
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Hacking: The Basics
Zachary Wilson
April 4, 2001

Introduction
An intrusion can be defined as an attempt to break into or misuse a computer system. The word
"misuse" is broad, and can reflect meaning to something as severe as stealing confidential data to
something as minor such as misusing your email system for spam. Today, both the Internet and
corporate intranets are simply crawling with people from all walks of life that are continuously
trying to test the security of various systems and networks. Some of these people are seeking
some sort of intellectual high, while others are fueled by more treacherous motives such as
revenge or stealing for profit. In any event, no intrusion is innocent and no intrusion is benign.
There is no silver bullet available out there that will totally secure our networks and systems.
The only thing that we can do as IT professionals is make sure all of the doors are locked, the
alarm is turned on, and educate ourselves on what to look for. The primary focus of this
practical paper is to educate the less security conscious IT professionals and end-users on exactly
who is out there and what they are doing to get in. By attempting to establish this baseline of
security knowledge we essentially extend the arm of IT security to include the very users who
today present the greatest danger: the uneducated user.

Attacker Profiles
There are two words to describe the attacker: hacker and attacker. A hacker is a generic term
for a person who likes getting into things. The benign hacker is the person who likes to get into
his/her own computer and understand how it works. The malicious hacker is the person who
likes getting into other people's systems. The benign hackers wish that the media would stop
bad-mouthing all hackers and use the term 'attacker' instead. Unfortunately, this is not likely to
happen. In any event, the word used to denote anybody trying to get into your system in this
paper is 'attacker'.
Attackers can be classified into two categories.
Outsiders
These are attackers from outside your network attempting to attack you external presence (deface
web servers, forward spam through e-mail servers, etc.). They may also attempt to go around the
firewall to attack machines on the internal network. Outside attackers may come from the
Internet, dial-up lines, physical break-ins, or from partner (vendor, customer, reseller, etc.)
network that is linked to your corporate network.
Insiders
These are attackers that have legitimate reasons to use/access your internal network. These
include users who misuse privileges or who impersonate higher privileged users. A frequently
quoted statistic cites that insiders commit 80% of security breaches.

Intrusion Techniques
These are the primary ways an attacker can get into a system:
Physical Intrusion - If an attacker has physical access to a machine (i.e. they can use the
keyboard or take apart the system), they will be able to get in. Techniques range from special

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

privileges the console has, to the ability to physically take apart the system and remove the disk
drive (and read/write it on another machine).
System Intrusion - This type of hacking assumes the attacker already has a low-privilege user
account on the system. If the system doesn't have the latest security patches, there is a good
chance the attacker will be able to use a known exploit in order to gain additional administrative
privileges.
Remote Intrusion - This type of hacking involves an attacker who attempts to penetrate a
system remotely across the network. The attacker begins with no special privileges. There are
several forms of this type of hacking. Note that Network Intrusion Detection Systems are
primarily concerned with Remote Intrusion.
Possible vulnerabilities and ways to exploit them.
Software bugs
Software always has bugs. System administrators and programmers can never track down and
eliminate all possible software vulnerabilities. Attackers have to only find one hole to break in.
Software bugs are often exploited in the server daemons, client applications, operating systems,
and the network stack. Software bugs can be classified in the following manner:
Buffer overflows - Almost all the security holes you read about are due to this problem. A
typical example is a programmer who sets aside 256 characters to hold a login username.
However, if an attacker tries to enter in a false username longer than that you might have a
problem. All the attacker has to do is send 300 characters, including code that will be executed
by the server, and voila, game over. Hackers find these bugs in several ways. First, the source
code for a lot of services is available on the net. Hackers routinely look through this code
searching for programs that have buffer overflow problems. Secondly, hackers may look at the
programs themselves to see if such a problem exists. Thirdly, hackers will examine every place
the program has input and try to overflow it with random data. If the program crashes, there is a
good chance that carefully constructed input will allow the attacker to gain access.
Unexpected combinations - Programs are usually constructed using many layers of code,
including the underlying operating system as the bottom most layer. Attackers can often send
input that is meaningless to one layer, but meaningful to another layer. The most common
language for processing user input on the web is PERL. Programs written in PERL will usually
send this input to other programs for further evaluation. A common hacking technique would be
to enter something like "| mail < /etc/passwd". This gets executed because PERL asks the
operating system to launch an additional program with that input. However, the operating system
intercepts the pipe '|' character and launches the 'mail' program as well, which causes the
password file to be emailed to the attacker.
Race conditions - Most systems today are "multitasking/multithreaded". This means that they
can execute more than one program at a time. There is a danger if two programs need to access
the same data at the same time. Imagine two programs, ABC and XYZ, each program attempts
to modify the same file. In order to modify a file, each program must first read the file into
memory, change the contents in memory, then copy the memory back out into the file. The race
condition occurs when program ABC reads the file into memory and then makes the change.
However, before ABC gets to write the file, program XYZ steps in and does the full
read/modify/write on the file. Now program ABC writes its copy back out to the file. Since

