a server in an IRC network. That server passes chat
message traffic between users by communicating with other interconnected IRC
servers and by acting as the central management hub for hundreds of clients.
There are several IRC networks in existence that are available for public use.
According to the mIRC FAQ on IRC [4], the key networks in descending order of
size (number of users) are EFnet (Eris Free net), Undernet, and Dalnet.

A named communications “channel,” essentially nothing more than a logical
grouping of interconnected clients, can be established over either a public or
private IRC network. This channel is a key functionality that has been
appropriated by hackers for control of their illicit networks. Communication from
a single client (the master) can be sent out simultaneously to all the other clients
on that channel. When the hacker establishes a channel for this purpose, he
becomes the operator or “chan op” of that channel. The chan op can use the
/mode command to increase the covertness of the bot net control channel in
several ways. For example, the channel can be set up to hide the user list
(“/mode+u”) which will shield the nicknames or individual client identifiers and
their IP addresses from external scrutiny and as secret (“/mode+s”) so that it will
not show up on channel lists. Also bots can be required to join using a key
(“mode/+k”) and joining can be limited to only those clients having chan op
privileges by setting the channel type as moderated (“mode/+m”). As additional
security, the chan op may use special (non-text) characters in the channel name
and require authentication from a client to join [5].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

At about the same time (2000), the word “bot” (short for robot) began to be used
to describe the automated IRC client software loaded on the victims. IRC bots
had initially been developed as a method for IRC server operators and clients to
script automatic responses to specific activities that were occurring on IRC
channels. Hacked versions of these bots were used to automate the
establishment and maintenance of the IRC control channels that linked the bots
as well as the accomplishment of various attack tasks. As the target systems
became more hardened, the insertion of these malicious bots through normal
IRC activity became increasingly difficult. In response, the hackers became
more sophisticated and these same IRC bots began to show up as the payloads
of virus, worms, and Trojans. The collection of captive hosts controlled through
the use of IRC bots gradually became known as a “bot net” rather than by the
older term of DDOS net.

When an IRC bot has been loaded into a victim host, it will seek to contact a
predetermined IRC server through an outbound connection. IRC servers
typically listen on TCP ports in the 6,000 to 7,000 range with a default port of
6667. Once connected to the server, the bot will then join the master’s private
channel through use of an authenticating key and will have a unique nickname as
an identifier. The master will use IRC text messaging to accomplish an
authenticated log-in to the bot as a precursor to issuing commands. This
authentication prevents other hackers from seizing control.

CERT (Computer Emergency Readiness Team) [1] has concluded that the use of
IRC services affords greater security to bot net c2 systems than previous
approaches for the following reasons. In the earlier generation handler / agent-
based architecture, the utilization of unusual TCP or UDP services often led to
the detection of an agent by intrusion detection systems or through network
scanners. With IRC-based control, bot net communications could occur on the
same ports as legitimate chat traffic. This makes detection harder and
countermeasures more difficult to enact. If all IRC traffic in the victim network
were blocked as a defensive measure then legitimate users would also be denied
service.

With the previous handler / agent-based architecture, forensic analysis of a
compromised agent could uncover the IP address of the handler which itself
might then reveal the addresses of all its agents. Should one of the captive hosts
in an IRC-based bot net happen to be detected, analysis would reveal little more
than an IRC server and channel name. This may or may not lead to any further
action as the owners of public IRC servers are often reluctant to take a server off
line merely to disable a bot net because of the overall impact to legitimate users.
There remains a risk to the attacker though that these same public IRC servers
are also subject to external security analysis. This risk can be mitigated through
the utilization of private IRC servers and/or the use of a service that enables the
attacker to elude security forces by rapidly shifting the control channel to a
different IRC server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Regarding private IRC servers, Swatit.org [6] states that the IRCD (the IRC
daemon or server application) “of choice” is Unreal IRCD
[http://www.unrealircd.com] due to both its ease of installation and unique
security features that can be used by hackers to increase the stealthiness of their
control channels.

If an IRC control channel has been discovered by security administrators or if the
channel has been banned from an IRC server, the technique of dynamic
addressing enables a bot master to quickly and efficiently redirect the entire bot
net to a different server. Dyndns.org is a common provider of free accounts that
allow this functionality.

In summary, IRC-based c2 is an improvement over the previous handler / agent
topology in that it affords increased security to the bot net. By eliminating
handler systems, the risk of compromise for an entire bot net is reduced. Also,
the master of the bot net gained the ability to shift IRC servers and channels at
will in order to maintain the control channel. Of course, IRC traffic is still subject
to detection and blocking by network security administrators. The gains have
outweighed the risks enough such that IRC-based bot net c2 is still used by
today’s hackers although now it is often a secondary or alternate control channel.

