
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 

Java’s Evolving 

Security Model : Beyond the Sandbox for  

Better Assurance or a Murkier Brew? 

 

 

 

SANS  

Global Incident and Analysis Center 

GIAC Security Essential Certification Practical 
 

 

 

Matthew J. Herholtz 

March 2001 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz 
GSEC Practical                                                        March 2001 

 1

Generally, Internet compressed software development schedules have 
outstripped the need for rigorous security design and analysis.  This is a common trend 
in consumer software, and one that is destined to flame-out under the rigorous security 
demands of e-commerce. 
          Felten, McGraw 
 
Overview 
 

Sun Microsystem’s Java is a portable proprietary single programming language 
that manages distributed network security challenges of mobile code or executable 
content downloaded from the web.  Java’s undisputed popularity and universal 
acceptance, without formal assurance verification of the languages security model, has 
drawn extensive and justifiable scrutiny from security experts.  Many Java security 
vulnerabilities have been discovered, well-publicized and subsequent fixes deployed.  
Numerous recommended articles, to include SANS practicals, discuss these and other 
complimentary aspects of Java security.  This paper will not discuss specific Java 
exploits in detail.  Instead, it introduces and applies security policy and security model 
principles to Java’s evolving security model to better understand it, and to discern 
confidence in Java’s policy strategies for the future of secure distributed computing. 

 
Security Policy and Security Models 
 

 First and foremost - - a security policy IS NOT the same as a system’s security 
model. Confusion between security policies and models sometimes results as both have 
multiple meanings.  Although sometimes subtle, the distinction between policy and 
models is crucial for critical information security systems like electronic commerce 
systems that require a high degree of trust and assurance of quality design and 
operational reliability.   

 
Generally, a security policy is expressed in words and emulates real world 

security challenges as a set of laws, rules, roles and procedures defining how an 
organization allocates resources to protect assets and achieve business security 
objectives.  Security models on the other hand, tend to be either mathematical (formal 
methods), graphical (latticed information flows) or tabular (access matrix) for ease of 
system policy conceptual visualization, understanding, implementation and verification. 
[7, 103] 

 
Security policy normally has three fundamental types, each with a different 

purpose: organizational, issue and system specific.   An organization’s security policy is 
management’s security strategy for protecting assets and attaining an enterprise’s 
business security objectives.  It outlines specific employee roles, responsibilities, rules 
and procedures for compliance.  An issue or technology specific policy outlines similar 
responsibilities, details and procedures dealing with a specific technology, system or 
behavior challenge like e-mail, physical security, software, Internet, or LAN.  Lastly, a 
system policy must address internal computer system or application’s technical 
mechanisms (e.g. automated system or application security policy) that controls the 
security access policy for subjects and objects within a specific computer system.  
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Security policies vary from organization, business, environments, technical application 
and network systems. 

 
A renowned expert and author in the security field, Edward Amoroso, defines the 

“security policy of a computer system [system specific] as the conditions [or set of rules] 
which subject accesses to objects are mediated by the system reference monitor 
functionality … with appropriate mechanisms [for policy enforcement].” [1, p.91]  
Successful mechanisms, normally an underlying part of the computer environment, 
enable effective implementation and enforcement of security policy requirements. [1, p. 
92]    Further, the Department of Defense (DoD) ‘Orange Book’ Trusted Computer 
Systems Evaluation Criteria (TCSEC) 5200.28 defines [system specific] security policy 
as: “Given identified subjects and objects, there must be a set of rules that are used by 
the system to determine whether a given subject can be permitted to gain access to a 
specific object.” [8, p.112]    

 
Computer security models restate the policy in more formal or mathematical 

terms to: (1) provide framework for understanding concepts; (2) provide an 
unambiguous, formal representation of a general security policy; (3) express the policy 
enforced by a specific computing system.  [7 p. 110]  

  
Security models may be formal or informal.  Formal models are based upon logic 

and formal mathematics, information or complexity theory.  As conceived, a computer 
system’s foundation of mathematics readily lends itself to mathematical accuracy by a 
logical theorem or mathematical proof.   A common formal model, Bell LaPadula (BLP), 
features latticed information flow, strict labeling and mandatory access control (MAC) 
emphasizing confidentiality (common in military models) for secrecy.  In commercial and 
medical systems, Biba and Clark - Wilson integrity oriented models are common and 
focus on integrity levels of information flow for transaction accuracy and separation of 
duty.  [7, pp.112-145]     Informal models can be precise narratives of system operations 
supplemented with concept facilitating diagrams, graphs or tables like an access matrix.   
Discretionary access control (DAC) common in academic research (UNIX, V/MLS 
informal documentation) is typically modeled by a simple access control matrix (Figure 
A) Mobile code technologies are relatively new, and evolving.  Java and Active X trust 
models implement restrictive sandboxes, protection domains and/or digital signatures.  
Whether formal or informal, models are a means to abstract essentials from the typically 
ambiguous policy narrative to precisely represent and better understand the policy and 
evaluate assurance of the system’s security. 

 
Author Amoroso acutely summarizes the important distinction between system 

specific security policy and models.  Computer security policy is a set of requirements 
for a specific system; a security model is a restricted representation of a class or types 
of systems that abstracts unneeded details to highlight a specific property or set of 
behaviors.  Models then, ideally, and in theory, are useful to design and better 
understand a specific system policy and provide a general framework for understanding 
a type of system’s implementation of [security] mechanisms employed to enforce a 
defined policy.  [1, p.92]  In short, real life verification of a model’s mechanisms to 
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accurately mediate an automated security policy ultimately determines the success of 
an information system’s ‘state of security’ and validates its design. 
 