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

program ABC started with a copy before XYZ made its changes, all of XYZ's changes will be
lost. Since you need to get the sequence of events in just the right order, race conditions are very
rare. Attackers usually attempt such actions thousands of times before they get it right, and gain
access to the system.
Unexpected input - Most programs are written to handle valid input. Most programmers do not
consider what happens when somebody enters input that doesn't match the specification.

System configuration bugs
Default configurations - Most systems are shipped to customers with default, easy-to-use
configurations. Unfortunately, "easy-to-use" means "easy-to-break-in". Almost any UNIX or
WinNT machine shipped to you can be hacked in easily.
Poor system administrator practices - A surprising number of machines are configured with an
empty root/administrator password. This is because the administrator is too lazy to configure
one right now and wants to get the machine up and running quickly with minimal fuss.
Unfortunately, they never get around to fixing the password later, allowing attackers easy access.
One of the first things an attacker will do on a network is to scan all machines for empty
passwords.
Running unnecessary services - Virtually all programs can be configured to run in a non-secure
mode. Sometimes administrators will inadvertently open a hole on a machine. Most
administration guides will suggest that administrators turn off everything that doesn't absolutely
positively need to run on a machine in order to avoid accidental holes. Note that security-
auditing packages (such as Enterprise Security Manager from Symantec) can usually find these
holes and notify the administrator.
Trust relationships - Attackers often "island hop" through the network exploiting trust
relationships. A network of machines trusting each other is only as secure as its weakest link.
Password cracking
Easy-to-guess passwords - These are passwords where people use the names of themselves,
their children, spouse/SO, pet, or car model as their password. Then there are the users who
choose "password" or simply null passwords.
Dictionary attacks - With this attack, the attacker will use a program that will try every possible
word in the dictionary. Dictionary attacks can be done either by repeatedly logging into systems,
or by collecting encrypted passwords and attempting to find a match by similarly encrypting all
the passwords in the dictionary. Attackers usually have a copy of the English dictionary as well
as foreign language dictionaries for this purpose. They all use additional dictionary-like
databases, such as names (see above) and lists of common passwords.
Brute force attacks - Similar to a Dictionary attack, an attacker may try all possible
combinations of characters. A short 4-letter password consisting of lower-case letters can be
cracked in just a few minutes. A long 7-character password consisting of upper and lower case,
as well as numbers and punctuation can take months to crack assuming you can try a million
combinations a second (in practice, a thousand combinations per second is more likely for a
single machine).
Sniffing unsecured traffic

