
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Java’s Evolving

Security Model : Beyond the Sandbox for

Better Assurance or a Murkier Brew?

SANS

Global Incident and Analysis Center

GIAC Security Essential Certification Practical

Matthew J. Herholtz

March 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 1

Generally, Internet compressed software development schedules have
outstripped the need for rigorous security design and analysis. This is a common trend
in consumer software, and one that is destined to flame-out under the rigorous security
demands of e-commerce.
 Felten, McGraw

Overview

Sun Microsystem’s Java is a portable proprietary single programming language
that manages distributed network security challenges of mobile code or executable
content downloaded from the web. Java’s undisputed popularity and universal
acceptance, without formal assurance verification of the languages security model, has
drawn extensive and justifiable scrutiny from security experts. Many Java security
vulnerabilities have been discovered, well-publicized and subsequent fixes deployed.
Numerous recommended articles, to include SANS practicals, discuss these and other
complimentary aspects of Java security. This paper will not discuss specific Java
exploits in detail. Instead, it introduces and applies security policy and security model
principles to Java’s evolving security model to better understand it, and to discern
confidence in Java’s policy strategies for the future of secure distributed computing.

Security Policy and Security Models

 First and foremost - - a security policy IS NOT the same as a system’s security
model. Confusion between security policies and models sometimes results as both have
multiple meanings. Although sometimes subtle, the distinction between policy and
models is crucial for critical information security systems like electronic commerce
systems that require a high degree of trust and assurance of quality design and
operational reliability.

Generally, a security policy is expressed in words and emulates real world

security challenges as a set of laws, rules, roles and procedures defining how an
organization allocates resources to protect assets and achieve business security
objectives. Security models on the other hand, tend to be either mathematical (formal
methods), graphical (latticed information flows) or tabular (access matrix) for ease of
system policy conceptual visualization, understanding, implementation and verification.
[7, 103]

Security policy normally has three fundamental types, each with a different

purpose: organizational, issue and system specific. An organization’s security policy is
management’s security strategy for protecting assets and attaining an enterprise’s
business security objectives. It outlines specific employee roles, responsibilities, rules
and procedures for compliance. An issue or technology specific policy outlines similar
responsibilities, details and procedures dealing with a specific technology, system or
behavior challenge like e-mail, physical security, software, Internet, or LAN. Lastly, a
system policy must address internal computer system or application’s technical
mechanisms (e.g. automated system or application security policy) that controls the
security access policy for subjects and objects within a specific computer system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 2

Security policies vary from organization, business, environments, technical application
and network systems.

A renowned expert and author in the security field, Edward Amoroso, defines the

“security policy of a computer system [system specific] as the conditions [or set of rules]
which subject accesses to objects are mediated by the system reference monitor
functionality … with appropriate mechanisms [for policy enforcement].” [1, p.91]
Successful mechanisms, normally an underlying part of the computer environment,
enable effective implementation and enforcement of security policy requirements. [1, p.
92] Further, the Department of Defense (DoD) ‘Orange Book’ Trusted Computer
Systems Evaluation Criteria (TCSEC) 5200.28 defines [system specific] security policy
as: “Given identified subjects and objects, there must be a set of rules that are used by
the system to determine whether a given subject can be permitted to gain access to a
specific object.” [8, p.112]

Computer security models restate the policy in more formal or mathematical

terms to: (1) provide framework for understanding concepts; (2) provide an
unambiguous, formal representation of a general security policy; (3) express the policy
enforced by a specific computing system. [7 p. 110]

Security models may be formal or informal. Formal models are based upon logic

and formal mathematics, information or complexity theory. As conceived, a computer
system’s foundation of mathematics readily lends itself to mathematical accuracy by a
logical theorem or mathematical proof. A common formal model, Bell LaPadula (BLP),
features latticed information flow, strict labeling and mandatory access control (MAC)
emphasizing confidentiality (common in military models) for secrecy. In commercial and
medical systems, Biba and Clark - Wilson integrity oriented models are common and
focus on integrity levels of information flow for transaction accuracy and separation of
duty. [7, pp.112-145] Informal models can be precise narratives of system operations
supplemented with concept facilitating diagrams, graphs or tables like an access matrix.
Discretionary access control (DAC) common in academic research (UNIX, V/MLS
informal documentation) is typically modeled by a simple access control matrix (Figure
A) Mobile code technologies are relatively new, and evolving. Java and Active X trust
models implement restrictive sandboxes, protection domains and/or digital signatures.
Whether formal or informal, models are a means to abstract essentials from the typically
ambiguous policy narrative to precisely represent and better understand the policy and
evaluate assurance of the system’s security.

Author Amoroso acutely summarizes the important distinction between system

specific security policy and models. Computer security policy is a set of requirements
for a specific system; a security model is a restricted representation of a class or types
of systems that abstracts unneeded details to highlight a specific property or set of
behaviors. Models then, ideally, and in theory, are useful to design and better
understand a specific system policy and provide a general framework for understanding
a type of system’s implementation of [security] mechanisms employed to enforce a
defined policy. [1, p.92] In short, real life verification of a model’s mechanisms to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 3

accurately mediate an automated security policy ultimately determines the success of
an information system’s ‘state of security’ and validates its design.

Assurance, Verification and Validation

Computer security assurance is the degree of confidence one has that the
security measures, mechanisms both technical and operational work as intended to
protect the system and information processes. [4, p. 89] Additionally, assurance of a
security policy or model establishes unambiguous grounds for confidence that the
model meets or accurately portrays system security objectives. [18] Assurance, is
confidence in proper or correct system design and the capability of a technology to
execute as specified. Primary assurance methods are testing, verification, and
validation.

Verification includes documentation of actual penetrations, or attempts to
penetrate an on-line system in support or in contradiction of assumptions developed
during system review analysis. Verification determines if system implementation is
consistent with system requirements specification.” [7, p. 238] It implies correctness
and confidence through formal testing and verification activities.

