
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

Man-In-the-Middle Attack

-A Brief

 Author: Bhavin Bharat Bhansali
 Submitted on: February 16, 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Objective:
 The Objective of this document is to understand the Execution of
"Man-In-the-Middle" attack.

Overview:
The "Man In The Middle" or "TCP Hijacking" attack is a well known attack where an
attacker sniffs packets from network, modifies them and inserts them back into the network.
There are few programs/source codes available for doing a TCP hijack. Juggernaut, T-
Sight and Hunt are some these programs. In this paper we shall explore Hunt for
understanding how TCP Hijacking is deployed on an Ethernet segment.
Hunt is designed by kra kra@gncz.cz. The Hunt source code is available at the following
URL:

ftp://ftp.gncz.cz/pub/linux/hunt/hunt-1.5.tgz

Relevance:
TCP Hijacking is an exploit that targets the victims TCP based applications like Telnet,
rlogin, ftp, mail application, web browser etc. An attacker can grab unenrcypted confidential
information from a victim's network based TCP application. He can further tamper the
Authenticity and Integrity of the data.

Definition of Important Terms:
• IP spoofing - IP spoofing involves forging one's source IP address. It is the act of using

one machine to impersonate another. Many applications and tools in UNIX systems rely
on source IP address authentication.

• ARP spoofing - ARP spoofing involves forging packet source hardware address (MAC

address) to the address of the host you pretend to be.

• Simple Active Attack against TCP connections - An attack in which the attacker does

not merely eavesdrop but takes action to change, delete, reroute, add, forge or divert
data. Perhaps the best-known active attack is Man-In-the-Middle.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

The Attack:

Attack Scenario involves three hosts: Attacker, Victim, and Target.

• Attacker is the system used by the attacker for the hijack.
• Victim is the system used by the victim for Telnet client connections to the target

system.
• Target is the target system that the intruder wants to compromise. It is where the

telnetd daemon is running.
A simple diagram of the network shows the Attacker and Victim hosts are on the same
network (which can be Ethernet switched and the attack will still work), while the target system can
be anywhere. (Actually, either victim or target can be on the same network as attacker: it
doesn't matter.)

For the attack to succeed, the victim must use Telnet, rlogin, ftp, or any other non-encrypted
TCP/IP utility. Use of SecurID card, or other token-based two-factor authentication is
useless as protection against hijacking, as the attacker can simply wait until after the user
authenticates, then hijack the session.
The attack scenario can be as simple as:

1. Attacker: Spends some time determining the IP addresses of target and victim
systems. Determining trust relationships can be easily done with utilities like

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

SATAN, finger, systat, rwho or running who, ps, or last from previously stolen (or
wide open "guest" style) accounts.

2. Attacker: Runs hunt as root on attacking host. Waits for hunt to indicate a session
has been detected.

3. Attacker: Starts ARP relay daemon1, prepares RST daemon2 entry for use later, sets
option to enable host name resolution (for convenience).

4. Victim: Logs in to target using Telnet. Runs pine to read/compose email.
5. Attacker: Sees new connection3; lists active connections to see if this one is

potentially "interesting." If it is, attacker can either watch the session (packet sniffing)
or hijack the session. Decides to hijack.

6. Victim: Sees strange new prompt. Tries pressing RETURN and doesn't know what
to think. Tries web browser and notices that it still works fine (not a network
problem). Not sure what to think.

7. Attacker: Finds this is a user session and decides to give it back (resynchronizes
TCP/IP stream).

8. Victim: Sees prompt for keystroke, follows request, gets session back. Puzzled,
decides to log in to root account to take a closer look.

9. Attacker: Turns on RST daemon to prevent new connections, waits to hijack root
session.

10. Victim: Runs ssu to get SecurID protected root shell.
11. Attacker: Completes hijack after seeing root login.
12. Victim: Sees strange prompt. Tries pressing RETURN again. Same result as before.

Tries web browser again. Same thing. Tries getting a new Telnet session. Fails. Tries
ftp. Fails.

13. Attacker: Sets up backdoor, disables command history, resets session, turns off RST
daemon.

14. Victim: Finally gets a new session. Original session is now gone. Assumes network
outage or Windows TCP/IP stack corruption. Reboots system and everything is
back to "normal".

15. Attacker: Waits for admin's sessions to all disappear (gone home for the night), then
logs in using new backdoor. Installs rootkit (more backdoors, sniffer), cleans log
files.