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Shared medium - On traditional Ethernet, all you have to do is put a sniffer on the wire to see
all the traffic on a segment. This is getting more difficult now that most corporations are
transitioning to switched Ethernet.
Server sniffing - However, on switched networks, if you can install a sniffing program on a
server (especially one acting as a router), you can probably use that information to break into
client machines and trusted machines as well. For example, you might not know a user's
password, but sniffing a Telnet session when they log in will give you that password.
Remote sniffing - A large number of boxes come with RMON enabled and public community
strings. While the bandwidth is really low (you can't sniff all the traffic), it presents interesting
possibilities.
Design flaws
Even if a software implementation is completely correct according to the design, there still may
be bugs in the design itself that leads to intrusions.
TCP/IP protocol flaws - The TCP/IP protocol was designed before we had much experience
with the wide-scale hacking we see today. As a result, there are a number of design flaws that
lead to possible security problems. Some examples include smurf attacks, ICMP Unreachable
disconnects, IP spoofing, and SYN floods. The biggest problem is that the IP protocol itself is
very "trusting": hackers are free to forge and change IP data with impunity. IPsec (IP security)
has been designed to overcome many of these flaws, but it is not yet widely used.
UNIX design flaws - There are number of inherent flaws in the UNIX operating system that
frequently lead to intrusions. The chief problem is the access control system, where only 'root' is
granted administrative rights.

Acquiring Passwords
Clear-text sniffing - A number of protocols (Telnet, FTP, HTTP Basic) use clear-text
passwords, meaning that they are not encrypted as the go over the wire between the client and
the server. An attacker with a protocol analyzer can watch the wire looking for such passwords.
No further effort is needed; the attacker can start immediately using those passwords to log in.
Encrypted sniffing -Most protocols, however, use some sort of encryption on the passwords. In
these cases, the attacker will need to carry out a Dictionary or Brute Force attack on the
password in order to attempt decryption. Note that you still don't know about the attacker's
presence, as he/she has been completely passive and has not transmitted anything on the wire.
Password cracking does not require anything to be sent on the wire as attacker's own machine is
being used to authenticate your password.
Replay attack - In some cases, attackers do not need to decrypt the password. They can use the
encrypted form instead in order to login to systems. This usually requires reprogramming their
client software in order to make use of the encrypted password.
Password file stealing - The entire user database is usually stored in a single file on the disk. In
UNIX, this file is /etc/passwd (or some mirror of that file), and under WinNT, this is the SAM
file. Either way, once an attacker gets hold of this file, he/she can run cracking programs in
order to find some weak passwords within the file.
Observation - One of the traditional problems in password security is that passwords must be
long and difficult to guess (in order to make Dictionary and Brute Force cracks unreasonably

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

difficult). However, such passwords are often difficult to remember, so users write them down
somewhere. Attackers can often search a persons work site in order to find passwords written on
little pieces of paper (usually under the keyboard). Attackers can also train themselves to watch
typed in passwords behind a user's back.
Social Engineering – One successful and common technique is to simply call the helpdesk and
say "Hi, this is Ron Smith the senior director for IT in San Jose. I have a presentation to give my
boss, the CIO, and I can’t log into server XYZ to get my notes. Would you please reset my
password now? I have to be in this meeting in 2 minutes." Many unsuspecting operators would
simply reset Ron’s password in this situation. Most corporations have a policy where they tell
users/operators/helpdesk to never give out or reset passwords, even to their own IT director, but
this technique is still successful.