 Validation includes verification, and also includes ‘rigorous’ methods for
convincing people of the correctness of a program or a security model. Validation is “…
concerned with predicting how well a system and its security policy will meet real world
needs and expectations, and is partly always subjective”[7, p. 238] Typical validation
techniques include white and black-box testing, formal technical reviews, design and
code reviews, penetration tests, quality and disciplined mature coding and engineering
development processes as outlined in ISO 9001. (See Annex VIII)

 The most popular, economical and typically only means for security system
model verification and validation includes module and system testing. However, it is
crucial to understand that this only demonstrates the existence of suspected flaws, not
the absence of flaws. Testing is based upon observable effects, but does not ensure
any degree of completeness. Further, testing is time and resource intensive, complex
and subsequently conveniently curtailed in commercial arenas. [6, pp. 308, 312] Post
fielding operational system ‘penetration testing’ sometimes called ‘ethical hacking’ best
done by an objective third party, advocates enhancing system assurance and
discerning a relative pulse setting of system security by ‘breaking into your web site’.
More rigorous security assurance methods of design and evaluations include: TCSEC
Orange book (Trusted Computing System Evaluation Criteria – U.S.), ITSEC (European
Information Technology Security Evaluation Criteria) and Common Criteria respectively.

Research, development, design and deployment of various successful and other
less so successful security systems have proven that articulating a system’s security
policy(s) and model(s) dramatically enhances a system’s development and promotes
mechanism verification for security policy enforcement. An accurate model is
indispensable in providing system proof of principle without likely expensive iterations of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 4

system prototyping, and provides the benchmark for modifications. This is very
pertinent in the case of Java’s ever-evolving security model.

Although policies and models vary with environment, the scope and sensitivity of
information being protected, authors Ford, Summers and Amoroso generally define
essential threat deterring networked computer system security services to include
authentication, confidentiality, authorization, availability, and integrity. [1,5,7] (Annex II)
Assurance that these essential services can be reasonably delivered is suspect unless
the security model’s mechanisms implementing the system’s underlying policy can be
verified. In lieu of formal methods for assurance verification, an evaluation based upon
sound, time-tested subjective informal security principles may be employed. These
principles include least privilege, simplicity of mechanism, complete mediation, open
design, least common mechanism, ease of use, and tamper resistance. [11, pp.1-2]
(See Annex I)

Network or distributed applications security can be viewed as “an instantiation of

a computer security problem for a specific type of application of threat vulnerability,
attack assessment, model, policy definition and safeguard and countermeasure
implementation”. [1, p.318] This, unfortunately, seems overly simplistic given computer
network complexity, their innumerable possible configurations, scope, and applications
in equally innumerable possible environs. Applying our earlier definition of security
policy as required behaviors for a specific system to distributed applications like Java
that ‘ports’ itself to multiple browsers, and platforms tends to be extremely problematic –
namely networked distributed applications inherent lack specifics in scope and
definition. Therefore, some latitude in assumptions to scope this paper’s context is
taken. Never the less, security models and principles are invaluable in defining and
evaluating security requirements and can immeasurably enhance designer and user
confidence in verifying and validating a system’s security and assurance.

With the necessary security policy and model essentials covered, the rest of this paper
will focus on Java’s ever evolving security model and its assurance.

Java First Generation (JFG) Security Policy and Model (Java 1.0, Java
Development Kit JDK 1.0.x, JDK 1.1.x)

Java is a powerful object oriented programming language similar to C++. Sun
Microsystems designed and implemented Java in 1995 for distributed networked
computing with the goals of hardware portability, operating system (OS) independence
and extensibility for secure web based applications. Embedded into a client user’s web
browser (e.g. Netscape, HotJava or Microsoft Internet Explorer), Java operates near
seamlessly without user interaction, incorporating it’s own environment or Java virtual
machine (JVM) to execute downloaded code called ‘applets’ from remote Internet
servers on the user’s hardware platform. The security implications to the unwitting user
executing remote code of unknown origin and intent, which could surreptitiously contain
a malicious ‘Trojan horse’, are obvious. Java’s proactive but informal design approach
to such challenges exhibited several flaws, but was not the typical “penetrate and patch”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 5

security development paradigm. Even still, Java’s security model can best be described
as evolutionary.

Central to Java First Generation (JFG) security policy and model is the principle
of containment of processes to a Sandbox concept. The Java sandbox entrusts local
code (OS, Java application, and web browser) with full access to vital system
resources, but restricts execution and interaction of suspect bytecode, and remotely
downloaded applets. Essentially, the default Java sandbox includes three components:
bytecode verifier, ClassLoader, and SecurityManager. In JFG, all three work together in
the Java security model to enforce an all or nothing, trusted or untrusted security model.
All three components are critical to the security of the model, and if one is
compromised, like links in a chain, Java’s security is broken. [11]

The original Java sandbox model was conceptually sound, and intuitive to

understand. Client requests to servers for programs (applets or executable content),
downloaded from the Internet are assumed untrusted, while other sensitive Java
applications, local platform code and resident system (operating systems OS)
components are trusted. Java limits security breaches via segregating untrusted
downloaded executable content or ‘bytecode’ into a sandbox segregated from system
and resident Java application resources (objects). Further, untrusted applets are
assigned their own memory name-space, limiting interaction with other programs, data
and system classes. Mixed source (server and host) bytecodes are verified, compiled,
then run in a system or browser’s native Java runtime environment. Attempts to access
objects outside this sandbox by ClassLoader objects is checked by the Java
SecurityManager (see Annexes III, IV, V, VI, and VII). This distinction among objects
and methods restricts access and safeguards essential system resources (e.g.
memory). Although functional, simplistic, and portable, Java’s originally model and
policy were poorly documented and demonstrated fundamental weaknesses of security
design principles addressed later.

