
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Recent BIND Vulnerabilities With an Emphasis on the “tsig bug”
Alicia Squires
February 16, 2001

The Internet shapes much of our world today, and the Internet infrastructure itself is
highly dependent upon Domain Name Servers. RFC 2845 defines a Domain Name Server
(DNS) as “a replicated hierarchical distributed database system that provides information
fundamental to Internet operations, such as name ó address translation and mail
handling information”. So what does it mean when the most prevalent name server,
Berkeley Internet Name Domain (BIND) server, is riddled with vulnerabilities? It implies
that the very core of our electronic economy is on the brink of widespread disaster.

On January 29, 2001 Network Associates of California released a report that documented
four recent vulnerabilities in BIND. Two of these vulnerabilities were buffer overflows,
which can allow an attacker to either shut down the Domain Name Server (DNS) or gain
root control of it. The DNS does this by accepting more data in a certain part of the
program than it can handle. The extra data or code gets put into the memory that stores
instructions, and eventually the code gets executed with the program. One of the buffer
overflows is called the “tsig bug”, which affects BIND version 8, and the other is the
“complain bug” buffer overflow, which affects BIND version 4. The remaining two
vulnerabilities documented by Network Associates include “infoleak”, which affects both
BIND 4 and 8, and the “complain bug” format string vulnerability, which affects only
BIND 4. These vulnerabilities are the eleventh through the fourteenth vulnerabilities
discovered with BIND since its design in the early 1980’s. This majority of this paper
will be dedicated to the “tsig bug”, as it is currently the best documented.

The “tsig bug”
The “tsig bug” gets its name from the transaction signature (TSIG) that is used to
authenticate communication between DNS servers in BIND 8.2.The TSIG bug is the
most serious of the four recent BIND vulnerabilities. A TSIG is a higher-level DNS
resource record. It is calculated for each DNS request or response, and then it is
discarded. It is not reusable and should not be kept in the cache.

The TSIG is a complicated security mechanism. It has to be the last record in the
additional section of the message. If there are multiple TSIG’s present, or if it is in the
wrong position, the package is dropped and an error code is sent back. TSIG’s are also
verified with two timer values, ‘Time Signed’ and ‘Fudge’, and a keyed message digest
operation is performed to obtain a matching key. These mechanisms prevent attackers
from grabbing random transaction signatures to reuse, although the logging of TSIG
errors can create a possible Denial of Service condition and should be handled with care.

The TSIG bug affects domain name servers running BIND version 8.2 (any service
pack), 8.2.1, 8.2.2 (packs 1-7), and all 8.2.3-betas. It is a very serious buffer overflow
that can allow the attacker to gain remote access to and execute arbitrary code by
invalidating the logic used by BIND to calculate the request buffer length. The TSIG
vulnerability is illustrated in the following diagram and flow chart.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DNS Request
Received

Stack
 Stored in 513 byte
buffer (“u.buf”) by

the function
datagram_read()

Heap
Stored in 64k buffer
(“sp->s_buf”) by the

function
stream_gentlen()

UDP request TCP request

Variables tracked for buffers include: “msglen”—data
length, and “buflen”—free length

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Normal circumstances:
good TSIG and valid key
found

DNS Request Received

msglen set = length of
data from network (UDP
amount of data returned;
TCP provided by client)

query iquery updat e noti fication

Examine for TSIG
resource record

and veri fy validity

Problem: good TSIG
found, but n o valid key

msglen =
length of
response

buflen =
remaining
space

Assumes total =
original buffer length

Delivers Response

msglen retains
old value

buflen ret ains
old value

Instead of active
values which
are a lot larger Generat es error by reusing

request buffer and adding a
TSIG after the question
section.

Modi fy Header

Append answer,
authoritative, and

additional records to query

Request
processed

Error Signal ed: BIND
bypasses normal process;
request processed as error

buflen set =
size of buffer
(UDP 513;
TCP 64k)

Assumes size of request is
msglen + bufl en—in actuality
it is a lot bigger

TSIG appended beyond the
limits of the buffer (buffer
overflow)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

When a DNS request is received it is sorted into the stack or the heap depending on
transfer protocol. TCP requests are stored in a 64k buffer from the heap by the function
stream_gentlen(). UDP requests are stored in a 513-byte buffer in the stack by the
function datagram_read(). BIND handles requests by reading them in TCP or UDP,
modifying them, and then creating an appropriate response by appending to the message
the answer, authoritative, and additional records.

