GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© SANS Institute 2006,

Securing User Data With CGD

Owen Becker

March 21, 2006

Abstract

This paper will introduce the issues surrounding the securing of
user data on untrusted machines. It will present a solution to these
issues utilizing CGD, NetBSD’s disk encryption technology. The paper
will also explore the CGD architecture and provide instructions for
implementing disk-level encryption on a new installation of NetBSD.

Author retains full rights.

Contents

1 Data security in untrusted environments

© SANS Institute 2006,

1.1
1.2
1.3
14

Three Scenarios for Consideration
Wandering Laptops
Insecure Hardware Disposal
Theft at the Data Center

Using CGD to Mitigate the Threat

2.1
2.2
2.3

Introducing the Technology
Capabilities o o
Limitations oo

Exploring the CGD Architecture

3.1
3.2

Raw Partition Encryption
Userland Configuration Utility

Instructions for Installing CGD

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Machine Description oo
Initial NetBSD Installation

Disk Preparation
CGD Creation o
Data Restoration
Conclusions e

Author retains full rights.

1 Data security in untrusted environments

System Administrators have often thought that it is impossible to secure a
system when it is located in an untrusted environment. Historically, they
have been right. After an attacker has direct access to a machine it is trivial
to insert a bootable CD and bypass software access controls. A password
protected bios can be sidestepped by opening the case and installing the
drives into an alternate machine. In enterprise environments, servers are
usually placed behind the locked doors of a data center. This strategy has
several important shortcomings.

1.1 Three Scenarios for Consideration

Networks are, in the end, a good deal more organic than most security
personnel will acknowledge. Locking away the servers is often less helpful
than assumed. The following examples will show where normal physical
access controls fail.

1.2 Wandering Laptops

Laptops have a way of dissapearing. During the summer of 2000, Los Alamos
National Laboratory lost several, and the information they contained was
vital to national security. They were later found behind a copy machine and
no real damage was done. The idea of such sensitive data being disseminated
launched a Congressional investigation. Last January the financial services
company Ameriprise Financial Inc. was forced to notify over 158,000 cus-
tomers that their personal information had been compromised after one of
its laptop was stolen. The missing data contained names, Social Security
numbers and account information.

1.3 Insecure Hardware Disposal

Hardware disposal is the last phase of the infrastructure life-cycle. Because
computers contain large quantities of lead and other environmentally un-
pleasant materials, local landfills rarely accept them. An entire industry
has evolved to recycle hardware, and many people have been surprised to
find their financial data sitting on drives for sale on e-bay. Secure drive
disposal nessisicates overwriting the data multiple times; when there is an
entire office worth of machines the required effort can be immense. It is
hardly surprising that this time consuming task is rarely completed.

1.4 Theft at the Data Center

Outsourcing creates another set of issues for physical data center security.
When a company owns the servers, the network, and the data center, it

© SANS Institute 20086, Author retains full rights.

is straightforward to set and enforce policy. When a third party begins
to assume these functions, a company now only has the ability to make
agreements that may or may not be followed by the provider. The physical
security they provide may break down in unexpected ways, leaving machines
vulnerable to theft. This is an especially large concern for companies that
employ overseas firms to manage their equipment.

2 Using CGD to Mitigate the Threat

To restate the problem, "How can our data be kept secure if our hardware
cannot?” NetBSD, a freely available Unix-like operating provides a novel
solution called the Cryptographic Disk Driver, or CGD.

2.1 Introducing the Technology

CGD is a cryptographic subsystem that provides secure data storage. With
it employed, a system may be lost, stolen, or improperly disposed of without
risking the loss of sensitive data.

2.2 Capabilities

With CGD, you are, in essence, given an encrypted filesystem. Even if an
attacker reboots the computer with a live CD such as Knoppix, without the
pass-phrase the data remains inaccessible. Compared to similar technologies
CGD is quite transparent. It provides a virtual drive on which a filesystem is
built, and as such does not alter the traditional Unix security model. When
a machine is booted, before the normal startup routine, the user is presented
with a password prompt that must be entered before the filesystem can be
mounted. After mounting, the system appears to be a normal Unix-like
system.