JDK 1.1 enhanced fundamental security features with basic protection domains,

access control, authorization and selected method delegation via the security policy
manager [13]. It facilitated digitally signed applets for authentication and integrity.
Digitally signed (X.509) and verified downloaded applets are considered trusted and run
with local code and Java applications (like Java 1.0). Unsigned applets still remain in
the sandbox. Signed applets are bundled with signatures and necessary object files
into a Java Archive (JAR) formatted file for performance enhanced network
transmissions. Lastly, the resident Java SecurityManager enabled savvy programmers
to somewhat tailor security levels restricting access permissions of 21 restricted risky
operations (ANNEX II). JDK 1.1’s black and white security policy, like Java 1.0 views
code as either trusted or not trusted at all. However, digital signature verification of
downloaded applets from remote web or Internet based servers enabled them to be
trusted. The many JFG versions of JDK (1.0.x, 1.1.x, 1.2) generally conform to the
following four layered functional model. In summary, because much of Java security
and safety depends upon language mechanisms, many refer to this model as language-
based security protection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 6

Java Security Model Environment has Four System Layers. (Refer to Annexes III,
IV, V, VI, VII) [From 16]

• Layer 1 – Java Programming Language (ensures semantics/syntax, memory access

protections, strong typing (safety) e.g. no forged pointers, buffer overflow, memory
leakage. Segregates name-spaces (memory) of local and network obtained
resources.)

• Layer 2- Java Virtual Machine (JVM) normally resident on a Client’s Web browser-

(ensures typed memory access, byte-code verifier*, memory garbage
cleansing/reallocation).

• Layer 3- Libraries/Class Loader*(s). Three types with 2 basic functions: Internal,

Class Loader Objects (applet, RMI, Secure) Roll your own classes (access to files,
and network resources- implements network classes/objects, methods/functions,
disallows unauthorized access, maps names to class objects, invokes security for
necessary classes) 1) Instantiates bytecode as classes. 2) Manages namespace [3]

• Layer 4 – Security Manager* /Runtime environment (defines & implements security

policy, centralizes access control). Configurable portion of model, client or platform
independent (discretionary access control). Layer 4 must be specifically SA
configured to invoke security resident of bottom three layers. Layer 4 allows
tailoring of the Java Security Model to specific security policies.

* Essential components of Java’s security kernel, Security Manager as the reference
monitor.

Policy IAW with the above four-layer model is primarily implemented by the abstract
classes ClassLoader and SecurityManager. During runtime, the ClassLoader loads and
labels remote network and system native objects and methods whose accesses are
controlled by the SecurityManager. The SecurityManager controls access of public,
private, and protected classes, methods and variables verifying legitimate ClassLoader
origin. Depending upon the environment’s specifics policy, normally less stringent than
Java’s default policy, a security exception is initiated for an unauthorized object access
(Annexes V, VI, VII) requiring a local configured policy access decision. [16]

Java Development Kit (JDK) JDK ver 1.2 or Java 2.0 TM Platform

The Java 2TM (JDK ver 1.2) platform significantly improves upon the inflexibility of
the original black and white sandbox model (recall in original sandbox model all objects
are either trusted, or not-trusted) with the abstraction of protection domains, access
controller classes and use of digital signature encryption to verify applets (refer to
Annex VII). In Java 2, the sandbox concept of security, once a model fundamental, is
reduced to default. Fundamentally, Java 2 employs a very complex trust model
implemented by an even more complex memory stack inspection process. Java 2
employs various levels of security and different mechanisms including multiple

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 7

restrictive domains (like many of the old sandbox) and digital signatures for
authenticating remote applets. Java’s ClassLoader manages distinct protective domains
or memory namespaces for applets to execute. Conceptually, one JVM could have
several running ClassLoaders that invoke many ‘on-demand’ virtual protective domains
for instances of methods and classes. Protection domain classes eliminate the notion
of ‘trusted local Java application code’, bolstering the overall model’s security.
Principals (entities with authority) are assigned permissions and likewise accountability.
Each domain with specific rights protects or encapsulates resource classes of the same
granted permissions. Applets or applications segregated by permissions execute in
restricted domains or namespace unique to their CodeSource. This CodeSource
consists of its code base (where it comes from-e.g. java.net.URL) and the set of
authorizing certificates verified by public-private key pairs. To reduce risk, classes of
like permissions, but from different code sources are ‘hidden’ in separate namespaces
or domains and theoretically, cannot collaborate for an attack. Digitally signed verified
applets may be fully, partially or not trusted depending upon Security Manager policy
configuration. Domains (e.g. system protection) are furthered defined by
AccessControllers sub-classed by the SecurityManager to establish each environment’s
unique specific security policy. Since local administrators can tailor an environment’s
SecurityManager for a specific access policy, or choose an API default policy, Java
2.0’s security policy can best be described as a form of discretionary access control with
various permissions and levels of trust essentially granted to application and system
protection domains. SecurityManager invoked AccessControllers classes refines Java
2.0 ‘s access control granularity to further mediate access to critical system, and
privileged code. This insures permission contexts between various class instances and
system states are consistent and safe. This complex implementation is done by a
sequential memory stack inspection of principals; associated methods and assigned
domains; discussions essentially beyond this paper’s scope. As before, Java’s
ClassLoaders insure all applets, resident files, applications, crucial system files (in
system domain), and invoked classes are subjected to rigorous type checking,
protection domain authorization and access control verification of the JVM and
SecurityManager. Although a relatively complex security model, JDK 2.0 does provide
a friendly GUI interface – SDK to facilitate security administration for configurable ‘fine
grained’ authentication and authorization based specific security policy.

