
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Author: William D. Pool
Date: 02-26-01

It has worked all these years why change it?

 With the amount of security threats and holes being encountered in the IS field
within the last decade, we still hear, "It has worked all these years why change it?". With
companies that grew in an era that was not too concerned with security, some of their
administrators and network engineers grew with the same mindset. Those that choose to
become more security conscious will most likely see harm coming their way and be more
aware to avoid it. If they haven't gained an interest in security they might be forced to
realize that the old way does not work anymore. Some examples of security practices can
involve hardening a machine by stripping the operating system to a bare bones minimum
for a server (i.e. removing unneeded operating system packages and/or software), locking
a service that posses a huge security threat and services running that are not needed on
your network, and keeping up with security patches, vulnerabilities, and advisories.
What if the threat were so great that it could compromise the (UNIX) core of the IS
department of the company, leaving the company at the whim of a cracker and, even
worse, crippled with scrubbed or corrupted servers? At that point, what else could
considered? The company would be panicking because they would be unaware of the
cause of the problem at hand. While in a rush to fix it, the thought that "It will never
happen to me" would be fading, if not already completely out of mind. At the same time,
the cracker would be attacking the company across the street from you from your
compromised machine. You would eventually clean everything up and think you had the
cracker out. You would restore backups of the systems, unsure if those backups had
compromised data on them (depending how long the cracker had been in your systems),
but to you, everything would be safe; you would be in the clear; you would be back in
business. A few hours later, you would get a call from a company saying your company
had attempted to hack their network. They would be talking about lawsuits and legal
battles. What would have just happened? What could have caused this nightmare? All
of this a hellish dream or reality (depending on how you may look at it) from an older
way of thinking. If you have had taken some basic security measures, added strong
authentication, encrypted communications channels, better host verification, and have
knowledge of current security vulnerabilities, topics and issues, this may never happen.

 Most people don't think the above scenario would ever happen to their
company. They believe they are too small to have a cracker attack them the thought of
security by obscurity. Not many people think there could be an intruder watching them
without their knowledge on their internal or external network. According to many online
experts (Securityfocus.com, SANS.org, securityportal.com, cert.org) 80% of computer
security incidents occur inside the company. In the past, people have used various
vulnerabilities and exploits to gain access to systems.

 A popular example in the media today (probably over glamorized) is Kevin

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Mitnick. Kevin Mitnick was a hacker that was wanted by the law on several accounts of
penetrating companies and obtaining proprietary data. Other accounts were phone
tapping and impersonating company officials. He penetrated Tsutomu Shimomura's
personal computer. Tsutomu Shimomura was helping the FBI capture Mitnick and, being
well known as a security expert at the time, provided Mitnick with a challenge. Mitnick
gained access to the machine by using host spoofing (TCP/IP exploit) and then gaining a
trust relationship of Tsutomu Shimomura's machines using the r-commands (rlogin, trust
exploit).

 We can get even more basic in explaining the source of the problem that allowed
the hack listed above; poor authentication, and clear-text distribution of data of the
services. These two things are probably the most underestimated security breech into a
system today. The primary services that present problems are:

�Inetd - Internet Services Daemon
�Telnet - Service Port 23
�FTP - Service Port 21
�RSH (rsh, rlogin, rcp) - Service Port 514
�sunrpc- Service Port 111

 The main problem with Inetd is that it does not offer reverse mapping of IP
addresses to the hostname to validate it. In essence, you can allow a false IP or hostname
that is NOT registered with a proper DNS entry to connect and function. This can allow
spoofed connection to the desired service. When looking over the functions allowed on
inetd administrators could disable services that are not needed. This will help close
known holes. On most default stock installations of UNIX, there are many services open
that are not needed. Getting rid of the services can be accomplished by commenting the
services in /etc/inetd.conf, then restarting inetd for the new settings to take effect.

 For someone new to commenting out services, let us take an example using a
stock /etc/inetd.conf. Below shows a stock entry for telnet in /etc/inetd.conf then a
commented entry for that service to disable it.

�telnet stream tcp6 nowait root /usr/sbin/in.telnetd in.telnetd
�#telnet stream tcp6 nowait root /usr/sbin/in.telnetd in.telnetd

 One software program, TCP_Wrappers, can be used with the traditional inetd to
make the default services more secure. This is an excerpt by the author (Mr. Wietse) of
TCP_Wrappers software package describes its function:

 "These programs log the client host name of incoming telnet, ftp, rsh,
 rlogin, finger etc. requests. Security options are: access control per host, domain
 and or service; detection of host name spoofing or host address spoofing; booby
 traps to implement an early-warning system."