 There are two variables that are maintained over the course of the request, including the
“msglen,” which refers to the length of data in the buffer, and the “buflen,” which is
equal to the remaining length in the buffer. When added together these two variables
should always equal the size of the buffer.

For initial processing of the request msglen is set to the length of data received from the
network. For UDP, this is the amount of data returned from a recvfrom() call, and for
TCP this value is provided by the client. The buflen is set to the total buffer size: 64 K for
TCP and 513 for UDP. It is then determined if the request is a query, iquery, update, or
notification.

At this point, prior to processing the request, the TSIG comes into play. BIND searches
the request for a valid TSIG resource record with the function ns_find_tsig(). It must also
find a valid security key. If both of these items are present, the request is then processed
normally. Without both of these items, an error is indicated and normal procedures are
bypassed. Instead of processing the request, appending the necessary records, and
modifying the header values—msglen and buflen—to their new values, the values of
msglen and buflen are locked. Reusing the request buffer and adding a TSIG after the
question section complete the error. This happens, because BIND’s error-handling code
initializes variables, msglen and buflen, in a different way than the normal process. This
causes the later assumption of the buffer length based on these values to be incorrect.

The total value of the variables msglen and buflen is still assumed to be the total size of
the buffer, when in reality the buffer size is much larger, so when the TSIG is appended
at the end of the error buffer by the function ns_sign() it is beyond the limits of the
buffer. This can allow the execution of arbitrary code by overwriting adjacent memory on
the stack or heap.

For example, Company A has a DNS running BIND 8.2.2-Patch 5. An attacker finds the
DNS along with this information by doing a simple portscan of a range of IP’s and then a
version.bind request of the server. The attacker then sends a TCP DNS request to this
server that has been crafted to have a valid TSIG and an invalid security key. Company
A’s DNS receives the request, checks for the TSIG, finds it, and then signals an error
when no valid security key is found. At this point the variables that track the buffer size
are locked and will not reflect the actual size throughout the rest of the error processing.
When the new TSIG is appended at the end of the request before returning it, it writes
past the end of the buffer into the heap (stack if it is a UDP request) and overwrites
memory. This can be exploited to allow code to be executed with the permissions of
named, which is usually root.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Other Vulnerabilities
The next most serious of the recent BIND vulnerabilities is the “complain” buffer
overflow that affects only BIND version 4, specifically 4.9.3 – 4.9.7. This vulnerability is
the result of a stack overflow, which results from the way that the sprintf() function
constructs error messages unsafely. For a domain name server to be vulnerable to this
attack, it must be running BIND version 4 and be recursive. The attacker must also have
control of or access to an authoritative DNS. It can result in a denial of service or
execution of arbitrary code with the permissions of named.

As of this writing, no exploits for the “complain” buffer overflow have been released to
the security community, although they almost certainly already exist in the Black Hat
hacker community.

There is an additional vulnerability related to the “complain” buffer in BIND version 4. It
is the NslookupComplain() Format String vulnerability. This vulnerability is the result of
the way that BIND reports an error to the syslog when it is trying to determine IP
addresses for name servers. As with the “complain” buffer overflow, no exploits for the
“complain” format string vulnerability have been released to the security community yet,
although they almost certainly already exist in the Black Hat hacker community.

The fourth of the BIND vulnerabilities that were recently discovered and released was the
“Information” or “Infoleak” vulnerability. This vulnerability is different from previous
BIND weaknesses, because it affects both BIND version 4 and 8. It allows an attacker to
view the named process memory, which can give valuable information for future
exploits. One of the exploits for the TSIG buffer overflow also exploits this vulnerability,

Exploits
There is an exploit for the TSIG buffer overflow that was released recently by Bugtraq.
Interestingly a trojaned version of the script was released a few days earlier. Bugtraq
released it on the message board without decompiling and analyzing it to see the true
contents, and several people downloaded and tested it. As it turns out, hidden in hex shell
code was a command to open multiple instances of itself and launch a Denial of Service
attack against Network Associates, who originally discovered the BIND vulnerabilities.