Java 2’s protection domains and memory stack inspections are applauded as an

improved design measure to mitigate future programming security risks. However,
implementation is complex when considering multi-thread computations operate and
have access through multi-domain (e.g. system, application) transitions. With such
memory transitions and application definable or ‘roll your own’ ClassLoaders, and local
SecurityManagers, it seems crystal clear why Sun Microsystems left the complex
specification for application domains conveniently to programmer’s application
developers. Security analysts argue that application definable ClassLoader and
SecurityManager objects, which perform crucial tasks of byte-code instantiation and
namespace memory management, is a poor model fundamental which excessively
decentralizes control of security and increases security risks. [3] It essentially violates a
key design principle that security reference monitors must be tamperproof. [8, 11]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 8

Java Access Control Model

 Java’s security model is based upon discretionary access control (DAC) with
varying degrees of permissions or trust granted to principles restricted to protection
domains. (Annex VI) DAC essentially means that an object’s owner or creator
completely determines access [and to some degree, security policy] authorizations.
Meaning, “…a certain amount of access control is left to the discretion of the object’s
owner, or anyone else [e.g. Client Administrator] who is authorized to control the
object’s access.” [5, p. 290] The SecurityManager and AccessController subclass are
the fundamental security mechanisms for access control, similar to a security reference
monitor, which can be modeled via an access matrix. In Java 2.0, the SecurityManager,
which is an invoked class itself, mediates various methods or privilege (Annex V)
requests the SecurityManager and AccessController must appropriately authorize.

Figure A: Access Control Model

 Admin SecMgr UserD1 ClassLdr System
ClassD1

App -
ClassD2

UsrFile SysFile

Admin o,r,w,x r,w,x r o,r,w,x
SecMgr o,r,w,x o,r,w,x x o,r,w,x r,x
UserD1 o,r x o,r,w,x x o,x o,r,w,x
ClassLdr x x o,x o,r,w,x w, x w, x x
System
PD1

 o,r,w,x x o,r,w,x

App PD2 o,r,w,x x o,r,w,x w,r,x

For this informal model we define:

 Subjects: {Administrator, SecMgr, User, ClassLoader, ProtDomain1, App ProtDomain2}
 Objects: {Administrator, SecMgr, User, ClassLoader, System Class (of Domainn),
 Application system class domain 2, UsrFile, SysFile }

 Privileges: {o - owner, r - read, w - write, x - execute}

 Assume: 1. All classes mediated (access controlled) by SecurityManager (default)

 2. Class accesses during Java runtime environment w/ SecurityManager
invoked.

The access matrix is intuitive and demonstrates that subjects creating objects,

generally either possess all possible privileges for that object or class, or are restricted
to privileges in accordance with DAC security policy enforced by the SecurityManager
class (Annex V). For example, system UserDomain1 (D1), is an ‘ordinary user’ of basic
access privilege can {r,w,x} (read, write, execute) its own files but not critical system
files. The System Administrator defines the security policy and therefore has full
privileges to the SecurityManager. The ClassLoader must verify and execute files that

Object/Classes (o)

S
U
B
J
E
C
T
S

(S)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 9

are IAW SecurityManager policy accept critical system files protected by the system
protective domain. Likewise, user of protection domain1 has full privileges to invoked
class objects of domain 1, but not of a subsequent classes in domain2. Although the
SecurityManager can read and execute strongest protected system files, only the SA
has full system access privileges. In summary, DAC is the right to execute programs,
and methods on specified objects according to an owner (user) or administrator
configures the SecurityManager policy. For further safety and mediation, only one
SecurityManager is invoked per JVM session.

Intuitively, then, a subject request to access a system critical file by an object outside of
the protected system security domain would be mediated false by the SecurityManager
and ‘throw a security exception’. Admittedly, Java’s flexible DAC policy of varying trust
levels is complex and difficult to specifically model accurately even informally. Perhaps
this is why know one, including Sun has yet embraced the public challenge to formally
prove the security of Java’s specific policy and model.

Java employs many mechanisms at each of its security models four functional
layers. However, the critical question remains – does this ‘protective environment’
clearly articulate a sound and specific model with verifiable mechanisms for high
assurance? Some experts agree, “Without a formal high level defined security model,
the policy of JDK1.0.x boils down to low-level detail checking” [3, pp. 2-13]. Indeed,
without an initial more concrete specific statement what the JFG security policy was, is
and plans to be, given the above layered ever-evolving model, Java’s security will likely
continue to ‘morph’ in the dynamic environ of remote computing and distributed
applications. Perhaps this was the ambiguous model that Sun envisioned from
inception. Even Li Gong, Java’s Security guru, refers to “Java’s evolving sandbox and
security model”. [13, p.2]

General Java Security Model Limitations

Although Java purports a four-layer model, the perceived depth or bastions

(rings) of protection are misleading. Unlike the ‘defense in depth’ security approach of
the MULTICs (MULIT-plexed Information and Computing Service) with concentric
protection rings to be penetrated, in Java an attacker needs only breach one layer or
component, like the byte code verifier, for a significant system security violation. In fact,
it is erroneous to assume that these layers do indeed mutually and functionally support
each other for perceived graduated levels of assurance as in the system ring design of
MULTICs. “…The parts [of the security model] are more like links in chain: If any of the
three (verifier, ClassLoader, SecurityManager) parts breaks, the entire system breaks.”
[3] Or alternately stated, defensive aspects do not overlap for mutual support. For
example, if an invalid bytecode pattern is missed by the verifier, no other level of the
JVM will be able to catch this oversight.” [11, p. 37] In fairness however, Sun’s
admittedly conservative initial goal for Java’s earliest versions, was “to enable browsers
to run untrusted code in an entrusted [trusted] environment.” [13, p.10]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 10

Although JFG is a recognized pioneer for distributed computing and remote
applications execution, both Sun Microsystems (HotJava) and Netscape Navigator
distinct browser application versions exhibited several security failings that were
incrementally found, subsequently rectified and resulted in some 21 security class
check methods (See Annex VII). There are undoubtedly more to be exploited. In fact,
on average, a flaw is exploited every four months in Java. [3] For secure information
systems, standardization, design methods and quality control and assurance is of grave
concern. Java’s SecurityManagers are unique to browser vendors and only as capable
of enforcing sound security as the vendor designs them. As a failsafe mechanism,
browsers start only one SRM per virtual machine installed at any given time. [3, p 2-8]
Disconcertingly, the means of implementing memory stack inspection for protection
domains and digital signatures for identity verification is inconsistent and not
interoperable between three primary browser vendors.

