
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Using CFENGINE to maintain systems and security.

Mike Lang
March 2001

CFENGINE (site configuration engine) was written by Mark Burgess at Oslo
College, Norway. Its purpose was to free the system administrator in a Unix environment
to do other tasks by automating tedious duties. In its simplest form it is a central
configuration server for Unix hosts. It has two parts: (1) a configuration file that defines
how a system should look and (2) a software agent that tries to bring a system in to
convergence with the definition.

In the abstract it may be thought of as an immune system for a network of hosts.
Based on the current system status cfengine can respond appropriately and act with out
involving a system administrator. In maintaining Unix systems, most administrators go
though stages. First an administrator configures hosts by hand. Next, as the number of
machines increase, an administrator scripts the host configurations. Then when large
numbers or heterogeneous hosts hit, he or she begins to rethink career choices. This tool
addresses this problem by allowing you to spend your time on one good centrally
maintained configuration file for all your hosts. Cfengine also has security in mind. As it
runs, it watches for and logs any suid files and directories with names strange names like
“…”. These are things that a good system administrator would look for as they navigated
the system.

If you have ever used an automated installation program such as jumpstart for
Solaris or kickstart for Linux, you know how much time this can save. You build the
configuration for your site once, then new installs or rebuilding damaged hosts takes
minute of your time rather than hours. The automated installation servers will get a host
to a known state, but will not keep it there. If you modify you jumpstart configuration
you will have to change the installed base of hosts by hand or with a custom script. With
cfengine the configuration can evolve with new information on exploits or security policy
changes. There is no need to learn a different tool for each OS since cfengine can make
decisions based on the OS type. With a good configuration file you can just take the
default installation from the vendor and have cfengine configure the rest.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Installation:
To use this tool first you have to download it from http://www.iu.hio.no/cfengine/

or one of the mirrors. Cfengine is written in the c language to be light on system
resources. It compiles easily with configure, make, and make install. (For details see the
INSTALL file that comes with the distribution.) In version 1.6.3 you will need Berkley
DB version 3.2 in order to use the MD5 checksum feature discussed later. There are
different ways to run cfengine, the documentation suggests running it on the clients
hourly. Also you will want cfd running on all the clients. Cfd allows you to request the
client to run cfengine. This is useful if you need to defend against a new exploit now
rather than waiting for the next cron job to hit. The cfd daemon also can be run on the
server to allow file transfers. Keep in mind, the hourly run time needs when writing
configuration files. You don’t want your scripts to take more than an hour to run and can
always specify special upkeep at low usage times; say 2AM Saturday.

Before I show some examples lets look at cfengine syntax. The cfengine
configuration is a programming language [7].

• White space is ignored
• Comments start with a #.
• Words with a single colon are sections. (Only members of the predefined

sections set are allowed).
• Words with double colon are classes. These are used to make decisions.
• Word = (list) is an assignment statement.

So a config file in it simplest form would be as follows:

control:
 actionsequence = (links)
 links:
 /usr/local/bin/netscape -> /usr/local/bin/netscape.476

This example would create a symblolic link from the latest installed netscape version to
to /usr/local/bin/netscape. The actionsequence defines what sections will be executed
and in what order. In the example above only the links section will be executed. (Notice
the spaces around the links in the actionsequence, these were required to get cfengine to
run.) There are 21 predefined section names in version 1.6.3. They are designated with a
single colon in the configuration file and are listed below [7]:

groups, control, homeservers, binservers, mailservers, mountables, import,
broadcast, resolve, defaultroute, directories, miscmounts, files, ignore, tidy,
required, links, disable, shellcomands, edifiles, and processes.

Classes are used to make decisions. There are hard classes and user defined

classes. The Solaris class is referred to as a hard class, it is predefined by cfengine.
Other predefined classes include the unqualified host names and time/date designations.
To define your own classes, use the groups section.

groups:
 diskservers = (ray, beam, spot, flare)
 testhosts = (alpha, beta)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

So you might delete old core files on your disk servers and test new cfengine
configs on hosts alpha and beta. The classes can then be combined to make complex
decisions. A “.” Performs a logical AND between the classes, the “|” performs an OR
and the “!” performs a NOT. So to kill the web server on you Linux test hosts every
Friday:

processes:

testhosts.linux.friday::
 “httpd” signal=kill

When something can’t be easily accomplished in cfengine the “shellcomands“ section
can be used to run custom Perl or shell scripts.