2.3 Limitations

Any cryptographic subsystem carries with it a performance penalty. En-
crypting and decrypting data uses cpu cycles and will slow a system during
periods of heavy disk I/O. There is also the issue of a lost pass-phrase; when
it is gone, so is your data. Without it you are in the same position as the
person who stole your laptop. Creating regular secure backups is advised.

3 Exploring the CGD Architecture

NetBSD’s CGD is implemented in two parts, a kernel driver that provides
an encrypted interface to raw partitions and a userland configuration utility.

© SANS Institute 20086, Author retains full rights.

3.1 Raw Partition Encryption

The kernel portion of CGD is implemented as a psuedo-device driver. It
is in the same class as other special purpose drivers in the NetBSD kernel.
Two examples are the ccd interface to multiple concatenenated disks and
the rnd interface for random numbers. When employed, it sits below the
buffer cache and exports an encrypted interface to a raw device.

Because of its position in the kernel, any filesystem can be created on top
of an encrypted partition. Although primarily used for the FFS filesystem,
it is possible to create an MSDOS compatable FAT filesystem or the Sprite
derived LFS filesystem. It will, however, not be possible to directly access
these filesystems from anything other than a NetBSD machine. Perhaps
more useful is the possiblitiy of creating of an encrypted backup with a cgd
based CD9660 image. A CGD can also be used for the backing of a swap
partition or a raw device for database storage.

CGD is designed to be modular; it is independent of any one particu-
lar cipher or key generation method. For encryption methods, it currently
supports aes-cbe, blowfish and 3des. Each have various strengths that make
them more appropriate for different threat vectors. For key generation,
pkesb_pbkdf2 is used for pass-phrases. Also supported is a gssapi interface.
With a gssapi compatible keyserver remote reboots become a possibility.
In addition, there exists a randomkey method which uses a random string
as the encryption key. It is intended for use in swap space, where having
contents survive across reboots is a disadvantage.

3.2 Userland Configuration Utility

The userland tool is named cgdconfig. It can configure a new CGD device,
verify that it contains a valid filesystem, configure the encryption scheme,
and output a parameter file that will allow the device to be reconfigured
on reboot. With it you can also scrub a disk bit-by-bit with random data.
This will prevent an attacker from being able to determine which parts of
the drive are blank.

4 Instructions for Installing CGD

The proceeding section will give a step by step overview for installing NetBSD-
3.0 with CGD. With the exception of a tiny root filesystem, everything will
be encrypted. This process involves a normal install of NetBSD followed
by a dump of all but the root filesystem to a remote machine. Once the
filesystems have been backed up, the disklabel will be reworked and made
CGD aware. A CGD device will then be created and the filesystem will be
restored.

© SANS Institute 20086, Author retains full rights.

4.1 Machine Description

The target system is a Pentium IT with 256 megabytes of RAM. It contains
a 10 gigabyte hard drive and a generic intel ethernet card. NetBSD is
quite capable on older hardware, and the performance penalty incurred from
running on such a modest system is negligible. An ssh server with sufficient
disk space should exist somewhere on the network. It will hold the filesystem
dump images.

4.2 Initial NetBSD Installation

The initial install should follow the NetBSD-3.0 installation guide for the
1386 architecture. It is straightforward and should not cause any significant
difficulties. It might be prudent to delay installing the XFree86 sets until
after the CGD filesystems are created and restored. Since we are going to
dump the filesystems over the network, the space savings will reduce our

configuration time. We will install the compiler tools as we need to rebuild
the GENERIC kernel with support for CGD.

4.3 Kernel Re-Compilation

After the initial install is completed, log on to the NetBSD ftp server and
download tar the kernel sources, syssrc.tar.gz. As root extract the source
distribution:

localhost# tar xvfz syssrc.tar.gz -C /

To rebuild the kernel, change into the /usr/src/sys/arch/i386/conf direc-
tory and copy the GENERIC kernel configuration file to GENERIC-CGD.

localhost# cd /usr/src/sys/arch/i386/conf
localhost# cp GENERIC GENERIC-CGD

Open the GENERIC-CGD file with your preferred text editor and un-
comment the line containing ”psuedo-device cgd.” We will now configure
and build the new kernel.

localhost# config GENERIC-CGD

Build directory is ../compile/GENERIC-CGD
Don’t forget to run "make depend"
localhost# cd ../compile/GENERIC-CGD

© SANS Institute 20086, Author retains full rights.

localhost# make depend && make
(kernel build output follows...)