Assurance, Verification and Validation 
 

Computer security assurance is the degree of confidence one has that the 
security measures, mechanisms both technical and operational work as intended to 
protect the system and information processes. [4, p. 89]   Additionally, assurance of a 
security policy or model establishes unambiguous grounds for confidence that the 
model meets or accurately portrays system security objectives. [18]   Assurance, is 
confidence in proper or correct system design and the capability of a technology to 
execute as specified.   Primary assurance methods are testing, verification, and 
validation. 
  

Verification includes documentation of actual penetrations, or attempts to 
penetrate an on-line system in support or in contradiction of assumptions developed 
during system review analysis.   Verification determines if system implementation is 
consistent with system requirements specification.” [7, p. 238]  It implies correctness 
and confidence through formal testing and verification activities. 
 
 Validation includes verification, and also includes ‘rigorous’ methods for 
convincing people of the correctness of a program or a security model.  Validation is “… 
concerned with predicting how well a system and its security policy will meet real world 
needs and expectations, and is partly always subjective”[7, p. 238]    Typical validation 
techniques include white and black-box testing, formal technical reviews, design and 
code reviews, penetration tests, quality and disciplined mature coding and engineering 
development processes as outlined in ISO 9001.  (See Annex VIII) 
 
 The most popular, economical and typically only means for security system 
model verification and validation includes module and system testing.  However, it is 
crucial to understand that this only demonstrates the existence of suspected flaws, not 
the absence of flaws.  Testing is based upon observable effects, but does not ensure 
any degree of completeness.  Further, testing is time and resource intensive, complex 
and subsequently conveniently curtailed in commercial arenas. [6, pp. 308, 312]   Post 
fielding operational system ‘penetration testing’ sometimes called ‘ethical hacking’ best 
done by an objective third party, advocates enhancing system assurance and 
discerning a relative pulse setting of system security by ‘breaking into your web site’.   
More rigorous security assurance methods of design and evaluations include:  TCSEC 
Orange book (Trusted Computing System Evaluation Criteria – U.S.), ITSEC (European 
Information Technology Security Evaluation Criteria) and Common Criteria respectively. 
 

Research, development, design and deployment of various successful and other 
less so successful security systems have proven that articulating a system’s security 
policy(s) and model(s) dramatically enhances a system’s development and promotes 
mechanism verification for security policy enforcement.  An accurate model is 
indispensable in providing system proof of principle without likely expensive iterations of 
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system prototyping, and provides the benchmark for modifications.  This is very 
pertinent in the case of Java’s ever-evolving security model.  
 

Although policies and models vary with environment, the scope and sensitivity of 
information being protected, authors Ford, Summers and Amoroso generally define 
essential threat deterring networked computer system security services to include 
authentication, confidentiality, authorization, availability, and integrity. [1,5,7] (Annex II)  
Assurance  that  these essential services can be reasonably delivered is suspect unless 
the security model’s mechanisms implementing the system’s underlying policy can be 
verified.  In lieu of formal methods for assurance verification, an evaluation based upon 
sound, time-tested subjective informal security principles may be employed.  These 
principles include least privilege, simplicity of mechanism, complete mediation, open 
design, least common mechanism, ease of use, and tamper resistance. [11, pp.1-2]   
(See Annex I) 

 
Network or distributed applications security can be viewed as “an instantiation of 

a computer security problem for a specific type of application of threat vulnerability, 
attack assessment, model, policy definition and safeguard and countermeasure 
implementation”. [1, p.318]   This, unfortunately, seems overly simplistic given computer 
network complexity, their innumerable possible configurations, scope, and applications 
in equally innumerable possible environs.  Applying our earlier definition of security 
policy as required behaviors for a specific system to distributed applications like Java 
that ‘ports’ itself to multiple browsers, and platforms tends to be extremely problematic – 
namely networked distributed applications inherent lack specifics in scope and 
definition.  Therefore, some latitude in assumptions to scope this paper’s context is 
taken.   Never the less, security models and principles are invaluable in defining and 
evaluating security requirements and can immeasurably enhance designer and user 
confidence in verifying and validating a system’s security and assurance. 
 
With the necessary security policy and model essentials covered, the rest of this paper 
will focus on Java’s ever evolving security model and its assurance. 
 
Java First Generation (JFG) Security Policy and Model (Java 1.0, Java 
Development Kit JDK 1.0.x, JDK 1.1.x) 

Java is a powerful object oriented programming language similar to C++.   Sun 
Microsystems designed and implemented Java in 1995 for distributed networked 
computing with the goals of hardware portability, operating system (OS) independence 
and extensibility for secure web based applications.  Embedded into a client user’s web 
browser (e.g. Netscape, HotJava or Microsoft Internet Explorer), Java operates near 
seamlessly without user interaction, incorporating it’s own environment or Java virtual 
machine (JVM) to execute downloaded code called ‘applets’ from remote Internet 
servers on the user’s hardware platform.  The security implications to the unwitting user 
executing remote code of unknown origin and intent, which could surreptitiously contain 
a malicious ‘Trojan horse’, are obvious.  Java’s proactive but informal design approach 
to such challenges exhibited several flaws, but was not the typical “penetrate and patch” 
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security development paradigm.  Even still, Java’s security model can best be described 
as evolutionary. 
 