 As stated above, TCP_Wrappers can cause a low end host verification and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

authentication to the service. When TCP_Wrappers is installed, to enable it in
/etc/inetd.conf, change the line of the running service; in this example, we will assume
TCP_Wrappers is installed in /opt/GNU/sbin and the service we will change will be
telnet.

�telnet stream tcp6 nowait root /opt/GNU/sbin/tcpd in.telnetd

 In conjunction with TCP_Wrappers, another piece of software could be
installed to replace the traditional inetd daemon; this new software is xinetd. Some of the
features of xinetd include: access control, prevent denial of service attacks, extensive
logging abilities, offload services to a remote host, IPv6 support and user interaction.

 Another widely used service, telnet is used to remotely communicate between
most UNIX machines and is still very popular. It is a direct host to host connection via
port 23 that has no built in security measures put in to place to prevent an intruder. The
biggest problem with this service is the fact it is not encrypted. This causes a risk if you
were to have someone sniffing your network. This would allow them to view user ID,
password entries into the system, important documents being transferred, and even
conversations over the internet. It would also allow them to gain knowledge of what you
are doing on the system.

 FTP is clearly one of the most widely used service for file transfers over the
internet that its share of problems with security as well. The client issuing commands to
the server that is listening on the default port of 21. The actual file transfer has the client
instructing the server, IP and dynamic port number to use. At that point the client
instructs the server to transfer the file. The server opens a TCP connection to the client's
address and port with the source (server end) port number of 20. While the IPs are
communicating, someone could spoof the source address of the client accessing the FTP
server allowing the cracker to assume that client's IP. To clearly see the workings of
FTP, the following example is given:

 (client establishes connection from local port 1024 to
 server port 21)
 (client listens on port 1025 (4,1))
 client:1024 -> server:21 PORT c,li,e,nt,4,1
 client:1024 <- server:21 200 PORT command successful
 client:1024 -> server:21 RETR file
 client:1024 <- server:21 150 Opening ASCII mode ...
 client:1025 <- server:20 <data for 'file'>
 client:1024 <- server:21 226 Transfer complete

The R-commands (RSH, RCP, RLOGIN), work in the following matter:

 (Client attempts to assign a local port <1024, eg 1023)
 client:1023 --> server:514 <connects>
 client:1023 --> server:514 <nul>luser<nul>ruser<nul>cmd<nul>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 client:1023 <-- server:514 <nul>
 client:1023 <-> server:514 <data>

 These communication methods are not secure; communication is being
transferred as clear-text over the network between the machines. A lot of programs today
still use clear-text for a lot of their communication. One example is Legato Networker.
This backup program uses r-commands to send data between clients and control the hosts
who have the backup software. If someone were to develop a way to exploit the
communication barrier, they could possibly have control of the backup server and all of
its data. This would cause a security hole in the Legato Networker program.

 The RSH authentication scheme uses non-safely implemented host to host trust. A
user would use an "rhost" file to say that "root@some-box" can have root access on
"server." The "server" would then look at the hostname given by the connecting box to
authenticate it. The problem is that this method makes the critical, and wrong,
assumption that an intruder can not spoof the host on the source machine or in transit to
the other host. This exists today and could be easily done if the system were setup poorly.
This could very well cause a root compromise or a privileged user account could be
exploited. This could be a huge risk especially if root were to be allowed in the "rhost"
files on all the clients and or server machines.

 With the services mentioned, using clear-text would allow someone to watch or
view the traffic on the box with a sniffer. Take note that even if you use encrypted
communications, if your machines are root compromised, they can still sniff all
connections on your network. This would give the cracker an upper hand in your defense
against them. Some tools that could be used for such an attempt would be NetCat, and
dsniff. With the increasing amount of people in the world who use ftp, telnet and the R-
commands, none of the data being transferred is being encrypted, unless by the software
listed below.

