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Elliptic Curve Cryptosystems – an overview 
Leonard Jacobs 
March 24, 2001 
 
It is assume that readers of this paper possess a basic understanding of 
algebraic/geometric mathematics and cryptographic methodologies.  You will find a 
glossary, at the end of this paper, to assist you in better understanding the terminology 
used. 
 
In 1985, Neil Koblitz from the University of Washington and Victor Miller, who was 
working at IBM at that time, independently proposed the Elliptic Curve Cryptosystem 
(ECC), whose security rests on the discrete logarithm problem over the points on an 
elliptic curve. ECC can be used to provide both a digital signature scheme and an 
encryption scheme.  ECC represents an alternative to older forms of public-key 
cryptography and offers certain advantages; which will be explored later in this paper. 
[1] 
 
Elliptic Curves [1, 2] 
To understand what ECC entails, one must understand the arithmetic involved with 
elliptic curves.  Elliptic curves as algebraic/geometric entities have been studied 
extensively for the past 150 years.   
 
An elliptic curve consists of elements (x, y) satisfying the equation 
 

y2 = x3 + ax + b  (mod p) 
 

for two numbers a and b. If (x, y) satisfies the above equation then P=(x, y) is a point on 
the elliptic curve.  The elliptic curve formula is slightly different for some fields. 
 
Elliptic curves can be defined over any field such as real, fractional, and complex.   
Elliptic curves used in cryptosystems are typically defined over finite fields (integer 
modulo a prime number). 
 
A finite field consists of a finite set of elements together with two operations, addition 
and multiplication, that satisfy certain arithmetic properties.  Finite fields often used in 
cryptography are Fp; where p is a prime number, and the field F2m. 
 
Using some particularly profound mathematics, it is possible to define the addition of 
two points on the elliptic curve. Suppose P and Q are both points on the curve, then  
 

P + Q 
will always be another point on the curve. 
 
All public-key cryptosystems exploit the mathematical properties of large finite groups                                     
Two groups used in cryptography are Zn, the additive group of integers modulo a 
number n; and Zp

*, the multiplicative group of integers modulo a prime number p. 
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Example of an Elliptic Curve 
 
Figure 1: [2] 

 
 
The set of points on an elliptic curve forms a group under addition, where addition of 
two points on an elliptic curve is defined according to a set of simple rules. For example, 
consider the two points p1 and p2 in Figure 1. Point p1 plus point p2 is equal to point p4 = 
(x, -y), where (x, y) = p3 is the third point on the intersection of the elliptic curve and the 
line L through p1 and p2.  
 
Elliptic Curve Discrete Logarithm Problem (ECDLP) [1, 2] 
The elliptic curve discrete logarithm problem (ECDLP) can be stated as follows. Fix a 
prime p and an elliptic curve.  xP represents the point P added to itself x times. Suppose 
Q is a multiple of P, so that  

Q = xP 
 

for some x.  Then the ECDLP is to determine x given P and Q.  
 
The general conclusion of leading cryptographers is that the ECDLP requires fully 
exponential time to solve.  The security of ECC is dependent on the difficulty of solving 
the ECDLP.   
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Security of ECC 
Mathematicians have given considerable attention to ECDLP.  Like the other types of 
cryptographic problems, no efficient algorithm is known to solve the ECDLP.  The 
ECDLP seems to be particularly harder to solve.  Moderate security can be achieved 
with the ECC using an elliptic curve defined modulo a prime p that is several times 
shorter than 230 decimal digits. 
 
An elliptic curve cryptosystem implemented over a 160-bit field currently offers roughly 
the same resistance to attack, as would a 1024-bit RSA modulus.  Moderate security 
can be achieved with the ECC using an elliptic curve defined modulo a prime p that is 
several times shorter than 230 decimal digits. 
 
At the security level of 1020  MIPS years, it takes a 300-bit key in ECC to equal the 
strength of a 2048 bit key in either RSA or DSA.   The currently acceptable security 
level is 1012  MIPS years.  The security gap between the systems grows as the key size 
increases.   
 
In general, no major weaknesses with ECC have been discovered.  However, it has 
been one reported that a 108-bit elliptic curve encryption key was cracked in July 2000.  
It took 9,500 computers running in parallel for four months, connected via the Internet.  
It would take 500 years of processing on a single 450 MHz personal computer to 
perform the same key cracking. [3] 
 
There have been weak classes of elliptic curves identified such as supersingular elliptic 
curves and some anomalous elliptic curves.  Implementations, such as ECDSA, merely 
check for weaknesses and eliminate any possibility of using these “weak” curves. [4]  
 
Elliptic Curve Digital Signature Algorithm (ECDSA) [5, 6] 
A major application of ECC is ECDSA.  ECC applications work extremely well with small 
amounts of data such as digital signatures.  The ECDSA is the elliptic curve analogue of 
the Digital Signature Algorithm (DSA). 
 
The key generation, signature generation, and signature verification procedures for 
ECDSA are as follows: 
 
ECDSA Key Generation - 

1. Entity A selects an elliptic curve E defined over Zp.  The number of points in E(Zp) 
should be divisible by a large prime n. 

2. Select a point P • E(Zp) of order n. 
3. Select a statistically unique and unpredictable integer d in the interval [1, n-1]. 
4. Compute Q = dP. 
5. A’s public key is (E, P, n, Q).  A’s private key is d. 

 
ECDSA signature generation - 

1. Entity a selects a statistically unique and unpredictable integer k in the interval [1, 
n-1]. 
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2. Compute kP = (x1, y1) and r = x1 mod n.  To avoid a security condition, x1 should 
not equal 0. 