Central to Java First Generation (JFG) security policy and model is the principle 
of containment of processes to a Sandbox concept.  The Java sandbox entrusts local 
code (OS, Java application, and web browser) with full access to vital system 
resources, but restricts execution and interaction of suspect bytecode, and remotely 
downloaded applets.  Essentially, the default Java sandbox includes three components:  
bytecode verifier, ClassLoader, and SecurityManager.  In JFG, all three work together in 
the Java security model to enforce an all or nothing, trusted or untrusted security model.  
All three components are critical to the security of the model, and if one is 
compromised, like links in a chain, Java’s security is broken. [11] 

 
The original Java sandbox model was conceptually sound, and intuitive to 

understand.  Client requests to servers for programs (applets or executable content), 
downloaded from the Internet are assumed untrusted, while other sensitive Java 
applications, local platform code and resident system (operating systems OS) 
components are trusted.  Java limits security breaches via segregating untrusted 
downloaded executable content or ‘bytecode’ into a sandbox segregated from system 
and resident Java application resources (objects).  Further, untrusted applets are 
assigned their own memory name-space, limiting interaction with other programs, data 
and system classes.  Mixed source (server and host) bytecodes are verified, compiled, 
then run in a system or browser’s native Java runtime environment.  Attempts to access 
objects outside this sandbox by ClassLoader objects is checked by the Java 
SecurityManager (see Annexes III, IV, V, VI, and VII).  This distinction among objects 
and methods restricts access and safeguards essential system resources (e.g. 
memory).   Although functional, simplistic, and portable, Java’s originally model and 
policy were poorly documented and demonstrated fundamental weaknesses of security 
design principles addressed later. 

 
JDK 1.1 enhanced fundamental security features with basic protection domains, 

access control, authorization and selected method delegation via the security policy 
manager [13].  It facilitated digitally signed applets for authentication and integrity.  
Digitally signed (X.509) and verified downloaded applets are considered trusted and run 
with local code and Java applications (like Java 1.0).  Unsigned applets still remain in 
the sandbox.  Signed applets are bundled with signatures and necessary object files 
into a Java Archive (JAR) formatted file for performance enhanced network 
transmissions.  Lastly, the resident Java SecurityManager enabled savvy programmers 
to somewhat tailor security levels restricting access permissions of 21 restricted risky 
operations  (ANNEX II).  JDK 1.1’s black and white security policy, like Java 1.0 views 
code as either trusted or not trusted at all.    However, digital signature verification of 
downloaded applets from remote web or Internet based servers enabled them to be 
trusted.   The many JFG versions of JDK (1.0.x, 1.1.x, 1.2) generally conform to the 
following four layered functional model.  In summary, because much of Java security 
and safety depends upon language mechanisms, many refer to this model as language-
based security protection. 
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 6

Java Security Model Environment has Four System Layers.  (Refer to Annexes III, 
IV, V, VI, VII)  [From 16] 
  
• Layer 1 – Java Programming Language (ensures semantics/syntax, memory access 

protections, strong typing (safety) e.g. no forged pointers, buffer overflow, memory 
leakage.  Segregates name-spaces (memory) of local and network obtained 
resources.) 

 
• Layer 2- Java Virtual Machine (JVM) normally resident on a Client’s Web browser- 

(ensures typed memory access, byte-code verifier*, memory garbage 
cleansing/reallocation). 

 
• Layer 3- Libraries/Class Loader*(s).  Three types with 2 basic functions: Internal, 

Class Loader Objects (applet, RMI, Secure) Roll your own classes (access to files, 
and network resources- implements network classes/objects, methods/functions, 
disallows unauthorized access, maps names to class objects, invokes security for 
necessary classes) 1) Instantiates bytecode as classes. 2) Manages namespace  [3] 

 
• Layer 4 – Security Manager* /Runtime environment (defines & implements security 

policy, centralizes access control).  Configurable portion of model, client or platform 
independent (discretionary access control).  Layer 4 must be specifically SA 
configured to invoke security resident of bottom three layers.   Layer 4 allows 
tailoring of the Java Security Model to specific security policies. 

 
* Essential components of Java’s security kernel, Security Manager as the reference 
monitor. 

 
Policy IAW with the above four-layer model is primarily implemented by the abstract 
classes ClassLoader and SecurityManager.  During runtime, the ClassLoader loads and 
labels remote network and system native objects and methods whose accesses are 
controlled by the SecurityManager.  The SecurityManager controls access of public, 
private, and protected classes, methods and variables verifying legitimate ClassLoader 
origin.  Depending upon the environment’s specifics policy, normally less stringent than 
Java’s default policy, a security exception is initiated for an unauthorized object access 
(Annexes V, VI, VII) requiring a local configured policy access decision.  [16] 
 
Java Development Kit (JDK) JDK ver 1.2 or Java 2.0 TM Platform 
 

The Java 2TM   (JDK ver 1.2) platform significantly improves upon the inflexibility of 
the original black and white sandbox model  (recall in original sandbox model all objects 
are either trusted, or not-trusted) with the abstraction of protection domains, access 
controller classes and use of digital signature encryption to verify applets (refer to 
Annex VII).  In Java 2, the sandbox concept of security, once a model fundamental, is 
reduced to default.  Fundamentally, Java 2 employs a very complex trust model 
implemented by an even more complex memory stack inspection process.   Java 2 
employs various levels of security and different mechanisms including multiple 
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restrictive domains (like many of the old sandbox) and digital signatures for 
authenticating remote applets. Java’s ClassLoader manages distinct protective domains 
or memory namespaces for applets to execute. Conceptually, one JVM could have 
several running ClassLoaders that invoke many ‘on-demand’ virtual protective domains 
for instances of methods and classes.  Protection domain classes eliminate the notion 
of ‘trusted local Java application code’, bolstering the overall model’s security.  
Principals (entities with authority) are assigned permissions and likewise accountability.  
Each domain with specific rights protects or encapsulates resource classes of the same 
granted permissions.  Applets or applications segregated by permissions execute in 
restricted domains or namespace unique to their CodeSource.  This CodeSource 
consists of its code base (where it comes from-e.g. java.net.URL) and the set of 
authorizing certificates verified by public-private key pairs.  To reduce risk, classes of 
like permissions, but from different code sources are ‘hidden’ in separate namespaces 
or domains and theoretically, cannot collaborate for an attack.   Digitally signed verified 
applets may be fully, partially or not trusted depending upon Security Manager policy 
configuration.  Domains (e.g. system protection) are furthered defined by 
AccessControllers sub-classed by the SecurityManager to establish each environment’s 
unique specific security policy.  Since local administrators can tailor an environment’s 
SecurityManager for a specific access policy, or choose an API default policy, Java 
2.0’s security policy can best be described as a form of discretionary access control with 
various permissions and levels of trust essentially granted to application and system 
protection domains. SecurityManager invoked AccessControllers classes refines Java 
2.0 ‘s access control granularity to further mediate access to critical system, and 
privileged code.   This insures permission contexts between various class instances and 
system states are consistent and safe.  This complex implementation is done by a 
sequential memory stack inspection of principals; associated methods and assigned 
domains; discussions essentially beyond this paper’s scope.  As before, Java’s 
ClassLoaders insure all applets, resident files, applications, crucial system files (in 
system domain), and invoked classes are subjected to rigorous type checking, 
protection domain authorization and access control verification of the JVM and 
SecurityManager.   Although a relatively complex security model, JDK 2.0 does provide 
a friendly GUI interface – SDK to facilitate security administration for configurable ‘fine 
grained’ authentication and authorization based specific security policy. 