IRC-Based Control Example – GT Bot

The GT Bot (global threat bot) tool is presented as the example of an IRC-based
bot net c2 system because of the widespread and continued use of its many
variants. Except as otherwise noted, the following detailed information on the
inner workings of GT Bot was provided by swatit.org [6] and David Dittrich at the
University of Washington [7].

GT Bot is essentially a hacked version of mIRC, a legitimate shareware IRC
client program for Windows hosts. mIRC enables GT Bot to connect to multiple
IRC servers simultaneously. This allows for complexity in the bot net command
and control system as communications can occur over different IRC networks
and channels at the same time. Characteristic of the automated nature of bots,
miRC also has events and commands handlers that provide automatic responses
to channel activity and other IRC user actions. Another key feature is mIRC’s
built-in DCC (direct client-to-client) file server which enables bots to FTP files to
each other [8].

When used legitimately, mIRC is operated via a display on the user’s console.
For hacker use, this same display must be hidden from the operator of a victim
host in order to conceal the fact that the host is actively using IRC. GT Bot uses
the HideWindow program to accomplish this.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Interestingly enough, GT Bot’s IRC functionality can also be used as one of its
attack vectors. By deliberately resembling the legitimate mIRC program, innocent
IRC users can be tricked into downloading GT Bot onto their systems.

Once GT Bot has been downloaded into a victim host, mIRC creates an IRC bot
that then connects to an IRC server and channel. The GT Bot script usually lists
several different servers for the bot to contact over both TCP ports 6667 and
7000. The IRC server address in the bot script is also dynamic so that the bot net
can easily and quickly be pointed to another IRC server. The bot then uses the
!join <channel name><key> command to connect to a specific IRC channel.
Attempts at channel security by the bot net master become apparent at the IRC
server level. Channel names and keys may be comprised of special characters
rather than the standard ASCII text characters. One example from swatit.org [6]
has a channel name of “#Ãßÿ¥€¢_¿øùô” and a key of “¥_æÅ_ ‡” which would
then require the command string “!join #Ãßÿ¥€¢_¿øùô ¥_æÅ_ ‡” to connect to
the channel.

After the IRC bot has joined the bot net’s c2 channel, the master will then log into
the bot itself. From that point on, the bot will continue to run in the background
and respond to the specific command strings that the script is monitoring the
channel for. Commensurate with the increased capabilities of this hacker tool,
GT Bot can be seen to have a richer command set than stacheldracht. A
summary of the most significant commands identified by swatit.org [6] follows.

Key GT Bot Network Management Commands

Command Purpose

!- Executes any command on the remote
computer/mIRC client for the master

!quit Quits mIRC

!login "!login �grrrr� yeah baby!" sets the user
as master

!up Attempts to op the $nick in the current
channel.

!mode <#channel|nick> <+|-|smkiplnb>
<address>

Sets a mode on a channel or nick

!jump-server <server> <port> Tells the client to jump IRC servers

!add.server <host|ip> [port] [password] Tells the client to add an IRC server to
its server list

!update <url> Attempts to get an update from a web
page

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Key GT Bot General Attack Commands

Command Purpose

!pfast stop
!pfast <number of packets> <dest host>
<dest port>

Start / stop UDP flood attack

!scan <ip.*> <port> Execute a port scan

!packet <ip> <number> Starts a denial of service (ping.exe)
attack on the specified ip

!icppagebomb <uin> <amount>
<email/name> <sub> <message>

Floods a certain user (uin) on ICQ (the
original IRC instant messaging
application) via www.icq.com with a
page message

Key GT Bot Clone Commands

Clones are essentially multiple IRC clients that are spawned by a parent bot.
They can be used to flood an IRC channel or server thus creating a denial of
service condition. Clones can also harvest information from a victim host and
then transmit that data back to the hacker via the bot net IRC channel.

Command Purpose

!clone.load <hostname|ip> <port>
<number of clones>

Attempts to load a set amount of clones
on a selected server.

!clone.flood.ctcp.version
<#channel|nick>

Attempts to flood a user or channel with
CTCP (client to client protocol) ping
requests.

!clone.flood.ctcp.time <#channel|nick> Attempts to flood a user or channel with
CTCP time requests.

!clone.service.killer Attempts to flood ChanServ and
NickServ by registering random
channels and nicknames

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

!clone.dcc.chat <nick>
!clone.dcc.send <nick>

Attempts to flood a user with DCC
sends/chats

!clone.c.flood Constant flood, sets a timer to
continually flood a channel or nick

!flood.stop Stops the above flood.