3. Compute k-1  mod n. 
4. Compute s = k-1  {h(m) + dr} mod n.  h is the Secure Hash Algorithm (SHA-1). 
5. If s = 0, then go to Step 1.  If s = 0, then s-1 mod n does not exist and s-1 is 

required in the signature verification process. 
6. The signature for the message m is the pair of integers (r, s). 
 

ECDSA signature verification – 
1. Entity B obtains an authentic copy of Entity A’s public key (E, P, n, Q). 
2. Verify that r and s are integers in the interval [1, n-1]. 
3. Compute w = s-1 mod n and h(m). 
4. Compute u1 = h(m)w mod n and u2 = rw mod n. 
5. Compute u1P + u2Q = (x0, y0) and v = x0 mod n. 
6. Entity B accepts the signature if and only if v =r. 

 
Instead of each entity choosing to generate its own elliptic curve, the entities can use 
the same curve E over Zp  and point P of order n.  In this situation, an entity’s public key 
consists of just point Q.  This results in smaller public key sizes. 
 
ECDSA defines private keys and per-signature values as statistically unique and 
unpredictable rather than merely random as defined in the DSA standard. 
 
ECDSA utilizes a method called point compression, which allows a point on an elliptic 
curve to be represented, by one field element and one additional bit.  This leads to 
substantially reduced sizing in public-key certificates.  Reductions are typically 25 
percent compared to asymmetric algorithms. 
 
The primality test in DSA is probabilistic.  ECDSA provides for deterministic primality 
testing.  This allows a high security application to verify that claimed prime numbers are 
indeed prime numbers. 
 
In ECDSA, 100 percent of signatures generated will verify due to mandatory analogous 
bounds checking.  DSA has optional bounds checking on signature generation. 
 
In ECDSA, authorized use of a private key has been made explicit.  DSA states that the 
integrity of signed data is dependent upon the prevention of unauthorized disclosure, 
modification, substitution, insertion, and deletion of the private key value or per-
signature value.  Unlike ECDSA, unauthorized use is not explicitly prohibited in DSA. 
 
Advantages of ECC [4] 
ECC leads to more efficient implementations than other public-key systems due to its 
extra strength provided by the difficulty to solve the ECDLP.  
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The biggest advantage of ECC is key size.  For example, a typical key size for the RSA 
algorithm is 1024 bits; which would take approximately 1011 MIPS years to break.  In 
comparison, an ECC key size is 160 bit offers the same level of security. 
 
Computational efficiencies are achieved with ECC.  ECC does not require processing of 
prime numbers to achieve encryption unlike other public-key cryptosystems.  ECC is 
roughly 10 times faster than either RSA or DSA. 
 
ECC offers considerable bandwidth savings over the other types of public-key 
cryptosystems when being used to transform short messages such as the typical 
implementation of ECDSA.  Bandwidth savings is about the same as other public-key 
cryptosystems when transforming long messages. 
 
These advantages lead to higher speeds, lower power consumption, and code size 
reductions.  Implementations of ECC are particularly beneficial in applications where 
bandwidth, processing capacity, power availability, or storage is constrained. Such 
applications include wireless transactions, handheld computing, broadcast, and smart 
card applications. 
 
Review 
Koblitz and Miller first proposed ECC in 1985.  ECC is based on the properties of elliptic 
curves.  Elliptic curves are defined by y2 = x3 + ax + b  (mod p).  The security provided 
by ECC is stronger than other public-key cryptosystems due to the characteristics of 
ECDLP.  ECC typically requires a smaller size key than other public-key encryption 
methods for the same or better security.  ECC can be used for digital signatures and 
encryption.  The ECDSA standard provides for better security than other forms of 
public-key encryption and signature generation.  Applications requiring low power, low 
memory, and less bandwidth are ideal with ECC.   
 
Glossary [7] 
algorithm –  A series of steps used to complete a task. 
 
ciphertext – Encrypted data. 
 
cryptosystem – An encryption, decryption algorithm, together with all possible plaintexts, 
ciphertexts, and keys. 
 
decryption – The reverse of encryption. 
 
digital signature – The encryption of a message with a private key. 
 
discrete logarithm – Given two elements d, g, in a group such that there is an integer r 
satisfying gr = d. 
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discrete logarithm problem – The problem of given d and g in a group, to find r such that 
gr =d.  For some groups, this problem is a hard problem that can be used in public-key 
cryptography. 
 
encryption – The transformation of plaintext into an apparently less readable form 
through a mathematical process. 
 
field – A mathematical structure with multiplication and addition that behave as they do 
with real numbers. 
 
group – A mathematical structure in which elements are combined. 
 
hard problem – A computationally intensive problem that is difficult to solve.  The basis 
of most cryptosystems. 
 
hash function – A function that takes a variable size input and has a fixed size output. 
 
key – A string of bits that allow people to encrypt and decrypt data by determining the 
mapping of plaintext to cipher text. 
 
MIPS – Million instructions per second.  A measure of computational speed in 
computers. 
 
MIPS year - A MIPS year represents a computing time of one year on a machine 
capable of performing one million instructions per second.   
 
plaintext – The data to be encrypted. 
 
prime number – Any integer greater than 1 that is divisible by 1 and itself. 
 
private key – This key is the secret key.  It is primarily used for decryption but is also 
used for encryption with digital signatures. 
 
public key – This is the key made public to all.  It is primarily used for encryption but is 
also used to verify digital signatures. 
 
public-key cryptography – Cryptography based on methods using a public key and a 
private key. 
 
RSA algorithm – A public-key cryptosystem based on the factoring problem.  RSA 
stands for Rivest, Shamir, and Adleman, the developers of the RSA public-key 
cryptosystem. 
 
smart card – A card, not much bigger than a credit card, that contains a computer chip 
and is used to store or process information. 
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