Now that we have the basics of what a configuration looks like, lets see how this
tool can help us maintain the three pillars of security: (1) confidentiality, (2) integrity
and (3) availability.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Confidentiality:
Confidentiality requires that we keep private information private. Lets investigate

a configuration to guard one of unix system’s most valuable items, passwords. The
shadow password file is supposed to keep our encrypted passwords private so they can’t
be copied off to a remote host and cracked. The configuration file below will check the
permissions and ownership of the shadow password file for any Linux hosts. If they are
incorrect the fixall will cause cfengine to correct them.

control:
actionsequence = (files)
 files:
 linux::
 /etc/shadow mode=400 owner=root action=fixall

Keeping up with security holes is a big problem for system administrators. To

illustrate closing a security hole lets consider a real example. One exploit that came up a
while back was Solaris’s sadmin daemon [4]. To close this, we want to check all Solaris
hosts to make sure they are not configured as a service and to kill any existing daemons.
So in cfengine this would look like the following:

control:
 actionsequence = (disable, editfiles, processes)
 #cert advisory CA-1999-16

 disable:
 solaris::
 /usr/sbin/sadmind
 editfiles:
 solaris::
 {/etc/inetd.conf
 HashCommentLinesContaining “sadmin”
 }
 #kill any running sadmind’s and restart inetd
 processes:
 solaris::
 “sadmind” signal=kill
 “inetd” signal=hup

The three sections are disable, editfiles and processes. The action defined will be taken if
the os matches the class “solaris”. Any files listed in the disable section will be renamed
to file.cf-disabled and the permissions will be set to 400[1]. Under editfiles the system
will check inetd.conf to see if the sadmind service is configured, if there are any matches
in inetd.conf, they will be commented out. Now if at a later time an old /etc/services file
is restored, the system will correct itself at the next running of cfengine. When a new
exploit is discovered the cfengine configuration is modified and all the hosts will update
themselves.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Integrity:
To maintain your system integrity we must have a way to ensure the files and

binaries are what we expect them to be. Cfengine can check for changes to system files.
In this way it can also act as an intrusion detections system (IDS).

Tripwire [7] has been used for IDS and file integrity tool since 1992. Cfengine
can be used to get a similar functionality. A database of MD5 checksums can be
established files you want to protect, and then these can be compared to the checksums of
the files actually on the system during subsequent runs of cfengine. Make sure you
include executables that are usually replaced when crackers install rootkits on your
system (telnetd, ftpd, logind, sshd, etc .). One of the philosophies in cfengine is to fix
rather than just inform, so if a problem is found the binary should be replaced with a good
copy from a read-only source or protected server. A CD of these important programs
could be created from the OS distribution media and kept online for such updates.

Take sshd as an example. If a cracker breaks in a system and replaces sshd with a
Trojan that collects accounts, passwords and machine names, this can be devastating to
the entire enterprise. Here is how cfengine could be used to minimize the damage.

control:
actionsequence = (copy)
 copy:
 solaris::
 # copy sshd from a known source
 /mnt/cdrom/sshd dest=/usr/local/bin/sshd
 type = checksum
 inform = true
 syslog = true
 mode=500
 owner=root

The option type=checksum causes the MD5 check to be done to see if the copy is

needed. Permission and owner will also be set and inform and syslog will make sure the
events are logged. We are assuming that a trusted binary has been written to a cdrom and
is mounted on /mnt/cdrom, and that the MD5 database has been created previously. The
old binary would be kept as sshd-cf.saved, this is useful for later forensics.

Other tools have been used to keep configuration files up to date. The two most
common would be NIS, and rdist[5]. Using the copy section cfengine clients can request
new files from the server to install new versions or replace damaged ones. NIS has been
a troublesome security hole. If the NIS domain can be guessed, it can be fooled into
giving your password file and other important configuration files away. In the example
below we copy the group file to all hosts and set the proper permissions.

 control:
 actionsequence = (copy)

 copy:
 any::

 /usr/local/cfengine/share/clientfiles/group.clients
 dest=/etc/group
 mode=444 owner=root
 server=serverhostname

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Availability:
To enhance availability we want to be proactive in monitoring resources and

services. In this way we can monitor daemons and disk space, then act based on the
discoveries. If you have a syslog server, you can also monitor your clients as they run
hourly from cron. Set variable syslog to on for logging.
 syslog = (on)
Here is an example to demonstrate how to keep your web services running.

groups:
 webservers = (www.dom.com, www2.dom.com,
 www-internal.dom.com)
control:
 actionsequence = (processes)
processes:

 linux.webserver::
 "httpd" restart "/etc/rc.d/init.d/httpd start" #RH6.2
 useshell=false

 solaris.webserver::
 "httpd" restart "/etc/init.d/httpd start"
 useshell=false

First we will define a new class, webservers. Then using the process section we will
restart the web daemons with the script in the init.d directory. Just to show how classes
can be combined, we will take care of the differences between directory placement on
RedHat 6.2 and Solaris. Notice the useshell= false. This is an added security feature you
can use when running scripts. This starts programs directly without using an intermediate
shell. Useshell guards against IFS attacks (when an evil doer tries to trick a program
running as root into running an arbitrary command by changing the character used for
command separation). Now that we have talked about keeping services running, the
other side of the coin is to keep some service from running. Quite often you don’t want
client systems running ftpd, telnetd and other servers. You can also kill any known
cracker tools and irc clients, such as eggdrop, IRC client BitchX etc. You would want to
check for name collisions with your local programs to keep from killing valid programs.

processes:
 all::
 “autorun” signal=kill
 “eggdrop” signal=kill
 “irc ” signal=kill
 “BitchX” signal=kill
 “README” signal=kill # you don’t sh README!