Typical intrusion scenarios
Footprinting - The attacker will find out as much as possible without actually giving themselves
away. They will do this by finding public information or appearing as a normal user. In this
stage, you really can't detect them. The attacker will do a 'whois' lookup to find as much
information as possible about your network as registered along with your Domain Name (such as
foobar.com. The attacker might walk through your DNS tables (using 'nslookup', 'dig', or other
utilities to do domain transfers) to find the names of your machines. The attacker will browse
other public information, such as your public web sites and anonymous FTP sites. The attacker
might search news articles and press releases about your company.
Scanning - The attacker uses more invasive techniques to scan for information, but still doesn't
do anything harmful. They might walk through all your web pages and look for CGI scripts
(CGI scripts are often easily hacked). They might do a 'ping' sweep in order to see which
machines are alive. They might do a UDP/TCP scan/strobe on target machines in order to see
what services are available. They'll run utilities like 'rcpinfo', 'showmount', 'snmpwalk', etc. in
order to see what's available. At this point, the attacker has done 'normal' activity on the network
and has not done anything that can be classified as an intrusion. At this point, a NIDS will be
able to tell you that "somebody is checking door handles", but nobody has actually tried to open
a door yet.
Running exploits - The attacker crosses the line and starts exploiting possible holes in the target
machines. The attacker may attempt to compromise a CGI script by sending shell commands in
input fields. The attacker might attempt to exploit well-known buffer-overrun holes by sending
large amounts of data. The attacker may start checking for login accounts with easily guessable
(or empty) passwords. The attacker may go through several stages of exploits. For example, if
the attacker was able to access a user account, they will now attempt further exploits in order to
get root/admin access.
Establishing a foothold - At this stage, the attacker has successfully gained a foothold in your
network by hacking into a machine. The attacker's main goal is to hide evidence of the attacks
(doctoring the audit trail and log files) and make sure they can get back in again. They may
install 'toolkits' that give them access, replace existing services with their own Trojan horses that
have backdoor passwords, or create their own user accounts. System Integrity Verifiers (SIVs)
can often detect an attacker at this point by noting the changed system files. The hacker will
then use the system as a stepping-stone to other systems, since most networks have fewer
defenses from inside attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Playing for profit - The attacker takes advantage of their status to steal confidential data, misuse
system resources (i.e. stage attacks at other sites from your site), or deface web pages.
Another scenario starts differently. Rather than attack a specific site, and attacker might simply
scan random Internet addresses looking for a specific hole. For example, an attacker may
attempt to scan the entire Internet for machines that have the SendMail DEBUG hole. They
simply exploit such machines that they find. They don't target you directly, and they really won't
even know who you are. (This is known as a 'birthday attack'; given a list of well-known security
holes and a list of IP addresses, there is a good chance that there exists some machine somewhere
that has one of those holes).

Common intrusion signatures
There are three types of attacks:
Reconnaissance - These include ping sweeps, DNS zone transfers, e-mail recons, TCP or UDP
port scans, and possibly indexing of public web servers to find cgi holes.
Exploits - Attackers will take advantage of hidden features or bugs to gain access to the system.
Denial-of-service (DoS) attacks - Where the attacker attempts to crash a service (or the
machine), overload network links, overloaded the CPU, or fill up the disk. The attacker is not
trying to gain information, but to simply act as a vandal to prevent you from making use of your
machine.