• Language and Bytecode Flaws. “The Java language has neither formal semantics,

nor formal description of its type system. Java lacks a formal description of its type
system, yet the basic security of Java relies on the soundness of its type system.”
“Type verification cannot be proven. Object-oriented type system’s security a
current research topic; it seems unwise for the system’s security to rely on such a
mechanism without a strong theoretical foundation.” [11, p.7, 8] These flaws have
led to several improvements in Java’s security model definition and more robust
implementation. Third party evaluators stipulated “These are all issues that can be
addressed with good design practices and code reviews.” [11, p.9]

• Strength of mechanism. Access control is provided by a browser’s runtime

invocation of the SecurityManager class, which is not adequately protected by Java
language strong typing. Strength of this access mechanism is suspect given above.
Additionally, the SecurityManager was not always invoked, not tamperproof and
cannot be (due to Java poor language semantics) be verified. Sun has introduced
improvements via the AccessControl class in Java 2.0 TM using stack inspection
techniques for protected security domains mediated by an AccessController sub-
class.

• Simplicity of mechanism. Suspect. Dean et al. demonstrated that verified bytecode
could invoke classes not possible in compiled native Java code. Bytecode can
possibly traverse the security model in at least three ways. The additional code
combining the JVM and system Java applications seems over cumbersome and not
‘simple’. Many ask, “Why even have the bytecode” – “and why not transmit
encrypted source code over the network?” Java 2’s protection domains whose
methods stacks may be traversed by multiple threads of various levels of trust and
invocation (browser application, system, other domain namespace) is certainly not
‘simple’.

• Complete Mediation. This principle is violated in Java. Critical runtime environment

initial design flaws in mediating authorizations enabled untrusted applets access to
system native methods. Independence and mediation is a design goal of Java but

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 11

still problematic with foreign code sources executed in systems of multiple security
levels in networked environs given issues of delegation, association, inheritance and
polymorphism.

• Auditing. No default audit trail exists in Java to reconstruct and analyze a

breach. [11 p.9]. When and security violation occurs or a JVM exception is thrown,
precluding a security breach, no record or logging is automatically done.
Consequently, the lack of audit data inhibits detailed post mortem analysis for
forensics and evidence gathering. Developers however, may provide an auditing
security manager. At a minimum, a reliable audit trail must record local file access
reads and writes and network accesses. Sun promises to rectify this. Given Java’s
evolving scale, security APIs enabling pruning events will be a management
necessity. Common threats include masquerade (misuse), information disclosure,
and integrity violations. Rectifying access violations mandate a refined audit system
be resident in Java’s security architecture. Consequently, Java’s model design
suffers from a lack of defense in depth. There are no redundant or backup security
mechanisms. The integrity of critical security components: verifier, ClassLoader and
SecurityManager must remain intact or the entire security model is defeated.

• Verification. Verification of both policy and subsequent Java model mechanisms is

suspect given inadequate formal definition and specification of same. Java’s
runtime system is some 28,000 lines of code long and is continuously growing,
making it difficult to verify. [11] Lack of verification, implies ‘buggy code’ inevitable
leading to vulnerabilities. Finally, given three separate web browser application
implementations, there is no centralized authority ensuring Java security code is bug
free. [3, pp. 2-13-2] Another related, but secondary issue is of Microsoft’s Windows
2000 apparent ‘melding’ of operating system and browser functionality to a similar
‘look and feel’, to further blur verification of the security functions of these distinct
entities.

• Ease of Use. Java seamlessly executes downloaded active content without a user

to worry. Or, maybe not? User interaction is all but eliminated, but the complexity
of Java’s multiple trust model is of concern. Administration is simplified via a JDK
2.0 GUI for defining security policies of finer grained access control and
enforcement. Configuration and management of these various specific ‘finer
grained’ security policies, particularly at the enterprise level, is certainly not ‘easy’

• Tamper Resistance. Many documented attacks attest to Java’s lack of resistance to

tampering. Sun admitted known Java Security flaws are documented on their web-
site and annotated in several references attest to Java’s, various related browser
and OS environs affinity to tampering. Additionally, components of Java’s reference
monitor may be modified for to enforce policies for various applications and
environs. Such modifications provide flexibility in the model, but may inadvertently
introduce flaws and vulnerabilities. However, to be fair, the majority of Java security
shortcomings occurred in the laboratory ‘with only a few manifesting in the wild’.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 12

• Ambiguity. See Language and Bytecode Flaws above). Lacking an initial formal
security policy and model specification, Java’s security model is certainly ambiguous
to some degree. Lack of defined system policy requirements directly violates the
TCSEC Orange Book fundamental Criteria of: “There must be an explicit, and well-
defined security policy enforced by the system. However, Java’s evolutionary ‘beta
test in the market’ approach to ‘secure’ mobile code design has rooted it strongly in
the industry for years to come. The lack of a Java’s formal specification is
worrisome in light of its requirements for and current employment in e-commerce
enabled and highly sensitive applications.