The kernel may take some time to build depending on the speed of your
machine. Once the compilation is finished, the currently running kernel
needs to be backed up and replace with the new one. Assuming you are

in /usr/src/sys/arch/i386/compile/ GENERIC-CGD, execute the following
commands:

localhost# cp /netbsd /netbsd.old
localhost# cp netbsd /
localhost# reboot

4.4 Filesystem Backups

Once the system is rebooted we can start creating the cgd filesystems. Login
as root and bring the system down into single user mode.

localhost# shutdown now

Shutdown NOW!

shutdown: [pid 508]

wall: You have write permission turned off; no reply possible

***% FINAL System shutdown message from root@localhost.localnet.org ***
System going down IMMEDIATELY

localhost# Mar 20 13:20:50 localhost shutdown: shutdown by root:
System shutdown time has arrived

About to run shutdown hooks...
Stopping cron.

Waiting for PIDS: 506.
Stopping inetd.

Mon Mar 20 13:21:02 EST 2006

Done running shutdown hooks.

Mar 20 13:21:17 localhost syslogd: Exiting on singlal 15
Enter pathname of shell or RETURN for /bin/sh: (Hit return)
#

© SANS Institute 20086, Author retains full rights.

We need to backup the default mbr as an individual file. This will be
needed later to fdisk the cgd.

scp /usr/mdec/mbr user@shell.somemachine.net:/home/user

At this point we need to unmount the all but the root filesystem and
dump the images. Doing so in single user mode ensures that the backups
are made correctly.

mount

/dev/wd0Oa on / type ffs (local)
/dev/wd0f on /var type ffs (local)
/dev/wd0e on /usr type ffs (local)
/dev/wd0g on /home type ffs (local)
kernfs on /kern type kernfs (local)

umount /var /usr /home

mount

/dev/wdOa on / type ffs (local)
kernfs on /kern type kernfs (local)

Now that everything is unmounted, we begin the dump. Since we only
have one disk in this system, we are pushing the dump to a remote filesystem
via ssh. The majority of the tools we need for the dump sit under /usr, we
need to use the staticly linked binaries under /rescue.

cd /rescue

./dump -Ouan -f - /var | ./gzip | ./ssh user@shell.somemachine.net \
> "dd of=/home/user/var.dmp.gz"

(Dump output begins. For each dump type in ssh password when prompted.)

./dump -Ouan -f - /usr | ./gzip | ./ssh user@shell.somemachine.net \
> "dd of=/home/user/usr.dmp.gz"
./dump -Ouan -f - /home | ./gzip | ./ssh user@shell.somemachine.net \

> "dd of=/home/user/home.dmp.gz"

4.5 Disk Preparation

Our next task is to modify the disklabel. We will delete the entries for
/home, /var, and /usr and create a single entry to contain the cgd. Your
individual drive details (tracks, sector size) will vary.

© SANS Institute 20086, Author retains full rights.

disklabel /dev/wdO

type: unknown

disk: HARDDISK

label:

flags:

bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 8322

total sectors: 8388608

rpm: 3600

interleave: 1

trackskew: O

cylinderskew: O

headswitch: O # microseconds
track-to-track seek: O # microseconds
drivedata: O

16 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 525168 63 4.2BSD 1024 8192 43768 # (Cyl. Ox-— 521%)
b: 525168 525231 swap # (Cyl. 521%- 1042%)
c: 8388545 63 unused 0 0 # (Cyl. O*- 8322%)
d: 8388608 0 unused 0 0 # (Cyl. 0 - 8322%)
e: 2097648 1050399 4.2BSD 2048 16384 21872 # (Cyl. 1042%- 3123%)
f: 66528 3148047 4.2BSD 1024 8192 8320 # (Cyl. 3123%- 3189%)
g: 5174033 3214575 4 .2BSD 2048 16384 26864 # (Cyl. 3189*- 8322%)