 
Java 2’s protection domains and memory stack inspections are applauded as an 

improved design measure to mitigate future programming security risks.  However, 
implementation is complex when considering multi-thread computations operate and 
have access through multi-domain (e.g. system, application) transitions.  With such 
memory transitions and application definable or ‘roll your own’ ClassLoaders, and local 
SecurityManagers, it seems crystal clear why Sun Microsystems left the complex 
specification for application domains conveniently to programmer’s application 
developers.  Security analysts argue that application definable ClassLoader and 
SecurityManager objects, which perform crucial tasks of byte-code instantiation and 
namespace memory management, is a poor model fundamental which excessively 
decentralizes control of security and increases security risks. [3]  It essentially violates a 
key design principle that security reference monitors must be tamperproof.  [8, 11] 
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Java Access Control Model 
 
 Java’s security model is based upon discretionary access control (DAC) with 
varying degrees of permissions or trust granted to principles restricted to protection 
domains. (Annex VI)  DAC essentially means that an object’s owner or creator 
completely determines access [and to some degree, security policy] authorizations.  
Meaning, “…a certain amount of access control is left to the discretion of the object’s 
owner, or anyone else [e.g. Client Administrator] who is authorized to control the 
object’s access.” [5, p. 290]  The SecurityManager and AccessController subclass are 
the fundamental security mechanisms for access control, similar to a security reference 
monitor, which can be modeled via an access matrix.  In Java 2.0, the SecurityManager, 
which is an invoked class itself, mediates various methods or privilege (Annex V) 
requests the SecurityManager and AccessController must appropriately authorize. 

    
Figure A: Access Control Model 

 
 
 

 Admin SecMgr UserD1 ClassLdr System 
ClassD1  

App - 
ClassD2 

UsrFile SysFile 

Admin o,r,w,x r,w,x     r o,r,w,x 
SecMgr o,r,w,x o,r,w,x  x  o,r,w,x  r,x 
UserD1 o,r x o,r,w,x x o,x  o,r,w,x  
ClassLdr x x o,x o,r,w,x w, x w, x x  
System 
PD1 

  o,r,w,x x o,r,w,x    

App PD2   o,r,w,x x  o,r,w,x w,r,x  
 
For this informal model we define: 

 Subjects: {Administrator, SecMgr, User, ClassLoader, ProtDomain1, App ProtDomain2} 
 Objects:  {Administrator, SecMgr, User, ClassLoader, System Class (of Domainn), 
 Application system class domain 2, UsrFile, SysFile } 
 
  Privileges: {o - owner, r - read, w - write, x - execute} 
 
  Assume: 1.  All classes mediated (access controlled) by SecurityManager (default)  

        
       2.  Class accesses during Java runtime environment w/ SecurityManager 
invoked. 

 
The access matrix is intuitive and demonstrates that subjects creating objects, 

generally either possess all possible privileges for that object or class, or are restricted 
to privileges in accordance with DAC security policy enforced by the SecurityManager 
class (Annex V).  For example, system UserDomain1 (D1), is an ‘ordinary user’ of basic 
access privilege can {r,w,x}  (read, write, execute) its own files but not critical system 
files.  The System Administrator defines the security policy and therefore has full 
privileges to the SecurityManager.  The ClassLoader must verify and execute files that 

Object/Classes (o) 

S 
U 
B 
J 
E 
C 
T 
S 
 
(S) 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz 
GSEC Practical                                                        March 2001 

 9

are IAW SecurityManager policy accept critical system files protected by the system 
protective domain.  Likewise, user of protection domain1 has full privileges to invoked 
class objects of domain 1, but not of a subsequent classes in domain2.  Although the 
SecurityManager can read and execute strongest protected system files, only the SA 
has full system access privileges.  In summary, DAC is the right to execute programs, 
and methods on specified objects according to an owner (user) or administrator 
configures the SecurityManager policy.  For further safety and mediation, only one 
SecurityManager is invoked per JVM session. 
 
Intuitively, then, a subject request to access a system critical file by an object outside of 
the protected system security domain would be mediated false by the SecurityManager 
and ‘throw a security exception’.  Admittedly, Java’s flexible DAC policy of varying trust 
levels is complex and difficult to specifically model accurately even informally.   Perhaps 
this is why know one, including Sun has yet embraced the public challenge to formally 
prove the security of Java’s specific policy and model. 
 