To their credit, Sun improved Java’s assurance by welcoming third party ‘open

design’ evaluations that surfaced these and other security shortcomings. Problems
uncovered by the Blackwatch group and by Princeton University professors, Dean,
Felten and Wallach, did much to educate the community on the scope of the distributed
object security challenge and bolster Sun’s consumer image in their positive attitude
and response to rectify flaws. Many flaws were immediately fixed attesting to Java’s
apparent evolution type development paradigm. However, what’s even more
troublesome then the specific uncovered flaws, are those most assuredly, left to be
discovered? This unfortunately will be the case given the absence of formal analysis,
testing and design rigor in Java’s development methodology felt necessary by the
community to field a secure information system.

Conclusions

Java’s security model is far from formally defined, verified and validated. At best,
its system level discretionary security model is in constant evolution (See Annex VII).
This evolutionary type model, is suspect in traditional terms of assessing security model
assurance. [3] Java 2’s recent conceptual security model goes well beyond the
sandbox employing protection domains digitally signed mobile code and a reference
monitor. Protection domains and access control policies are mediated by the byte-code
verifier, ClassLoader, SecurityManager and AccessController; a decentralized security
kernel of sorts for class instantiation and method object method invocation. Principal
model and policy concerns are issues of decentralized control of security functionality,
lack of defense in depth and poor assurance verification.

‘Trusted’ access control necessary for sensitive e-commerce (electronic

commerce) and publicly networked health and insurance information applications, are
the most challenging and imperative issue for maintaining security in Java. Java is
widely accepted and doing well at the client server level, but experts question how well
it will scale with strong security beyond the enterprise. The fundamental security issue
for Java, although many orders of magnitude tougher as it migrates more fully beyond
the enterprise to fully distributed systems, is what components and operations are
trusted, and, even more importantly, what mechanisms can adequately protect them?

From an assurance perspective, Sun’s inability to formally define or completely

verify Java’s security model is worrisome. As Java technology is deployed to
increasingly more sensitive systems, one must ask the difficult question of greater

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 13

system trust. Despite extensive beta field-testing for attempted ‘kluged verification’, it is
one thing to determine or state that a system ‘should do nothing more’, but is quite
another perspective to be certain that the system does only what was designed to do- -
AND nothing more. It is a well-known software development and design principle, that
software does not actually wear out in the traditional hardware sense, it deteriorates
after subsequent modifications; required departures from the original software
requirements specification. [17, p10, 11]

Few can debate the desirableness of a configurable local security policy whose
functionality continues to evolve. However, without a definitive original Java security
model or policy specification, one must wonder what the specified point of departure is
or was and will continue to be for Java’s evolving and perhaps murkier security model.
In the words of Dean et al. “The absence of a well-defined, formal security policy
prevents the verification of a implementation…. For a higher assurance system.
Without a formal basis, statements about a system’s security cannot be definitive. [11,
p11]. Although written in 1996, this point remains very relevant given the complexity of
distributed applications, and as the challenge for assurance in Java or other mobile
code application increases.

The age-old problematic issue is one of implementing a robust yet verifiable

model and policy without excessive penalties in performance, operational functionality,
security services and cost. Sun’s approach with Java, was to accept marginal risk, by
fielding an operational ‘beta version’ product to attain market share which ultimately was
tested and verified by the consumer, post production and delivery. Without question,
the fielding of Java’s mobile code programming language enhanced distributed
computing security and accelerated downloading of and remote code for local execution
within web applications. Java’s security model development methodology and
continuing security mechanism migration is best described as ‘evolutionary’.
Unfortunately, this evolutionary paradigm does not lend itself to the rigor and resources
for formal security policy specification and model verification necessary for high
assurance. As enabling electronic technologies and infrastructures, like public key
infrastructure (PKI), evolve to quench the dynamic demands of the Internet (e.g. e-
commerce), so to will security functionality requirements and the models necessary to
implement them.

“Java applets with bad intentions – exploit scripts – are the equivalent of every System
Administrator’s nightmare”

 Garfinkel & Spafford, 1996

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 14

ANNEX I. Principles of Security Mechanisms

Lecture Notes on Trusted Information Systems: Principles for Security Mechanisms
copyright (c) 1998 John McDermott, Computer Science Professor, James Madison
University

These seven principles apply to the design and comparison of security mechanisms.
The first seven, slightly reworded here, are due to Saltzer and Schroeder, as part of the
MULTICs project. The final principle is generally accepted. Mechanisms are good to
the extent that they follow these principles. A mechanism that fails to follow one of
these principles may be flawed or impractical.

1. Least privilege - security mechanisms should give system components the least set
of security privileges they need to fulfill their current responsibilities. For example, an
electronic mail server should not be designed to require full administrator access
privileges for every object in a system, but only those privileges needed to access the
incoming mail and place it in the correct mailboxes. This principle is consistently
violated in mass-market software, without good reason. Failure to preserve least
privilege is the basis for many attacks.

2. Simplicity of mechanism - security mechanisms should be simple. Simplicity is
needed for two reasons: 1) to make it possible to implement the mechanism correctly,
that is with no flaws; and 2) to make it possible to independently verify that the
mechanism works as claimed. Simplicity of both kinds is required: 1) the necessary
design patterns, object classes, data structures, or algorithms must not be subtle or
obscure, and 2) the sheer number of components, classes, lines of code, etc. should be
small. This latter aspect is necessary to avoid introduction of flaws on a statistical
basis, i.e. if our best software engineering practice results in one flaw per 10,000 lines
of source code, then a 20,000 line security mechanism can be expected to have two
flaws in it, even after we have done all of the planned engineering.

3. Complete mediation - it should not be possible to bypass a security mechanism and
get to a resource that the mechanism is supposed to protect. In the client-server sense,
a malicious client must not be able to request an unauthorized service via an alternate
request, or be able to access the resource while the security mechanism is not
activated. This principle is also frequently violated in mass-market software, because
the implementers are not familiar with it.

4. Open design - the effectiveness of the mechanism should not depend on the
ignorance of the attackers. The mechanism should be effective against an attacker who
has access to all user documentation, design documents, and source code. This is
similar to the principle used for cryptographic systems. Failure to follow this principle is
often referred to as "security through obscurity."