Key GT Bot BNC Commands

BNC (Bounce for IRC) is an application used to load clones onto IRC networks
and can circumvent a ban on the attacker’s host or domain that has been
implemented by an IRC server’s operator.

Command Purpose

!bnc stats Shows statistics for the BNC (Bounce for
IRC) application. See below for a more
detailed explanation of BNC.

!bnc log Starts logging to bnc.log.

!bnc start <port> <password> Starts a bnc on <port> with <password>.

!bnc stop <port> Kills the listening bnc on <port.>

!bnc kill users Kill all listening and active bncs.

!bnc shutdown Shuts down the bnc server.

!bnc list bnc Lists all the listening bnc ports.

!bnc list users Lists all the users currently using the
bnc(s).

!bnc list servers Lists all connects to remote servers.

Peer-to-Peer Control Topology

In mid-2004, a new form of bot net command and control emerged – the use of
P2P (peer-to-peer) control channels.

According to the on-line encyclopedia Wikipedia [9], a P2P network consists of a
group of peer nodes that are “…able to initiate or complete any supported
transaction with any other node,” essentially the antithesis of a client-server
model. This architecture provides two key advantages for the bot net master –
one, there are multiple paths through which commands can be issued and two,
the loss of any one node has little or no effect on the rest of the network. To

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

effectively cripple a P2P c2 system, literally every single node has to be detected
and taken off line.

The bot in a newly compromised victim host must discover the other nodes on
the P2P network in order to join. This can be done by scripting the bot to contact
a legitimate and otherwise uninvolved caching server in order to obtain a list of
those other nodes. Once the bot is on the channel, the master merely logs into it
in order to enable it to receive further commands. Those commands are
transmitted as text messaging traffic.

Peer-to-Peer Control Example -- PhatBot

In March 2004, alarming reports like the following from washingtonpost.com [10]
announced the arrival of a Trojan that used a P2P bot net topology:

Computer security experts in the private sector and U.S. government are
monitoring the emergence of a new, highly sophisticated hacker tool that
uses the same peer-to-peer (P2P) networking abilities that power
controversial file-sharing networks like Kazaa and BearShare.

…The tool, a program that security researchers have dubbed "Phatbot,"
allows its authors to gain control over computers and link them into P2P
networks that can be used to send large amounts of spam e-mail
messages or to flood Web sites with data in an attempt to knock them
offline.

According to the LURHQ Threat Intelligence Group [11], PhatBot was not the first
hacker tool to use P2P for c2 though. A predecessor named AgoBot had used
P2P as an alternate control methodology while still utilizing IRC as its primary
channel. PhatBot however used P2P as its primary control channel. The P2P
application used by PhatBot is a hacked variant of WASTE which is a
communications and file sharing application originally developed for AOL
(America OnLine). AOL never used this application though and the code was
made briefly available to the open source community by one of the programmers.

The following information on WASTE was obtained from the application’s open
source development website [12] and from an article posted on instantmessaging
planet.com [13]. WASTE establishes a decentralized network of peer FTP (File
Transfer Protocol)-like server nodes that provide a messaging and file sharing
functionality. Unlike other P2P protocols, WASTE requires no central server to
act as a repository for lists of connected hosts and files available for share.
Instead, each WASTE bot provides the complete functionality creating a true
distributed network. Traffic between nodes is routed along the path of least
latency which results in a de facto form of simple load balancing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Although the links that are established between nodes can be encrypted using
128-bit RSA, the hacked variant of WASTE used in PhatBot has not been
reported to use this feature. This is believed to be due to the difficulty involved in
sharing public keys among the bots [11].

WASTE uses three general classes of messages for network management. A
node can send out a broadcast message type when it wishes to notify or request
information from every other node. A routed reply type message will be sent
back to the host that initiated the broadcast. Finally, local management
messages are exchanged between two nodes to set up the link between them.
1377 is the default port used by WASTE.

Although the WASTE P2P application was initially intended to create relatively
small peer networks of up to fifty nodes, PhatBot nets of up to 400,000 linked
bots have been reported by the IEEE [14].

The analysis by LURHQ [11] explains that when the bot in an infected host is
ready to join the hacker’s WASTE P2P network, it is scripted to contact a
Gnutella (another popular and widely used P2P application) cache server. Using
a CGI script provided by the server, PhatBot then registers itself as a fake
Gnutella client, using TCP port 4387 instead of the standard Gnutella port, in
order to access a list of peers placed there by other PhatBots. To join the P2P
net, the new PhatBot node then merely connects to a peer from the list. With the
bot now on the net’s control channel, the master can take control by
authenticating via a username and password that is embedded in the bot’s binary
as an MD5sum. Command and control has been established at that point.