 Most UNIX flavors still leave services open; legacy services which have potential
for some major damage. So, how does someone plug these holes up? How does
someone still keep the compatibility with how the company been doing things forever?
One solution in the internet community is called "Secure Shell". Secure Shell is a drop-in
replacement for the clear text services, mentioned in this paper, on the internet in the
UNIX world. Those services are telnet, ftp, and the r-commands. It provides an
encrypted method of transport and authentication to make sure the right person is
accessing the box. Secure Shell can also be used in conjunction with TCP_Wrappers for
better security. The supported methods of encryption for Secure Shell (SSH) are DES,
3DES and blowfish. You can remove the r-commands completely, or make them
backwards compatible with SSH as a drop in, allowing SSH to be used when possible; if
not, RSH can be used. Until migration has been moved over to the full SSH solution, you
can keep the traditional method of host based maps for authentication so scripts
dependent on RSH commands are compatible. When using SSH, you can use encrypted
host based maps, that work the same way as the traditional RSH maps, yet secure. We've
mentioned earlier in this paper the use of TCP_Wrappers for host based verification to do

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DNS verification.

 How does one go about using Secure Shell into a native RSH environment? How
does one go about using Secure Shell to replace ftp and telnet? Secure Shell can be
installed with or without RSH compatibility. If you are not using RSH commands, then
your best bet would be to not even worry about allowing compatibility for them. In
essence Secure Shell would limit the ports being opened and the amount of different
programs being used. The primary program in Secure Shell is the ssh program. This
works in a similar syntax to rlogin.

ssh -l <username> <hostname>

 Using one standardized port for Secure Shell (port 22) would tighten security
from an outside view of the box. Instead of having at least four ports open, you would
have only two (sftp/sshd). You can set the encryption key on Secure Shell to 768 or any
higher value appropriate for your needs (and legal requirements of the region). Secure
shell also includes a program call scp which is a secured version of the traditional rcp
command. Secure Shell also provides a sftp-server which is an encrypted version of the
ftp daemon. Another secure ftp software program available is safeTP.

 Another security precaution companies might want to look into would be
hardening the machine. This is a part of the above mentioned security measures. What
about all the unnecessary installed operating system packages/software on the machine?
A majority of companies install the full stock version of the operating system. Even when
an administrator installs just the core Operating System on a machine, it can probably be
stripped down to match the machines actual needs. This varies from vender to vendor on
the Operating System in question. Not many companies believe in patch or system
upgrades. One thing you see all over the inside of companies is the use of X-Windows
on both their desktops and on their critical servers . Most the time the Administrators
only go near the console occasionally. Leaving X-Windows on a machine leaves rpc
service open to vulnerabilities, as well as causing an extra resource for the server that it
does not need. There are still a great number of insecure machines on the net that have
not yet upgraded to the latest Operating System released or the latest patch released and
take basic security measures. Most of these places, ironically, are, but are not limited to,
government and educational systems on the internet. With the increasing amount of users
connecting stock UNIX machines on their ISDN and DSL lines without thinking of
security, leaving more vulnerable points for a cracker. It only takes an internet
connection and a knowledgeable cracker to take down even the most advanced
companies who might be thought of as secure.

 After being given an insight of clear-text services, that are insecure in nature,
there are some secure alternatives like Secure Shell and safeTP. Hardening a machine is
crucial in the effectiveness of your systems performance and intended use. This will
limit the risk factor of unwanted and unneeded security holes and vulnerabilities within
them. In today's society, one needs to have encryption, good authentication, and an
awareness of security. Taking care of insecure services early in the game and hardening

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the operating system will help reduce problems in the future. When implementing the
things mentioned: xinetd, tcp_wrappers, Secure Shell, and hardening of the box, provides
a better means of communication between machines, as well as making it secure.
Remember security DOES affect your company and its productivity. Security affects
confidentiality, integrity and availability. Without someone of a conscious mind of
security watching your systems and your back, who is there to protect you when the
kingdom falls? Here is a final analogy;
 "Humpty dumpty sat on a wall, humpty dumpty had a great fall, all the
 kings horses and all the kings men couldn't put humpty together again."

References

1.??Security Vulnerabilities between FTP & Berkeley Rsh/Rlogin Protocols

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

URL: http://www.daedalus.co.nz/~don/ftp.html (02-22-01)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

URL: http://securityportal.com/cover/coverstory2000814.html (02-22-01)
3.)Wietse's Collection of Tools and Papers

URL: ftp://ftp.porcupine.org/pub/security/index.html (02-22-01)
4.)OpenSSH

URL: http://www.openssh.com (02-22-01)
5.)Xinetd

URL: http://www.xinetd.org (02-22-01)
6.)safeTP

URL: http://www.cs.berkeley.edu/~smcpeak/SafeTP (02-22-01)
7.)Ryan Russell and Stace Cunningham. Hack Proofing your Network Internet

 Tradecraft. Syngress Media, January 15, 2000. ISBN 1928994156. p146, 260-
 264, 279, 285-296 - ISBN: 1928994156