 !webserver::
 “httpd” signal=kill # no unauthorized webservers.

Notice above if the host is not in the defined group webservers, we want to kill any httpd
processes on the host.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Other Possible Applications:

Dual Boot Machines:

Dual boot machine are problem for most system administrators. It is difficult to
get changes to a machine when you don’t know which operating system it is currently
running. This is especially true for folks that boot the alternate system infrequently.
What you end up with are hosts that are way behind on security fixes dangling off of you
network. This is where automation systems that push out changes to hosts like
Microsoft’s SMS fail. With cfengine the host updates itself with a pull, so when an
infrequent linux user boots his system, cfengine can be run to grab any changes that have
been missed while the system was running an alternate operating system

Securing remote dial up machines for telecommuters

Dial up users are large security holes for any network. Cfengine would allow
updating security settings for users at home. You could allow users to initial there own
updates, or be more draconian and force it as part of the dial up or VPN procedure. To
speed up the update process on these systems, rsync can be used [9]. Rsync allows just
the changes in files to be transferred rather than the entire file. This is very useful due to
the limited bandwidth on dialup connections.

Creating a patch servers

If you don’t have direct control over all hosts on your network you can at least
provide a patch repository to help secure your neighbors. In this way any host on the
network can update to the most current tested patches with a simple run of cfengine. This
same patch server could also be used as part of your own cfengine scripts.

Miscellaneous Configuration Notes:

A few security precautions; cfengine by default doesn’t encrypt any of the traffic
between hosts. If the files do need to be encrypted for transmission, this can be done
with an option to the copy control.

copy:
 source dest=destination secure=true server=trusted

This would cause the file in question to be transferred via triple DES. The included
program cfkey would be used to generate a key that is distributed to the clients. Other
security options you may want to turn on include:

 CheckIdent = (on) # to check for spoofers
 SecureInput = (on) # make sure file is owned by cfengine
owner and not group/world writeable.

An interesting note, in the process section make sure your entries don’t match the
cfengine process, or its configuration file, I wrote one test that would kill itself
before it got any work done.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Conclusions:
 Cfengine addresses the biggest security hole faced today, the lack of time system
administrator have to work on the systems. By automating repetitive tasks, and keeping
watch on system files and resources, this tool can give computer staff more time to build
a more resilient infrastructure. With this automation you can attack one of the basic
security problems the herd effect [3]. Crackers only have to find one weak host on a
network to infect the rest. With cfengine you can keep your herd at the same level. The
documentation is extensive with a 100 page reference manual [9] and a 96 page
tutorial[8], there are also example configurations that are included in the distribution.
Though my examples are all very short, configurations files can get very large and should
be kept up with a version control system such as RCS or CVS etc. Since cfengine is
evolving there are always fixes, enhancements, and security bulletins, so joining the
mailing lists and keeping up with changes is important.
(http://www.iu.hio.no/cfengine/cfcomment.html).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References:

[1] Burgess, Mark. “Managing Network Security With Cfengine”, 03 Jan, 2001.
 URL: http://www.iu.hio.no/cfengine/cf-security.htm

[2] Burgess, Mark. “Computer Immune Systems”, 01 Mar, 2001.
 URL: http://www.iu.hio.no/~mark/research/immune.html

[3] Perrine,Tom. “Security as Infrastructure”, 11 Dec, 1998. URL:
 http://www.sdsc.edu/~tep/Presentations/1998.LISA.Security.Infrastructure/index.htm

[4] CERT/CC. “CERT® Advisory CA-1999-16 Buffer Overflow in Sun Solstice
 AdminSuite Daemon sadmind “, 14 Dec, 1999.
 URL: http://www.cert.org/advisories/CA-1999-16.html

[5] Ryan, Ron “Security and System Maintenance Automation”, 22 Jan, 2001.
 URL: http://www.sans.org/infosecFAQ/unix/automation.htm

[6] Tripwire Security Systems Inc, “Tripwire Academic

 Source Release 1.3.1 User
 Manual”, 30 Apr, 1999.
 URL: ftp://coast.cs.purdue.edu/pub/tools/unix/ids/tripwire/Tripwire-1.30-docs.pdf

[7] Burgess, Mark. “cfengine tutorial”, 01 Dec, 2000.
 URL: http://www.iu.hio.no/cfengine/docs/cfengine-Tutorial.html

[8] Burgess, Mark. “cfengine reference”, 01 Dec, 2000.
 URL: http://www.iu.hio.no/cfengine/docs/cfengine-Reference.html

[9] Davis, Jim. “Cfengine-and-rsync.htm”, 06 Mar, 2001
 URL: http://www.cs.arizona.edu/people/jdavis/cfengine.html