PhatBot has an extremely rich command set illustrative of the wide range of
destructive abilities for which the bot is also well known for. A list of
representative commands showing each of these functional areas follows.

Key PhatBot P2P WASTE Commands

Command Purpose

waste.server Changes the server the bot connects to.

waste.reconnect Reconnects to the server.

waste.quit Quits the bot.

waste.privmsg Sends a private message.

waste.netinfo prints netinfo

waste.mode Has the bot execute a mode change.

waste.join Join a new channel.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

waste.gethost Prints netinfo when host matches
waste.getedu Prints netinfo when the bot is in an.edu

host
waste.action Has the bot execute an action.
waste.disconnect Disconnects the bot from WASTE.

Key PhatBot Bot-level Management Commands

Command Purpose

bot.unsecure Enable shares / enable dcom (distributed
component object model).

bot.secure Delete shares / disable dcom.

bot.flushdns Flushes the bot’s DNS cache.

bot.quit Quits the bot.

bot.longuptime If uptime > 7 days then bot will respond.

bot.sysinfo Displays the system info.

bot.status Gives status.

bot.rndnick Makes the bot generate a new random
nickname.

bot.removeallbut Removes the bot if id does not match.

bot.remove Removes the bot.
bot.open Opens a file (name).
bot.nick Changes the nickname of the bot.
bot.id Displays the id of the current node.
bot.execute Makes the bot execute an .exe type file.
bot.dns Resolves IP/hostname by DNS.
bot.die Terminates the bot.
bot.about Displays whatever info the author wants

you to see.

Key PhatBot DDOS Attack Commands

Command Purpose

ddos.phatwonk Starts phatwonk flood.

ddos.phaticmp Starts phaticmp flood.

ddos.phatsyn Starts phatsyn flood.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

ddos.stop Stops all floods.

ddos.httpflood Starts a HTTP flood.

ddos.synflood Starts an SYN flood.

ddos.udpflood Starts a UDP flood.

Key PhatBot Data Harvesting Commands

Command Purpose

harvest.aol Harvest AOL (America Online) log-in
data.

harvest.cdkeys Harvest a list of cdkeys.

harvest.emailshttp Harvest a list of emails via http.

harvest.emails Harvest a list of emails.

Key PhatBot Redirect Commands

Command Purpose

redirect.stop Stops all redirects running

redirect.https Starts a HTTPS proxy

redirect.http Starts a HTTP proxy

redirect.gre Starts a GRE (Generic Routing
Encapsulation) redirect

redirect.tcp Starts a TCP port redirect

Key PhatBot FTP Commands

Command Purpose

ftp.update Updates PhatBot from an FTP url.

ftp.execute Executes a file from an FTP url.

ftp.download Downloads a file via FTP.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Emerging Control Trends

When one inquires about the trends in bot net c2 that are currently being
observed by the top U.S. forensics and security labs, a shroud of secrecy quickly
descends as far as specifics are concerned. Much information is prevented from
becoming open source in order to allow a full analysis and the development of
countermeasures before the techniques under study are general knowledge in
the hacker community. Yet by piecing together some general observations and
the few details that are available, a picture does come into focus – it is that bot
net masters are achieving new and challenging levels of stealthiness with their
control channels.

In a presentation by CERT in November 2004 [15], two emerging and extremely
covert bot net control channels were identified -- background noise and illegal
fragmented traffic.

Background noise refers to the use of pulses (sudden increases and decreases)
of DNS, HTTP, and other network traffic as a means of communication between
the master and the bots. The bots are scripted to recognize specific thresholds
in the rate that these packets are received and respond by performing certain
actions. Detection of this use of these otherwise legitimate services is quite
difficult as it requires an excellent sense of baseline traffic levels which can often
vary widely from hour-to-hour and day-to-day during normal operations. In fact,
even completely normal changes in traffic patterns could be used to trigger attack
events.

The use of illegal and fragmented traffic as a control vector is another emerging
trend. This involves the embedding of commands or data in hacked TCP
packets. One specific example of this was recently described by Lancope, Inc., a
security services vendor [16]. Lancope reported that a specific window size
(55808 bytes) was being used in the headers of hacked TCP SYN packets to flag
bots that those packets contained control information for them. This control
information was encrypted and found in other header fields such as sequence
number and port number. As to detection, Dr. John Copeland, founder and Chief
Scientist at Lancope, observed, “This new generation of Trojan horses makes it
far more difficult to detect either the Controller IP address or the Trojan-infected
hosts…”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Summary

In an evolutionary pattern similar to that evoked by Darwinian forces in the
natural world, the command and control architecture of bot nets has increased in
robustness over the last six years to enhance their survivability. Two key factors
can be seen to influence the overall robustness of a control vector – detectability
and redundancy.