Java employs many mechanisms at each of its security models four functional 
layers.  However, the critical question remains – does this ‘protective environment’ 
clearly articulate a sound and specific model with verifiable mechanisms for high 
assurance?   Some experts agree, “Without a formal high level defined security model, 
the policy of JDK1.0.x boils down to low-level detail checking” [3, pp. 2-13].   Indeed, 
without an initial more concrete specific statement what the JFG security policy was, is 
and plans to be, given the above layered ever-evolving model, Java’s security will likely 
continue to ‘morph’ in the dynamic environ of remote computing and distributed 
applications.  Perhaps this was the ambiguous model that Sun envisioned from 
inception.  Even Li Gong, Java’s Security guru, refers to “Java’s evolving sandbox and 
security model”.  [13, p.2] 

 
General Java Security Model Limitations   

 
Although Java purports a four-layer model, the perceived depth or bastions 

(rings) of protection are misleading.  Unlike the ‘defense in depth’ security approach of 
the MULTICs (MULIT-plexed Information and Computing Service) with concentric 
protection rings to be penetrated, in Java an attacker needs only breach one layer or 
component, like the byte code verifier, for a significant system security violation.  In fact, 
it is erroneous to assume that these layers do indeed mutually and functionally support 
each other for perceived graduated levels of assurance as in the system ring design of 
MULTICs.   “…The parts [of the security model] are more like links in chain: If any of the 
three (verifier, ClassLoader, SecurityManager) parts breaks, the entire system breaks.” 
[3]   Or alternately stated, defensive aspects do not overlap for mutual support.  For 
example, if an invalid bytecode pattern is missed by the verifier, no other level of the 
JVM will be able to catch this oversight.”  [11, p. 37]   In fairness however, Sun’s 
admittedly conservative initial goal for Java’s earliest versions, was “to enable browsers 
to run untrusted code in an entrusted [trusted] environment.” [13, p.10] 
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Although JFG is a recognized pioneer for distributed computing and remote 
applications execution, both Sun Microsystems (HotJava) and Netscape Navigator 
distinct browser application versions exhibited several security failings that were 
incrementally found, subsequently rectified and resulted in some 21 security class 
check methods (See Annex VII).  There are undoubtedly more to be exploited.  In fact, 
on average, a flaw is exploited every four months in Java.  [3]   For secure information 
systems, standardization, design methods and quality control and assurance is of grave 
concern.  Java’s SecurityManagers are unique to browser vendors and only as capable 
of enforcing sound security as the vendor designs them.  As a failsafe mechanism, 
browsers start only one SRM per virtual machine installed at any given time. [3, p 2-8]   
Disconcertingly, the means of implementing memory stack inspection for protection 
domains and digital signatures for identity verification is inconsistent and not 
interoperable between three primary browser vendors.  

 
• Language and Bytecode Flaws. “The Java language has neither formal semantics, 

nor formal description of its type system.  Java lacks a formal description of its type 
system, yet the basic security of Java relies on the soundness of its type system.”   
“Type verification cannot be proven.  Object-oriented type system’s security a 
current research topic; it seems unwise for the system’s security to rely on such a 
mechanism without a strong theoretical foundation.”  [11, p.7, 8]  These flaws have 
led to several improvements in Java’s security model definition and more robust 
implementation. Third party evaluators stipulated  “These are all issues that can be 
addressed with good design practices and code reviews.” [11, p.9]  

 
• Strength of mechanism.  Access control is provided by a browser’s runtime 

invocation of the SecurityManager class, which is not adequately protected by Java 
language strong typing.  Strength of this access mechanism is suspect given above.  
Additionally, the SecurityManager was not always invoked, not tamperproof and 
cannot be (due to Java poor language semantics) be verified.  Sun has introduced 
improvements via the AccessControl class in Java 2.0 TM using stack inspection 
techniques for protected security domains mediated by an AccessController sub-
class.   
 

• Simplicity of mechanism.  Suspect.  Dean et al. demonstrated that verified bytecode 
could invoke classes not possible in compiled native Java code.  Bytecode can 
possibly traverse the security model in at least three ways.  The additional code 
combining the JVM and system Java applications seems over cumbersome and not 
‘simple’.   Many ask, “Why even have the bytecode” – “and why not transmit 
encrypted source code over the network?”   Java 2’s protection domains whose 
methods stacks may be traversed by multiple threads of various levels of trust and 
invocation (browser application, system, other domain namespace) is certainly not 
‘simple’. 

 
• Complete Mediation.  This principle is violated in Java.  Critical runtime environment 

initial design flaws in mediating authorizations enabled untrusted applets access to 
system native methods.  Independence and mediation is a design goal of Java but 
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still problematic with foreign code sources executed in systems of multiple security 
levels in networked environs given issues of delegation, association, inheritance and 
polymorphism. 

 
• Auditing.  No default audit trail exists in Java to reconstruct and analyze a  

breach. [11 p.9].  When and security violation occurs or a JVM exception is thrown, 
precluding a security breach, no record or logging is automatically done.  
Consequently, the lack of audit data inhibits detailed post mortem analysis for 
forensics and evidence gathering.  Developers however, may provide an auditing 
security manager.  At a minimum, a reliable audit trail must record local file access 
reads and writes and network accesses.  Sun promises to rectify this.  Given Java’s 
evolving scale, security APIs enabling pruning events will be a management 
necessity.  Common threats include masquerade (misuse), information disclosure, 
and integrity violations.  Rectifying access violations mandate a refined audit system 
be resident in Java’s security architecture.  Consequently, Java’s model design 
suffers from a lack of defense in depth.  There are no redundant or backup security 
mechanisms.  The integrity of critical security components: verifier, ClassLoader and 
SecurityManager must remain intact or the entire security model is defeated. 

 
• Verification.  Verification of both policy and subsequent Java model mechanisms is 

suspect given inadequate formal definition and specification of same.  Java’s 
runtime system is some 28,000 lines of code long and is continuously growing, 
making it difficult to verify. [11]  Lack of verification, implies ‘buggy code’ inevitable 
leading to vulnerabilities.  Finally, given three separate web browser application 
implementations, there is no centralized authority ensuring Java security code is bug 
free. [3, pp. 2-13-2]  Another related, but secondary issue is of Microsoft’s Windows 
2000 apparent ‘melding’ of operating system and browser functionality to a similar 
‘look and feel’, to further blur verification of the security functions of these distinct 
entities.    