disklabel -i wdO
partition> P
16 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 525168 63 4.2BSD 1024 8192 43768 # (Cyl. Ox— 521%)
b: 525168 525231 swap # (Cyl. 521%- 1042%)
c: 8388545 63 unused 0 0 # (Cyl. O*- 8322%)
d: 8388608 0 unused 0 0 # (Cyl. 0 - 8322%)
e: 2097648 1050399 4 .2BSD 2048 16384 21872 # (Cyl. 1042%- 3123%)
f: 66528 3148047 4.2BSD 1024 8192 8320 # (Cyl. 3123%- 3189%)
g: 5174033 3214575 4 .2BSD 2048 16384 26864 # (Cyl. 3189*- 8322%)

partition> b

© SANS Institute 20086, Author retains full rights.

Filesystem type [?7] [swapl: (Hit return)

Start offset (’x’ to start after partition ’x’) [[nlc, [n]ls, [nIM]: O
Partition size (’$’ for all remaining) [[nlc, [n]ls, [mIM]: O
partition> e

Filesystem type [?7] [4.2BSD]: (Hit return)

Start offset (’x’ to start after partition ’x’) [[nlc, [nls, [nIM]: O
Partition size (’$’ for all remaining) [[nlc, [n]ls, [mIM]: O
partition> f

Filesystem type [?] [4.2BSD]: (Hit return)

Start offset (’x’ to start after partition ’x’) [[nlc, [nls, [nIM]: O
Partition size (’$’ for all remaining) [[nlc, [n]ls, [mIM]: O
partition> g

Filesystem type [?] [4.2BSD]: (Hit return)

Start offset (’x’ to start after partition ’x’) [[nlc, [nls, [nIM]: O
Partition size (’$’ for all remaining) [[nlc, [n]ls, [mIM]: O

We are actually setting each partition to zero bytes. It has the same effect
as deleting it. Partitions "c” and "d” represent the entire drive, do not alter
them. Now we create a partion for the cgd device. We will set the filesystem
type to "ccd” as NetBSD’s disklabel has no cgd type. It has no real effect
other than as a reminder.

partition> e

Filesystem type [?] [4.2BSD]: ccd

Start offset (’x’ to start after partition ’x’) [0Oc, Os, OM]: a
Partition size (’$’ for all remaining) [Oc, Os, OM]: §

e: 786337 525231 ccd # (Cyl. 521%- 8322x%)
partition> W (write the label)

Label disk [n]? y

Label written

partition> Q

4.6 CGD Creation

Before we actually create the cgd, we need to scrub the drive with random
data. The lack of empty sectors on the drive will discourage forensic analysis.
We do this is two steps. First, initialize the cgd device using /dev/urandom
as the key and next, write over each bit of the device with dd.

cgdconfig -s cgd0 /dev/wdOe aes-cbc 128 < /dev/urandom
dd if=/dev/zero of=/dev/rcgd0d bs=32k
cgdconfig -u cgdO

10

© SANS Institute 20086, Author retains full rights.

Now for the actual cgd creation.

echo ’cgd0 /dev/wdOe’ > /etc/cgd/cgd.conf

cgdconfig -g -V disklabel -o /etc/cgd/wd0e aes-cbc 256
cgdconfig -V re-enter cgd0O /dev/wdOe

/dev/wdOe’s passphrase:

re-enter device’s passphrase:

A Dbit of explanation is in order. We first create the cgd configuration
file, then we build the device, and last we configure the passphrase. Please
remember whatever passphrase you use. After this point, losing it will render
your data completely inaccessible. You cannot get it back.

Now to begin the fdisk and disklabel creation. This will build filesystems
for swap, /var, /usr, and /home.

mkdir /usr/mdec

/rescue/ssh user@somemachine.net '"cat /home/user/mdec" | dd of=/usr/mdec/mbr
(This restores the mbr for the fdisk)

fdisk -u cgdO

fdisk: primary partition table invalid, no magic in sector O

Disk: /dev/rcgdOd

NetBSD disklabel disk geometry:

cylinders: 3839, heads: 1, sectors/track: 2048 (2048 sectors/cylinder)

total sectors: 7863377

BIOS disk geometry:
cylinders: 489, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 7863377

Do you want to change our idea of what BIOS thinks? [n]

Partition table:

0: <UNUSED>
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

Bootselector disabled.
Which partition do you want to change?: [none]

We haven’t written the MBR back to disk yet. This is your last chance.
Partition table:

11

© SANS Institute 20086, Author retains full rights.