A move away from the use of custom TCP and UDP services and toward IRC as
a control vector made it much more difficult to separate illicit bot net traffic from
legitimate activity thus hindering detection. The concurrent shift from a handler /
agent topology to IRC and P2P-based channels also eliminated the requirement
for mid-level command hosts that if compromised by network security
administrators could ultimately reveal the IP addresses and host names of the
entire bot net. The emergent use of noise- and fragmented traffic-based control
channels will further hinder efforts to detect bot net control traffic and thus
enhance their survivability.

The second key factor in preserving the bot net command structure has been the
trend toward redundant control paths. With the handler / agent architecture,
elimination of a single handler by security administrators or rival bot net masters
would wipe out control of every agent that relied upon it. Subsequent IRC-based
implementations enabled a bot net master to use and rapidly shift between
multiple IRC servers and encrypted channels in order to preserve control.
Optimum realization of redundant control paths has been achieved through the
current use of peer-to-peer topologies. With this latest approach, no one server
or link outage can take down a bot net’s c2 channel.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References

1. Houle, Kevin, et al. “Trends in Denial of Service Technology.” October 2001.
CERT Coordination Center, Carnegie Mellon University. 29 January 2005.
<http://www.cert.org/archive/pdf/DoS_trends.pdf >

2. Dittrich, David. “The "stacheldracht" Distributed Denial of Service Attack Tool.”
31 December 1999. University of Washington. 29 January 2005.
<http://www.sans.org/y2k/stacheldraht.htm>

3. Roeckx, Kurt, et al. “Internet Relay Chat: Architecture Request for
Comments: 2810.” April 2000. 29 January 2005.
<http://www.irchelp.org/irchelp/rfc/rfc2810.txt>

4. Vonck, Tjerk. “IRC FAQ. Introduction to IRC for people using Windows.”
2004. mIRC Co. Ltd. 29 January 2005. <http://www.mirc.com/irc.html>

5. Navratilova, Viki. “Today’s Modern Network Killing Robot.” 29 March 2003.
University of Chicago. 31 January 2005. <www.uniforum.chi.il.us/slides/
killer_robots/network-killing-robot.ppt>

6. “Bots, Drones, Zombies, Worms and other things that go bump in the night.
GT Bot (Global threat).” 2003. Swatit.org. 29 January 2005.
<http://swatit.org/bots/gtbot.html>

7. Dittrich, David. “Subject: World-wide distributed DoS and ‘warez’ bot
networks.” May 2002. 29 January 2005. < www.derkeiler.com/Mailing-Lists/
securityfocus/incidents/2002-09/0044.html>

8. “Introduction to mIRC.” mIRC Co. Ltd. 2004. 29 January 2005.
<http://www.mirc.com/mirc.html>

9. “Peer to Peer.” Wikipedia Free On-line Encyclopedia. 14 Mar 2005. 15 Mar
2005. <http://en.wikipedia.org/wiki/Peer_to_peer>

10. Krebs, Brian. “Hackers Embrace P2P Concept.” washingtonpost.com.
17 March 2004. 1 March 2005. < http://www.washingtonpost.com/wp-
dyn/articles/A444-2004Mar17.html>

11. “PhatBot.” 15 March 2004. LURHQ Threat Intelligence Group. 3 February
2005. <http://www.lurhq.com/phatbot.html>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

12. “WASTE Information.” 2004. WASTE Development Group. 10 March 2005.
<http://waste.com/information.html>

13. Saunders, Christopher. “Not a WASTE of Time.” 15 January 2004.
Instantmessagingplanet.com.10 March 2005.
<http://www.instantmessagingplanet.com/enterprise/article.php/3300391>

14. McLaughlin, Laurianne. “Bot Software Spreads, Causes New Worries.”
IEEE DISTRIBUTED SYSTEMS ONLINE Vol. 5, No. 6. June 2004. 13 December
2004. <csdl.computer.org/comp/mags/ds/2004/06/o6001.pdf>

15. “Cyber Security: A Global Perspective.” CERT Coordination Center,
Carnegie Mellon University. 2004. CERT Presentation to Evergreen State
InfraGard Members Alliance. November 2004.

16. “VIRUS ALERT: Lancope Confirms Discovery of Third-Generation Internet
Trojan Horse.” Lancope Inc. 9 June 2003. 22 February 2005.
<http://www.lancope.com/news/Virus_Alert_Trojan.htm>