 
• Ease of Use.   Java seamlessly executes downloaded active content without a user 

to worry.  Or, maybe not?   User interaction is all but eliminated, but the complexity 
of Java’s multiple trust model is of concern.   Administration is simplified via a JDK 
2.0 GUI for defining security policies of finer grained access control and 
enforcement.   Configuration and management of these various specific ‘finer 
grained’ security policies, particularly at the enterprise level,  is certainly not ‘easy’ 

 
• Tamper Resistance.  Many documented attacks attest to Java’s lack of resistance to 

tampering.  Sun admitted known Java Security flaws are documented on their web-
site and annotated in several references attest to Java’s, various related browser 
and OS environs affinity to tampering.  Additionally, components of Java’s reference 
monitor may be modified for to enforce policies for various applications and 
environs.  Such modifications provide flexibility in the model, but may inadvertently 
introduce flaws and vulnerabilities.  However, to be fair, the majority of Java security 
shortcomings occurred in the laboratory ‘with only a few manifesting in the wild’. 
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• Ambiguity.  See Language and Bytecode Flaws above).  Lacking an initial formal 
security policy and model specification, Java’s security model is certainly ambiguous 
to some degree.  Lack of defined system policy requirements directly violates the 
TCSEC Orange Book fundamental Criteria of: “There must be an explicit, and well-
defined security policy enforced by the system.  However, Java’s evolutionary ‘beta 
test in the market’ approach to ‘secure’ mobile code design has rooted it strongly in 
the industry for years to come.  The lack of a Java’s formal specification is 
worrisome in light of its requirements for and current employment in e-commerce 
enabled and highly sensitive applications. 

 
To their credit, Sun improved Java’s assurance by welcoming third party ‘open 

design’ evaluations that surfaced these and other security shortcomings.  Problems 
uncovered by the Blackwatch group and by Princeton University professors, Dean, 
Felten and Wallach, did much to educate the community on the scope of the distributed 
object security challenge and bolster Sun’s consumer image in their positive attitude 
and response to rectify flaws.  Many flaws were immediately fixed attesting to Java’s 
apparent evolution type development paradigm. However, what’s even more 
troublesome then the specific uncovered flaws, are those most assuredly, left to be 
discovered?  This unfortunately will be the case given the absence of formal analysis, 
testing and design rigor in Java’s development methodology felt necessary by the 
community to field a secure information system. 
  
Conclusions  
  

Java’s security model is far from formally defined, verified and validated.  At best, 
its system level discretionary security model is in constant evolution (See Annex VII).  
This evolutionary type model, is suspect in traditional terms of assessing security model 
assurance. [3]   Java 2’s recent conceptual security model goes well beyond the 
sandbox employing protection domains digitally signed mobile code and a reference 
monitor.  Protection domains and access control policies are mediated by the byte-code 
verifier, ClassLoader, SecurityManager and AccessController; a decentralized security 
kernel of sorts for class instantiation and method object method invocation.   Principal 
model and policy concerns are issues of decentralized control of security functionality, 
lack of defense in depth and poor assurance verification.   

 
‘Trusted’ access control necessary for sensitive e-commerce (electronic 

commerce) and publicly networked health and insurance information applications, are 
the most challenging and imperative issue for maintaining security in Java.   Java is 
widely accepted and doing well at the client server level, but experts question how well 
it will scale with strong security beyond the enterprise.  The fundamental security issue 
for Java, although many orders of magnitude tougher as it migrates more fully beyond 
the enterprise to fully distributed systems, is what components and operations are 
trusted, and, even more importantly, what mechanisms can adequately protect them?  

 
From an assurance perspective, Sun’s inability to formally define or completely 

verify Java’s security model is worrisome.   As Java technology is deployed to 
increasingly more sensitive systems, one must ask the difficult question of greater 
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system trust.  Despite extensive beta field-testing for attempted ‘kluged verification’, it is 
one thing to determine or state that a system ‘should do nothing more’, but is quite 
another perspective to be certain that the system does only what was designed to do- - 
AND nothing more.  It is a well-known software development and design principle, that 
software does not actually wear out in the traditional hardware sense, it deteriorates 
after subsequent modifications; required departures from the original software 
requirements specification.  [17, p10, 11]   
 

Few can debate the desirableness of a configurable local security policy whose 
functionality continues to evolve.  However, without a definitive original Java security 
model or policy specification, one must wonder what the specified point of departure is 
or was and will continue to be for Java’s evolving and perhaps murkier security model. 
In the words of Dean et al. “The absence of a well-defined, formal security policy 
prevents the verification of a implementation…. For a higher assurance system.   
Without a formal basis, statements about a system’s security cannot be definitive. [11, 
p11].  Although written in 1996, this point remains very relevant given the complexity of 
distributed applications, and as the challenge for assurance in Java or other mobile 
code application increases. 

 
The age-old problematic issue is one of implementing a robust yet verifiable 

model and policy without excessive penalties in performance, operational functionality, 
security services and cost.  Sun’s approach with Java, was to accept marginal risk, by 
fielding an operational ‘beta version’ product to attain market share which ultimately was 
tested and verified by the consumer, post production and delivery.  Without question, 
the fielding of Java’s mobile code programming language enhanced distributed 
computing security and accelerated downloading of and remote code for local execution 
within web applications.  Java’s security model development methodology and 
continuing security mechanism migration is best described as ‘evolutionary’.  
Unfortunately, this evolutionary paradigm does not lend itself to the rigor and resources 
for formal security policy specification and model verification necessary for high 
assurance.   As enabling electronic technologies and infrastructures, like public key 
infrastructure (PKI), evolve to quench the dynamic demands of the Internet (e.g. e-
commerce), so to will security functionality requirements and the models necessary to 
implement them. 