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 15

5. Least common mechanism - shared instances of security mechanisms should be
minimized. For example, a single access control list should not be used to control
access to two different files. Each file should have its own ACL.

6. Ease of use - it must not be substantially more difficult for a user to apply a security
mechanism correctly than it is to leave resources unprotected. This does not mean that
the user should spend no time considering security, but that security should not
consume more than a small percentage of the users time and computing resources. In
systems with very high levels of security, this percentage should be no more than 10, in
most systems the percentage should be less than 5. If this principle is not followed, then
users will turn the security off, or not use the system.

7. Tamper resistance - security mechanisms should resist attempts to damage,
deactivate, or delete them.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 16

ANNEX II. Essential Security Services of Information Systems (Summers, Ford,
Amoroso) [1,4,7]

Authentication – Confirmation of user, principle or entity identity or source of origin.
Reasonable confidence that all parties are ‘authentic’ (e.g. connected servers are whom
they purport to be.) (Ford p.13.)

Confidentiality – ensures reasonable data non-disclosure to unauthorized persons.
(privacy or secrecy)

Availability, Authorization or Legitimate use – ensures legitimate users or principles
are not unduly denied access to and are limited to permitted uses of information and
resources.

Integrity- ensures data consistency or accuracy; inhibits unauthorized creation,
alteration, or destruction of data. Instills user confidence to prevent in data accuracy.

Auditing – A trusted means to record communications transactions to discern tact of
malicious acts, and enable recovery and from breaches and remedy recurrence of
same. “Audit information must be selectively kept and protected so that actions
affecting security can be traced to the responsible party.” (TSEC Orange Book)

Non-repudiation – as applied to messages. Ensures the inability of a sender to deny
having sent a message and the inability of a recipient from having received it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 17

ANNEX IIIa. ‘Untrusted’ Methods and Checks Mediated by Java’s (JFG) Security
Manager Class

The below assumed untrusted methods may be mediated by an appropriately
configured Java Security Policy/Security Manager for versions up to an including Java
(JFG) ver 1.0.2.

Method Method Check Checks program authorized to:

CreateClassLoader() check CreateClassLoader() Create a class loader
CreateSecurityManager check CreateSecurityMgr() Create Security Manager
Access() check Acce ss() Modify a thread or thread group
Exit() checkExit() Exit the virtual machine
Execute() checkExecute() Execute specified system command
Link() checkLink() Link to specified dynamic library
Read() checkRead() Read the specified fi le
Write() checkWrite() Write the specified file
Delete() checkDelete() Delete the specified file
Rename() check Rename() Rename specified fi le
Connect() checkConnect() Connect specified host
Listen() checkLi sten() Listen to a specified port
Accept() checkAccept() Accept incoming network connection
LoadLibrary() checkLoadLibrary() Load dynamic libraries on client system
ListDirectory() checkLi stDirectory() List contents of a directory
PropertiesAcce ss() checkPropertyAcce ss() Access specified property
PropertyAcce ss() checkPropertiesAcce ss() Access all system s properties
DefineProperty() checkDefineProperty() Define specified system property(s)
TopLevelWindow() checkTopLevelWindow() Create a top level window (untrusted banner)
PackageAcce ss() checkPackageAcce ss() Access specified package
DefinePackage() checkPackageDefinition() Define a class in the specified package.

ANNEX IIIb. Permissions for Java 2’s AccessController Class

AllPermission - The java.security.AllPermission is a permission that implies all other
permissions.
AWTPermission - A java.aw t.AWTPermission is for AWT permissions.
FilePermission - A java.io.FilePermission represents access to a f ile or directory.
NetPermission - A java.net.NetPermission is for various netw ork permissions.
PropertyPermission - A java.util.PropertyPermission is for property permissions.
ReflectPermission - A java.lang.reflect.ReflectPermission is for reflective operations. A is a
named permission and has no actions.
RuntimePermission - A java.lang.RuntimePermission contains a name (also referred to as a
"target name") but no actions list.
SecurityPermission - A SecurityPermission contains a name (also referred to as a "target
name") but no actions list;
SerializablePermission - A java.io.SerializablePermission is for serializable permissions.
SocketPermission - A java.net.SocketPermission represents access to a netw ork via sockets. A
SocketPermission cons ists of a host specif ication and a set of "actions" specifying w ays to
connect to that host.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 18

ANNEX IV. Essential Security Services and Mechanisms of Java (2.0)

The following table summarizes essential distributed computing security service
challenges as currently addressed by Java 2.0.

Security Service Java API/APL
Authentication Digital Signatures, Certificates (X.509 v3), MD5

Authorization Security Manager

Java Protected Domains

Confidentiality SKIP, SSL Technologies
Encryption

Containment Sandbox
Class Loader
Java Protected Domains
Byte Code Verifier

Availability Fielded System, Customer Proven

Integrity MD5, SHA
Auditing Limited

Security Manager
Enhancements Pending

Trusted
Components
(Key Exchange)

Diffie-Hellman

Protocols IIOP, SSL
Encryption (coms) Triple DES

Inherent in Protocols not connection persistent (JAR)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 19

ANNEX V. Java 2.0 Security Mechanism – Protection Domains
Permissions are granted to protection domains, not directly to object or classes.

The Java runtime environment maintains mapping from code to protection domains to
permissions.

d.class

c.class

b.class

a.class

Protection
Domain A

Protection
Domain B

Permissions

Permissions

Domains Permissions Class

Running Classes Policy

Grouping classe s together to map to policy.
Classe s map into what Sun calls protection domains which in
turn map to permissions. Policy is defined in terms of
protection domains. [3, p3-9]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 20

ANNEX VI. Java Virtual Machine (a.) and Java Code Process Flow Components (b.