Common exploits
CGI scripts
CGI programs are notoriously insecure. Typical security holes include passing tainted input
directly to the command shell via the use of shell metacharacters, using hidden variables
specifying any filename on the system, and otherwise revealing more about the system than is
good. The most well-known CGI bug is the 'phf' library shipped with NCSA httpd. The 'phf'
library is supposed to allow server-parsed HTML, but can be exploited to give back any file.
Other well-known CGI scripts that an attacker might attempt to exploit are: TextCounter,
GuestBook, EWS, info2www, Count.cgi, handler, webdist.cgi, php.cgi, files.pl, nph-test-cgi,
nph-publish, AnyForm, FormMail. If you see somebody trying to access one or all of these CGI
scripts (and you don't use them), then it is clear indication of an intrusion attempt (assuming you
don't have a version installed that you actually want to use).
Web server attacks
Beyond the execution of CGI programs, web servers have other possible holes. A large number
of self-written web servers (include IIS 1.0 and NetWare 2.x) have hole whereby a file name can
include a series of "../" in the path name to move elsewhere in the file system, getting any file.
Another common bug is buffer overflow in the request field or in one of the other HTTP fields.
Web servers often have bugs related to their interaction with the underlying operating system.
An old hole in Microsoft IIS have been dealing with the fact that files have two names, a long
filename and a short 8.3 hashed equivalent that could sometimes be accessed bypassing
permissions. NTFS (the new file system) has a feature called "alternate data streams" that is
similar to the Macintosh data and resource forks. You could access the file through its stream
name by appending "::$DATA" in order to see a script rather than run it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Servers have long had problems with URLs. For example, the "death by a thousand slashes"
problem in older Apache would cause huge CPU loads as it tried to process each directory in a
thousand slash URL.
Web browser attacks
It seems that all of Microsoft's and Netscape's web browsers have security holes (though, of
course, the latest ones never have any that we know about -- yet). This includes URL, HTTP,
HTML, JavaScript, Frames, Java, and ActiveX attacks.
URL fields can cause a buffer overflow condition, either as it is parsed in the HTTP header, as it
is displayed on the screen, or processed in some form (such as saved in the cache history). Also,
an old bug with Internet Explorer allowed interaction with a bug whereby the browser would
execute .LNK or .URL commands.
HTTP headers can be used to exploit bugs because some fields are passed to functions that
expect only certain information.
HTML can be often exploited, such as the MIME-type overflow in Netscape Communicator's
<EMBED> command.
JavaScript is a perennial favorite, and usually tries to exploit the "file upload" function by
generating a filename and automatically hidden the "SUBMIT" button. There have been many
variations of this bug fixed, then new ways found to circumvent the fixes.
Frames are often used as part of a JavaScript or Java hack (for example, hiding web-pages in 1px
by 1px sized screens), but they present special problems. For example, a savy attacker can
include a link to a trustworthy site that uses frames, then replace some of those frames with web
pages from my own site, and they will appear to you to be part of that remote site.
Java has a robust security model, but that model has proven to have the occasional bug (though
compared to everything else, it has proven to be one of the most secure elements of the whole
system). Moreover, its robust security may be its undoing: Normal Java applets have no access
to the local system, but sometimes they would be more useful if they did have local access.
Thus, the implementation of "trust" models that can more easily be hacked.
ActiveX is even more dangerous than Java as it works purely from a trust model and runs native
code. You can even inadvertently catch a virus that was accidentally imbedded in some vendor's
code.
SMTP (SendMail) attacks
SendMail is an extremely complicated and widely used program, and as a consequence, has been
the frequent source of security holes. In the old days (of the '88 Morris Worm), hackers would
take advantage of a hole in the DEBUG command or the hidden WIZ feature to break into
SMTP. These days, they often try buffer overruns. SMTP also can be exploited in
reconnaissance attacks, such as using the VRFY command to find user names.
IMAP
Users retrieve e-mail from servers via the IMAP protocol (in contrast, SMTP transfers e-mail
between servers). Hackers have found a number of bugs in several popular IMAP servers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

IP spoofing
There is a range of attacks that take advantage of the ability to forge (or 'spoof') your IP address.
While a source address is sent along with every IP packet, it isn't actually used for routing. This
means an attacker can pretend to be you when talking to a server. The attacker never sees the
response packets (although your machine does, but throws them away because they don't match
any requests you've sent). The attacker won't get data back this way, but can still send
commands to the server pretending to be you.
IP spoofing is frequently used as part of other attacks:
SMURF
Where the source address of a broadcast ping is forged so that a huge number of machines
respond back to victim indicated by the address, overloading it (or its link).
TCP sequence number prediction
In the startup of a TCP connection, you must choose a sequence number for your end, and the
server must choose a sequence number for its end. Older TCP stacks choose predictable
sequence numbers, allowing attackers to create TCP connections from a forged IP address (for
which they will never see the response packets) that presumably will bypass security.
DNS poisoning through sequence prediction
DNS servers will "recursively" resolve DNS names. Thus, the DNS server that satisfies a client
request will become itself a client to the next server in the recursive chain. The sequence
numbers it uses are predictable. Thus, an attacker can send a request to the DNS server and a
response to the server forged to be from the next server in the chain. It will then believe the
forged response, and use that to satisfy other clients.
Common reconnaissance scans
Ping sweeps
This simple scan simply pings a range of IP addresses to find which machines are alive. Note
that more sophisticated scanners will use other protocols (such as an SNMP sweep) to do the
same thing.
TCP scans
Probes for open (listening) TCP ports looking for services the attacker can exploit. Scans can
use normal TCP connections or stealth scans that use half-open connections (to prevent them
from being logged) or FIN scans (never opens a port, but tests if someone's listening). Scans can
be sequential, randomized, or configured lists of ports.