 
 

“Java applets with bad intentions – exploit scripts – are the equivalent of every System 
Administrator’s nightmare”  
 
                                 Garfinkel & Spafford, 1996 
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ANNEX I.  Principles of Security Mechanisms 
 
Lecture Notes on Trusted Information Systems: Principles for Security Mechanisms 
copyright (c) 1998 John McDermott, Computer Science Professor, James Madison 
University 
 
These seven principles apply to the design and comparison of security mechanisms. 
The first seven, slightly reworded here, are due to Saltzer and Schroeder, as part of the 
MULTICs project.  The final principle is generally accepted.  Mechanisms are good to 
the extent that they follow these principles.  A mechanism that fails to follow one of 
these principles may be flawed or impractical.  
   
1.  Least privilege - security mechanisms should give system components the least set 
of security privileges they need to fulfill their current responsibilities. For example, an 
electronic mail server should not be designed to require full administrator access 
privileges for every object in a system, but only those privileges needed to access the 
incoming mail and place it in the correct mailboxes.  This principle is consistently 
violated in mass-market software, without good reason.  Failure to preserve least 
privilege is the basis for many attacks.  
   
2.  Simplicity of mechanism - security mechanisms should be simple. Simplicity is 
needed for two reasons: 1) to make it possible to implement the mechanism correctly, 
that is with no flaws; and 2) to make it possible to independently verify that the 
mechanism works as claimed. Simplicity of both kinds is required: 1) the necessary 
design patterns, object classes, data structures, or algorithms must not be subtle or 
obscure, and 2) the sheer number of components, classes, lines of code, etc. should be 
small.  This latter aspect is necessary to avoid introduction of flaws on a statistical 
basis, i.e. if our best software engineering practice results in one flaw per 10,000 lines 
of source code, then a 20,000 line security mechanism can be expected to have two 
flaws in it, even after we have done all of the planned engineering.  
   
3.  Complete mediation - it should not be possible to bypass a security mechanism and 
get to a resource that the mechanism is supposed to protect. In the client-server sense, 
a malicious client must not be able to request an unauthorized service via an alternate 
request, or be able to access the resource while the security mechanism is not 
activated. This principle is also frequently violated in mass-market software, because 
the implementers are not familiar with it.  
   
4.  Open design - the effectiveness of the mechanism should not depend on the 
ignorance of the attackers. The mechanism should be effective against an attacker who 
has access to all user documentation, design documents, and source code.  This is 
similar to the principle used for cryptographic systems. Failure to follow this principle is 
often referred to as "security through obscurity."  
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5.  Least common mechanism - shared instances of security mechanisms should be 
minimized. For example, a single access control list should not be used to control 
access to two different files. Each file should have its own ACL.  
   
6.  Ease of use - it must not be substantially more difficult for a user to apply a security 
mechanism correctly than it is to leave resources unprotected. This does not mean that 
the user should spend no time considering security, but that security should not 
consume more than a small percentage of the users time and computing resources. In 
systems with very high levels of security, this percentage should be no more than 10, in 
most systems the percentage should be less than 5. If this principle is not followed, then 
users will turn the security off, or not use the system.  
   
7.  Tamper resistance - security mechanisms should resist attempts to damage, 
deactivate, or delete them.  
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ANNEX II.  Essential Security Services of Information Systems (Summers, Ford, 
Amoroso) [1,4,7] 
 
 
Authentication  – Confirmation of user, principle or entity identity or source of origin.  
Reasonable confidence that all parties are ‘authentic’ (e.g. connected servers are whom 
they purport to be.) (Ford p.13.) 
 
 
Confidentiality – ensures reasonable data non-disclosure to unauthorized persons.  
(privacy or secrecy) 
 
 
Availability, Authorization or Legitimate use – ensures legitimate users or principles 
are not unduly denied access to and are limited to permitted uses of information and 
resources. 
 
 
Integrity- ensures data consistency or accuracy; inhibits unauthorized creation, 
alteration, or destruction of data.  Instills user confidence to prevent in data accuracy. 
 
 
Auditing – A trusted means to record communications transactions to discern tact of 
malicious acts, and enable recovery and from breaches and remedy recurrence of 
same.  “Audit information must be selectively kept and protected so that actions 
affecting security can be traced to the responsible party.”  (TSEC Orange Book) 
 
 
Non-repudiation – as applied to messages.  Ensures the inability of a sender to deny 
having sent a message and the inability of a recipient from having received it. 
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ANNEX IIIa.   ‘Untrusted’ Methods and Checks Mediated by Java’s (JFG) Security 
Manager Class 
 
The below assumed untrusted methods may be mediated by an appropriately 
configured Java Security Policy/Security Manager for versions up to an including Java 
(JFG) ver 1.0.2. 
 
 
Method Method Check Checks program authorized to: 

 
CreateClassLoader() check CreateClassLoader() Create a class loader 
CreateSecurityManager check CreateSecurityMgr() Create Security Manager 
Access() check Acce ss() Modify a thread or thread group 
Exit() checkExit() Exit the virtual machine 
Execute() checkExecute() Execute specified system command 
Link() checkLink() Link to specified dynamic library 
Read() checkRead() Read the specified fi le 
Write() checkWrite() Write the specified file 
Delete() checkDelete() Delete the specified file 
Rename() check Rename() Rename specified fi le 
Connect() checkConnect() Connect specified host 
Listen() checkLi sten() Listen to a specified port 
Accept() checkAccept() Accept incoming network connection 
LoadLibrary() checkLoadLibrary() Load dynamic libraries on client system  
ListDirectory() checkLi stDirectory() List contents of a directory 
PropertiesAcce ss() checkPropertyAcce ss() Access specified property 
PropertyAcce ss() checkPropertiesAcce ss() Access all system s properties 
DefineProperty() checkDefineProperty() Define specified system property(s) 
TopLevelWindow() checkTopLevelWindow() Create a top level window (untrusted banner) 
PackageAcce ss() checkPackageAcce ss() Access specified package 
DefinePackage() checkPackageDefinition() Define a class in the specified package. 
 