 Figure a. The Java Virtual Machine - JVM

Figure b. Java (JFG) Code Process Flow Components

Java Applications

Java Virtual Machine

Solaris Windows MacOS JavaOS

Sparc/
Tntel

Tntel/
Others

Thin
Clients

Power
PC

Java Code

Java Compiler

Class Files (bytecode)

xmsn over network

Four Step Verifier

Class Loader

Java Interpreter Security Manager

Executed Program

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 21

ANNEX VII The Evolution of the Java Security Model
Graphics and narrative:
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-spec.doc1.html#18314

The Original Sandbox Model

The original security model provided by the Java platform is known as the sandbox
model, which existed in order to provide a very restricted environment in which to
run untrusted code obtained from the open network. The essence of the sandbox
model is that local code is trusted to have full access to vital system resources (such
as the file system) while downloaded remote code (an applet) is not trusted and can
access only the limited resources provided inside the sandbox. This sandbox model
is illustrated in the figure below. [Java Arch, p.26]
Java Development Kit 1.1

JDK 1.1 introduced the concept of a "signed applet", as illustrated by the figure below.
In that release, a correctly digitally signed applet is treated as if it is trusted local code if
the signature key is recognized as trusted by the end system that receives the applet.
Signed applets, together with their signatures, are delivered in the JAR (Java Archive)
format. In JDK 1.1, unsigned applets still run in the sandbox. [26]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 22

ANNEX VII The Evolution of the Java Security Model (Continued)

Evolving the Sandbox Model , JDK 1.2 or Java 2

The new security architecture in JDK 1.2, illustrated in the figure below, is
introduced primarily for the following purposes. Providing Fine-grained access
control.
This capability existed in the JDK from the beginning, but to use it, the application
writer had to do substantial programming (e.g., by subclassing and customizing
the SecurityManager and ClassLoader classes). The HotJava browser 1.0 is
such an application, as it allows the browser user to choose from a small number
of different security levels. [26]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 23

ANNEX VIII International Standards Organization (ISO) 9001 Standard for Quality
Assurance in Software Design and Development activities.

 20 ISO 9001 Quality Assurance Requirements

1. Management responsibility
2. Quality system
3. Contract review
4. Design review
5. Document and data control
6. Purchasing
7. Control of customer supplied product
8. Product identification and traceability
9. Process control
10. Inspection and Testing
11. Control of inspection, measuring and test equipment
12. Inspection and test status
13. Control of non-conforming product
14. Corrective and preventive action
15. Handling, storage, packaging, preservation, and delivery
16. Control of quality records
17. Internal audit control
18. Training
19. Servicing
20. Statistical techniques

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 24

Bibliography

Published Works:

1. Amoroso, Edward, Fundamentals of Computer Security Technology, Prentice Hall,
New Jersey, 1993.

2. Baker, David and Wutka, Mark, Java Security in Depth, Chapter 36 of Special
Edition Using Java 1.2, Weber, Joseph, editor, QUE Publishing, 1996.

3. Felten, Ed and McGraw, Gary, Securing Java, Getting Down to Business with Mobile
Code, John Wiley and Sons, Inc, 1999.

4. Ford, Warwick, Computer Security: Principles, Standard Protocols and Techniques,
Prentice Hall, New Jersey, 1994.

5. Guttman, Barbera, Roback, Edward A., NIST SP 800-12, An Introduction to
Computer Security: The NIST Handbook, National Institute Standards and Technology
(NIST), 1995.

6. Pfleeger, Charles P., Security in Computing, 2nd Edition, Prentice Hall, New Jersey,
1997.

7. Summers, Rita C., Computer Security: Threats and Safeguards, McGraw Hill, New
York, 1997.

8. Department of Defense (DoD) Standard 5200.28 STD, Trusted Computing System
Evaluation Criteria (Orange Book), 1985.

9. McDermott, John C., Principle of Mechanisms Lecture Notes, CS621 Trusted
Systems, James Madison University, 1999.

Research Articles, White Papers and Pamphlets:

10. Curtis, David, Java, RMI, and CORBA.
http:///www-rss.int-ev ry.fr/~defude/CORBA/wpjav a.html

11. Dean, Felten, Edward W., Wallach, Dan S., Java Security: From HotJava to
Netscape and Beyond, Dept of Computer Science, Princeton University, IEEE, May
1996. From: http://www.cs.princeton.edu/sip/pub/secure96.php3

12. Erdos, Marlena, Hartman, Bret, Mueller, Marianne, Security Reference Model for
JDK 1.0.2 From: http://www.java.sun.com/security

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz
GSEC Practical March 2001

 25

Bibliography (continued)

13. Gong, Li, Java Security: Present and Near Future, an IEEE Micro article, May/June
1997

14. Gong, Li, Java Security Architecture specificatio , Sun Microsystems, Oct 1998.
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-spec.doc1.html#18314

15. McLean, John, The Specification and Modeling of Computer Security, IEEE,
January 1990.

16. Sterbenz, Andreas, An Evaluation of the Java Security Model, Graz University of
Australia, IEEE, March 1996.

17. Pressman, Roger .S., Software Engineering: A Practioner’s Approach, 4th Edition,
McGraw-Hill, United States, 1997.

18. Common Criteria fro Information Technology Security Evaluation, Version 2.0, May
1998.

SANS Related GSEC Practicals from http://www.sans.org/y2k/gsec.htm
19. Wells, Marshall, signing a Secure Server Model, February 7, 2001.

http://www.sans.org/infosecFAQ/securitybasics/model.htm

20. McQueen, Miles, Java Virtual Mahine Security and the Brown Orifice Attack,

August 14, 2000.

21. Rothermel, David, The Zkey Exloit: The Capability of Malicious JavaScript Code,

August 28, 2000.

22. Long, Jonnie, Make All Your Internet Traffic Play in the Sandbox, November 22,

2000.