UDP scans
These scans are a little bit more difficult because UDP is a connectionless protocol. The
technique is to send garbage UDP packets to the desired port. Most machines will respond with
an ICMP "destination port unreachable" message, indicating that no service is listening at that
port. However, many machines throttle ICMP messages, so you can't do this very fast.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OS identification
By sending illegal (or strange) ICMP or TCP packets, an attacker can identify the operating
system. Standards usually state how machines should respond to legal packets, so machines tend
to be uniform in their response to valid input. However, standards omit (usually intentionally)
the response to invalid input. Thus, each operating system's unique responses to invalid inputs
form a signature that attackers can use to figure out what the target machine is. This type of
activity occurs at a low level (like stealth TCP scans) that systems do not log.
Account scans
Attempting to login to…..

• Accounts with no passwords
• Accounts with password same as username, or "password".
• Default accounts that were shipped with the product (a common problem on SGI, done to

make setup easier)
• Accounts installed with software products (common on Microsoft as well as Unix, caused

by products that run under their own special user account).
• Anonymous FTP problems (CWD ~root)
• Scan for rlogin/rsh/rexec ports, that may supported trusted logins.

Common DoS (Denial of Service) attacks
Ping-of-Death
Sends an invalid fragment, which starts before the end of packet, but extends past the end of the
packet.
SYN Flood
Sends TCP SYN packet (which start connections) very fast, leaving the victim waiting to
complete a huge number of connections, causing it to run out of resources and dropping
legitimate connections. A new defense against this is the "SYN cookies". Each side of a
connection has its own sequence-number. In response to a SYN, the attacked machine creates a
special sequence number that is a "cookie" of the connection then forgets everything it knows
about the connection. It can then recreate the forgotten information about the connection when
the next packets come in from a legitimate connection.
Land/Latierra
Sends forged SYN packet with identical source/destination address/port so that system goes into
infinite loop trying to complete the TCP connection.
WinNuke
Sends OOB/URG data on a TCP connection to port 139 (NetBIOS Session/SMB), which cause
the Windows system to hang.

Conclusion

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

As I stated in my opening paragraph, no computer or computer network is completely secure.
There are new vulnerabilities found or created everyday. The only way we as IT professionals
can rest easy when we go home at night is to know that we are employing a minimal amount of
security today and working towards more security tomorrow. However, all of the hard work and
money spent on the best security tools available doesn’t do us any good if users don’t do
minimal things like securing passwords and locking down workstations when they leave at night.
Therefore, it is our responsibility as IT security professionals to educate these users to the best of
our ability thus ensuring IT security is being employed even when nobody is watching.
Hopefully, this paper will have the ability to make less educated users think about everything
they do. And impress upon them consider security in all of their everyday practices.

Works consulted

Computer Incident Advisory Committee (CIAC) (1995). Advisory Notice F-08 Internet Spoofing and
Hijacked Session Attacks.
[On-line], Available: http://ciac.llnl.gov/ciac/bulletins/f-08/shtml

Pethia, Richard. "Removing Roadblocks to Cyber Defen se." 3/28/2000.
URL: http://www.ce rt.org/congressional_testimony/Pethia_testimony_Mar28-2000.html

CERT Incident Note 99-07. Distributed Denial of Service Tools. Nov 18, 1999.
URL: http://www.ce rt.org/incident_notes/IN-99-07.html

Csdweb@unb.ca "Password s – Why yours is important."
http://www.unb.ca/csd/student/unix/passwo rds.html

Schneier, Bruce. "Security is not a product, it is a process". Crypto-Gram. 15 Dec 1999.
URL: http://www.counterpane.com/crypto-gram-9912.html

Vigilante. "Social Engineering." Internet Security.
URL: http://www.vigilante.com/inetsecurity/socialengineering.htm (12 February 2001).

Ryder, Jo sh. "Preventing Information Loss: Strengthening a Weak Link." Security Portel. 22 August 2000.
URL: http://www.secu rityportal.com/topnews/infoloss20000822.html (9 February 2001).