The fixed exploit was posted on Packet Storm (http://packetstorm.securify.com/0102-
exploits/bind8x.c), and it is a C program that can be compiles and used to exploit both the
TSIG bug and the “Infoleak” vulnerability. The exploit forms several packets to be used
for the buffer overflow, and interspersed in the packets are system calls that execute
various commands. The first command is socket(), which creates an endpoint for the
communication. Next bind() binds a name to the created socket allowing it to receive
connections. This allows the attacker to telnet to the port with no authentication. Listen()
listens for connections to the socket, operating in a continuous loop while waiting.
Accept() accepts the connection to the socket. Dup2() duplicates file descriptors, making
3 copies of itself, and execve() executes a program. For this exploit the program is
“/bin/sh,” which gives a root shell to the attacker if named is running as root.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Recommendations
The high severity of these vulnerabilities is apparent, and vulnerable domain name
server’s named should be protected in one (or more) of the following ways. Named
should be run as a normal user account, so that if it is compromised the attacker will not
have root access and all of the privileges that come with it. Named should also be
protected within a restricted filesystem with a “chroot” environment. This means that an
environment must be designed where an account is confined to specific directories by
making a chroot() call, which makes a root directory request actually point to a different
file. In essence, it creates a smaller (chroot jail) filesystem within the larger one, and user
accounts for the smaller filesystem cannot see, access, or execute commands against the
larger filesystem. If named were given a user account within a restricted filesystem, an
attacker would be locked within the jail, and would not be able to execute root level
commands against the domain name server.

In addition to protecting named, it is highly advisable to upgrade any domain name
servers running BIND 4.9.x or 8.2.x to BIND 4.9.8, 8.2.3, or 9.1. They are available from
the Internet Software Consortium (ISC) at http://www.isc.org/.

References:

1. Vixie, P., Gudmundsson, O., Eastlake, D., and Wellington, B. “RFC 2845”. May
2000. URL: http://www.landfield.com/rfcs/rfc2845.html. (2/5/2001).

2. Internet Software Consortium. “BIND vulnerabilities”. URL:
http://www.isc.org/products/BIND/bind-security.html. (1/29/01).

3. Network Associates, Inc. “Vulnerabilities in BIND 4 and 8”. January 29, 2001.
URL: http://www.pgp.com/research/covert/advisories/047.asp. (2/5/2001).

4. Carnegie Mellon Software Engineering Institute. “CERT Advisory CA-2001-02
Multiple Vulnerabilities in BIND”. Revised February 02, 2001. URL:
http://www.cert.org/advisories/CA-2001-02.html. (2/5/2001).

5. Poulsen, Kevin. “BIND holes mean big trouble”. January 29, 2001. URL:
http://www.securityfocus.com/templates/article.html?id=144. (1/29/2001).

6. SecurityFocus.com. “Bugtraq ID 2309; ISC BIND 4 nslookupComplain() Format
String Vulnerability”. January 29, 2001. URL:
http://www.securityfocus.com/vdb/bottom.html?vid=2309. (2/12/2001).

7. SecurityFocus.com. “Bugtraq ID 2321; ISC BIND Internal Memory Disclosure
Vulnerability”. January 29, 2001. URL:
http://www.securityfocus.com/vdb/bottom.html?vid=2321. (2/12/2001).

8. SecurityFocus.com. “Bugtraq ID 2302; ISC BIND 8 Transaction Signatures
Buffer Overflow Vulnerability”. January 29, 2001. URL:
http://www.securityfocus.com/vdb/bottom.html?vid=2302. (2/12/2001).

9. SecurityFocus.com. “Bugtraq ID 2309; ISC BIND 4 nslookupComplain() Buffer
Overflow Vulnerability”. January 29, 2001. URL:
http://www.securityfocus.com/vdb/bottom.html?vid=2307. (2/12/2001).

10. Packet Storm. “Remote Vulnerabilities in BIND versions 4 and 8”. January 29,
2001. URL: http://packetstorm.securify.com/advisories/iss/iss.01-01-29.bind.
(2/13/2001).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

11. Hanley, Sinead. “DNS Overview with a discussion of DNS Spoofing”. November
6, 2000. URL: http://www.sans.org/infosecFAQ/DNS.htm. (2/5/2001).

12. Athanasiou, Ken. “DNS Remote Root Exploit – ADM Named 8.2/8.2.1 NXT
Remote Overflow”. April 17, 2000. URL:
http://www.sans.org/infoseqFAQ/malicious/DNS_exploit.htm. (2/5/2001).