1 Pls. refer to the "ARP Daemon" paragraph of the "Brief Overview of the Daemons / threads that ar e used by the exploi t" topic
2 Pls. refer to the "Res et Daemon" paragraph of the "Brief Overview of the Daemons / threads that are us ed by the exploit" topic
3 Pls. refer to the "Sniff Daemon" paragraph of the "Brief Ov erview of the Daemons / threads that are us ed by the exploit" topi c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

Design Overview:
The development model is based on a packet engine (hunt.c) which runs in its own thread
and captures packets from the network. The packet engine collects information of TCP
connections/starting/termination, sequence numbers and MAC addresses. It collects the
MAC addresses and sequence numbers from the server point of view and separate MAC
addresses and sequence numbers from the client point of view. So it is prepared for
hijacking. This information (seq. num., MAC, etc.) is available to modules so they don't have
to analyze and collect it.

Modules can register functions with the packet engine, which are then invoked when new
packets are received. A module function determines if the module is interested in a packet or
not and can place the packet in a module specific list of packets. A module function can also
send some packet to the network if it is desirable to do it very fast. The module (usually in
some other thread so it needs to be scheduled to be run) then gets packets from the list and
analyzes them. In this way, you can easily develop modules, which perform various activities.
Refer to the appendix section for learning the features offered by hunt.

Brief Overview of the Daemons / threads that are used by the exploit:
• Reset daemon

Reset daemon is used to perform automatic resets of ongoing connections that hunt can
see. You can describe which connections should be terminated by giving src/dst
host/mask and src/dst ports.

• ARP daemon

ARP daemon is used to do ARP spoofing of hosts. You enter src and dst addresses and
desired src MAC. The dst is then forced to think that src has srcMAC. You can use
some fake MAC or better MAC of host that is currently down.

• Sniff daemon

Sniff daemon can log specified packets. The sniff daemon can also search for a simple
pattern (string) in the data stream (see the bugs section). You can specify which
connection you are interested in, where to search (src, dst, both), what do you want to
search, how many bytes you want to log, from what direction (src, dst, both) and to what
file should the daemon write.

• MAC discovery daemon

MAC discovery daemon is used to collect MAC addresses corresponding to the specified
IP range.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

References:

• Krauz's, Pavel. "HUNT Project." 1.5 - bug fix release. 30th May 2000.

URL: http://lin.fsid.cvut.cz/~kra/index.html#HUNT(9th February, 2001)

• Dave, Dittrich. "Session hijack script". 9th Dec 1999.

URL: http://staff.washington.edu/dittrich/talks/agora/script.html

• Dave, Paras. "TCP Connection Hijacking".

URL: http://cs.baylor.edu/~donahoo/NIUNet/hijack.html (12th February, 2001)

• Microsoft technical support. "Microsoft Security Program: Microsoft Security Bulletin

(MS99-046) "December 23, 1999.
URL:http://www.microsoft.com/TechNet/security/bulletin/ms99-046.asp(12th
February 2001)

• Stevens, Richard. "TCP Connection Establishment and Termination". October 1993.

Book Name: TCP/IP illustrated Volume I - The Protocols (7th February 2001).

• Kurtz, George. "Session Hijacking". July 28th, 1999.

Book Name: HACKING EXPOSED - Network Security Secrets and Solutions (8th
February, 2001)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

Appendix

Features of the hunt exploit:
• Connection Reset - With a single properly constructed packet you can reset the

connection (RST flag in TCP header). You can reset server, client, or both. When you
reset only one end the other end is reset when it tries to send data to the first host which
will response with RST because of the connection reset on it.

• Connection sniffing/watching - You can watch hunt output for any connection which
you choose from the list that hunt displays on the console.

• ARP-relay - You can insert packets to the network (rerouting) of all data it receives from

ARP spoofed hosts.

• Connection Synchronization - This is one of the main features of hunt. If you put some

data to the TCP stream (through simple active attack or ARP spoofing), you
desynchronize the stream from the server/original client point of view. After some work
done on that connection you can just reset it or you can try to synchronize both original
ends again. The main goal behind this is to synchronize the sequence numbers on both
client and server again.

• Switch/Segment traffic rerouting - With ARP spoofing you can force the Switch to send

you the traffic for hosts on another segment/switched port. This may not work if the
Switch has some security policy and MACs have been explicitly set up on a per port basis
but in reality this configuration is hardly done on an "ordinary" network.

• ACK Storm - The ACK storm is caused by majority of TCP stacks Let's imagine that

you send some data to an ongoing connection to the server (as if sent by the client - with
expected seq. numbers, etc.). The server responds with the acknowledgment of the data
you sent but the original client receives this acknowledgment too. But from the original
client point of view, the server has acknowledged data that doesn't exist on the client. So
something strange occurred and the original client sends the "right" sequence number
with ACK to the server. But the TCP rules say that it is required to generate an
immediate acknowledgment when an out-of-order segment is received. This ACK
should not be delayed. So the server sends the acknowledgment of non-existent data to
the client again and the client responds.

- Bhavin Bharat Bhansali

- February 16, 2001