0: <UNUSED>
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

Bootselector disabled.
Should we write new partition table? [n] y

disklabel -I -i cgdO
partition> a
Filesystem type [7] [4.2BSD]:

Start offset (’x’ to start after partition ’x’) [0Oc, Os, OM]: O
Partition size (’$’ for all remaining) [3839.54c, 7873377s, 3839.54M]: O
partition> b
Filesystem type [?7] [unused]: swap

Start offset (’x’ to start after partition ’x’) [0Oc, Os, OM]: O
Partition size (’$’ for all remaining) [Oc, Os, OM]: 256M

b: 524288 0 swap # (Cyl. O - 255)
partition> e
Filesystem type [7] [unused]: 4.2BSD

Start offset (’x’ to start after partition ’x’) [0Oc, Os, OM]: b
Partition size (’$’ for all remaining) [Oc, Os, OM]: 512M

e: 1048576 524288 4.2BSD 0O 0 0 # (Cyl. 256 - 767)
partition> f
Filesystem type [?] [unused]: 4.2BSD

Start offset (’x’ to start after partition ’x’) [Oc, Os, OM]: e
Partition size (’$’ for all remaining) [Oc, Os, OM]: 1024M

f: 2097152 1572864 4.2BSD 0O 0 0 # (Cyl. 768 - 1791)
partition> g
Filesystem type [?] [unused]: 4.2BSD

Start offset (’x’ to start after partition ’x’) [0Oc, Os, OM]: f
Partition size (’$’ for all remaining) [Oc, Os, OM]: 1024M

f: 4193361 3670016 4.2BSD 0 O O # (Cyl. 1792 - 3839%)
partition> W
Label disk [n]? y
Label written
partition> Q

newfs /dev/cgdOe

(newfs output follows)

newfs /dev/cgdOf

(newfs output follows)

newfs /dev/cgdOg

(newfs output follows)

cp /etc/fstab /etc/fstab.bak

cat > /etc/fstab

12

© SANS Institute 20086, Author retains full rights.

/dev/wdOa / ffs rw 1 1

/dev/cgdOb none swap sw 00
/dev/cgdOb /tmp mfs rw,-s=132048 0 0
kernfs /kern kernfs rw

procfs /proc procfs rw,noauto
/dev/cgdOe /var ffs rw,softdep 1 2
/dev/cgd0f /usr ffs rw,softdep 1 2
/dev/cgdOg /home ffs rw,softdep 1 2

(Hit Ctrl-D)
mount -a

All the cgd aware filesystems should be mounted. Now, on to the data
restoration.

4.7 Data Restoration

To restore the data, we pull it off the server via ssh and cat it through
/rescue/restore.

cd /var

/rescue/ssh user@shell.somemachine.net "cat /home/user/var.dmp.gz" | \
/rescue/gunzip | /rescue/restore rf -

user@shell.somemachine.net’s password: (Enter password)

cd /usr

/rescue/ssh user@shell.somemachine.net "cat /home/user/usr.dmp.gz" | \
/rescue/gunzip | /rescue/restore rf -

user@shell.somemachine.net’s password: (Enter password)

cd /home

/rescue/ssh user@shell.somemachine.net "cat /home/user/home.dmp.gz" | \
/rescue/gunzip | /rescue/restore rf -

user@shell.somemachine.net’s password: (Enter password)

reboot

The system will prompt for a passphrase before it mounts the cgd filesys-
tems. Beyond that, it should look like a normal installation of NetBSD.

13

© SANS Institute 20086, Author retains full rights.

4.8 Conclusions

NetBSD’s CGD subsystem is a practical method for securing data in un-
trusted environments. It provides system administrators a level of assurance
that has up to now been unavailable.

14

© SANS Institute 20086, Author retains full rights.