ANNEX IIIb.   Permissions for Java 2’s AccessController Class 
 
AllPermission - The java.security.AllPermission is a permission that implies all other 
permissions.  
AWTPermission - A java.aw t.AWTPermission is for AWT permissions.  
FilePermission - A java.io.FilePermission represents access to a f ile or directory.  
NetPermission - A java.net.NetPermission is for various netw ork permissions.  
PropertyPermission - A java.util.PropertyPermission is for property permissions.  
ReflectPermission - A java.lang.reflect.ReflectPermission is for reflective operations. A is a 
named permission and has no actions.  
RuntimePermission - A java.lang.RuntimePermission contains a name (also referred to as a 
"target name") but no actions list. 
SecurityPermission - A SecurityPermission contains a name (also referred to as a "target 
name") but no actions list;  
SerializablePermission - A java.io.SerializablePermission is for serializable permissions.  
SocketPermission - A java.net.SocketPermission represents access to a netw ork via sockets. A 
SocketPermission cons ists of a host specif ication and a set of "actions" specifying w ays to 
connect to that host.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew J. Herholtz 
GSEC Practical                                                        March 2001 

 18

ANNEX IV.  Essential Security Services and Mechanisms of Java (2.0)  
 
The following table summarizes essential distributed computing security service 
challenges as currently addressed by Java 2.0. 
 
 
Security Service Java API/APL 
Authentication Digital Signatures, Certificates (X.509 v3), MD5 

 
Authorization Security Manager 

Java Protected Domains 
    

Confidentiality SKIP, SSL Technologies 
Encryption  
 

Containment Sandbox 
Class Loader 
Java Protected Domains 
Byte Code Verifier 
 

Availability Fielded System, Customer Proven 
 

Integrity MD5, SHA 
Auditing Limited  

Security Manager 
Enhancements Pending 
 

Trusted 
Components 
(Key Exchange) 

Diffie-Hellman 

Protocols IIOP, SSL 
Encryption (coms) Triple DES 

Inherent in Protocols not connection persistent (JAR) 
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ANNEX V.  Java 2.0 Security Mechanism – Protection Domains 
Permissions are granted to protection domains, not directly to object or classes.  

The Java runtime environment maintains mapping from code to protection domains to 
permissions. 

 
 
       
 
 
 
 
 
 
 

 
 
 
 
 

 
d.class 
 
c.class 
 
b.class 
 
a.class 

 
Protection 
Domain A 

Protection 
Domain B 

Permissions 

Permissions 

Domains Permissions Class 

Running Classes Policy 

Grouping classe s together to map to policy.  
Classe s map into what Sun calls protection domains which in 
turn map to permissions.  Policy is defined in terms of 
protection domains. [3,  p3-9]   
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ANNEX VI.   Java Virtual Machine (a.) and Java Code Process Flow Components (b. 

    

                             Figure a.  The Java Virtual Machine  - JVM 

 

 

 

 
 
 
 

 
 

Figure b. Java  (JFG) Code Process Flow Components 
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Java Virtual Machine 
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Others 

Thin 
Clients 

Power 
PC 

Java Code 
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ANNEX VII The Evolution of the Java Security Model 
Graphics and narrative: 
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-spec.doc1.html#18314 
 
The Original Sandbox Model  

The original security model provided by the Java platform is known as the sandbox 
model, which existed in order to provide a very restricted environment in which to 
run untrusted code obtained from the open network. The essence of the sandbox 
model is that local code is trusted to have full access to vital system resources (such 
as the file system) while downloaded remote code (an applet) is not trusted and can 
access only the limited resources provided inside the sandbox. This sandbox model 
is illustrated in the figure below. [Java Arch, p.26] 
Java Development Kit 1.1 

 
JDK 1.1 introduced the concept of a "signed applet", as illustrated by the figure below. 
In that release, a correctly digitally signed applet is treated as if it is trusted local code if 
the signature key is recognized as trusted by the end system that receives the applet. 
Signed applets, together with their signatures, are delivered in the JAR (Java Archive) 
format. In JDK 1.1, unsigned applets still run in the sandbox. [26] 
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ANNEX VII  The Evolution of the Java Security Model (Continued) 
 

Evolving the Sandbox Model , JDK 1.2 or Java 2 

 
 

The new security architecture in JDK 1.2, illustrated in the figure below, is 
introduced primarily for the following purposes.  Providing Fine-grained access 
control.  
This capability existed in the JDK from the beginning, but to use it, the application 
writer had to do substantial programming (e.g., by subclassing and customizing 
the SecurityManager and ClassLoader classes). The HotJava browser 1.0 is 
such an application, as it allows the browser user to choose from a small number 
of different security levels. [26] 
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ANNEX  VIII  International Standards Organization (ISO) 9001 Standard for Quality 
Assurance in Software Design and Development activities. 
 
 20 ISO 9001 Quality Assurance Requirements 
 
1.  Management responsibility 
2.  Quality system  
3. Contract review 
4. Design review 
5. Document and data control 
6. Purchasing 
7. Control of customer supplied product 
8. Product identification and traceability 
9. Process control 
10. Inspection and Testing 
11. Control of inspection, measuring and test equipment 
12. Inspection and test status 
13. Control of non-conforming product 
14. Corrective and preventive action 
15. Handling, storage, packaging, preservation, and delivery 
16. Control of quality records 
17. Internal audit control 
18. Training 
19.  Servicing 
20.  Statistical techniques 
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