
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Java Virtual Machine Security and the Brown Orifice Attack
Miles McQueen
August 14, 2000

Overview
In 1996, Sun Microsystems unleashed a powerful new programming language: Java. Based on
networks and the idea that the same software should run on many different kinds of computers,
consumer gadgets, and other devices, Java is fundamentally different from many other
programming languages1. Unlike most other languages, in which it is necessary to compile the
source code for each different platform, Java source code is compiled once, into a special type of
intermediate code termed byte code. This byte code can then be executed on any device that has
a byte code interpreter, or Java Virtual Machine. Most web browsers today have an integrated
Java Virtual Machine to run applets, or Java programs that are downloaded from a web server
and designed to run in a web browser.

Java Virtual Machine
The Java Virtual Machine is responsible for interpreting byte code or converting byte code into
native language code so that the byte code can be executed on the device. The Java VM consists
of a byte code interpreter and the core Java classes implementing basic Java functionality. The
set of core classes is a little different for each vendor (see Appendix A). The Java VM is also
responsible for implementing and applying the Java Security Model5. If the Java VM does not
implement the Java Security Model exactly and correctly, many security exploits are possible.
Given the code size of a typical Java VM (~180,000 lines of C++ code) and the complexity of the
Java Security Model, it is highly unlikely that there are zero flaws in any Java Virtual Machine.
Indeed, the three most used Java VM’s, made by Netscape, Sun Microsystems, and Microsoft,
have all had serious security flaws3,6. The effects of these flaws have ranged from exploits that
crash the browser to some which have completely compromised the client machine.

The Java Security Model
Java Security is built upon the idea that every application runs in a “sandbox.” If a Java program
attempts to take some action that is outside the “sandbox,” a security exception is thrown and the
program fails to execute. The three major components of the “sandbox” are the Verifier, the
Class Loader, and the Security Manager. The Verifier checks to make sure that the byte code
itself follows specific rules that help to assure that the code won’t, either by accident or by intent,
be able to crash the Java VM. These checks provide one defensive layer that makes the malicious
hackers task significantly more difficult. The Class Loader is responsible for ensuring that code
from different origin servers do not overwrite each other. This prevents a hostile server from
overwriting and thus spoofing any of the core classes on the client machine. In some
implementations this would include a special core class, the Security Manager, which is a
significant component of the Java VM itself. The Security Manager is responsible for ensuring
that Java programs only do what they are allowed to do and no more. For example, an unsigned
applet will have no ability to read or write files to a user’s system, whereas a fully signed and
trusted applet would be able to read and write almost any file. Unfortunately, there currently
exists no industry-wide standard for signing Java code and thus no way of giving an applet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

extended privileges on all three major Java Virtual Machines without signing the code differently
for each Java VM. Each of the three major vendors also has their own methods for granting Java
Applets additional functionality. It is for this reason that most downloaded applets, unsigned
AND signed, are not allowed to read or write files on a user’s system, nor are they allowed to
establish connections with servers other than the origin server. Still, applets can be dangerous
because of flaws in the Java VM and the core classes. Two of the most recently discovered flaws
are exploited by a Java applet called “Brown Orifice.”

Brown Orifice
On August 3rd, 2000, a person calling himself Dan Brumleve released a Java Applet with source
code that utilizes two distinct security flaws in the Netscape Java Virtual Machine and core
classes. His attack applet turns any Netscape version 4.x browser, that downloads and runs the
applet, into a web server that anyone online can access7. This malicious applet includes the
ability to view, modify, and delete any of the files advertised (i.e. visible and accessible) by this
new and unintentionally created applet web server4. What differentiates this attack from others is
that almost 1,000 computers were infected before Netscape issued a security bulletin, and other
more dangerous variants were thought to be in use by hackers around the world5. It was
discovered that the Sun Java Virtual Machine for Java 1 suffered from a security flaw that would
allow a malicious user to connect to hosts other than the one that the applet came from2. The
Java 2 Virtual Machine from Sun Microsystems is not vulnerable because the flaw has been fixed
(But have new flaws been added?). It was also determined that the core classes used by Netscape
suffered from the second security flaw which allowed files to be read, written, and modified on
the client machine. Not all vendor Java VMs and core classes had these vulnerabilities. In
particular, the latest Microsoft Virtual Machine was not encumbered with either flaw. What
security measures has Microsoft taken that stymies the “Brown Orifice” attack, and what
implementation bugs are present in the Netscape and Sun Java Virtual Machines, that allows this
“Brown Orifice” exploit to succeed?

The Two Flaws
To postulate an answer to this question, it is necessary to understand the nature of each of the
two flaws. The first of the two flaws, which allows an applet to open and close network
connections with hosts other than the origin host, from which the applet itself was downloaded,
is not strictly speaking a flaw in the virtual machine itself, but rather an implementation bug in the
core classes (see Appendix A) supplied with the Netscape and Sun Virtual Machines. According
to the Java Security Model, the core classes are supposed to check with the virtual machine’s
Security Manager before performing any “dangerous” operation5. Indeed, all three major Java
VMs perform this check and consider opening and closing network connections a “dangerous”
operation. The Brown Orifice exploit avoids the Security Manager check by overloading two
methods present in the core classes, ServerSocket.open() and Socket.open(). If the two core
classes with these methods were implemented correctly, this would be caught by the Security
Manager and a security exception thrown, but the core Java classes in the susceptible virtual
machines assume that ServerSocket.open() and Socket.open() are trustable and therefore do not
need to be checked with the Security Manager, even though these two methods might have been
overloaded. This allows an applet to create a ServerSocket or Socket and communicate with
hosts other than the origin server as well as allowing the applet to become a server on a local port.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Note that this flaw alone does not allow the server to advertise files on the client system; it simply
allows the applet to accept http connections from client machines.

The second flaw, which allows an applet to read/modify/delete files on the client machine, is a
flaw in the Security Manager of Netscape’s Java Virtual Machine. When a Java Applet attempts
to open a URLInputStream or URLConnection, the core class asks the Security Manager if the
applet has the privilege to open a connection with the specified URL. When the Netscape
Security Manager is presented with a URL specifying a local path that has been constructed in a
certain way, the Security Manager incorrectly says that the applet has the privilege to open the
connection. This leads to the ability of an applet to read/modify/delete files on the local machine.

These two flaws are used together by Brown Orifice to turn the client browser into an http server
that allows almost anyone in the world to read/modify/delete files residing on the client (turned
server) machine.

What Does Microsoft’s Virtual Machine Do That Prevents Both These Flaws?
For the first flaw, Microsoft’s Virtual Machine is protected because the core classes, quite
correctly, do NOT trust ServerSocket.open() and Socket.open(). The Security Manager correctly
throws the following exception8:
com.ms.security.SecurityExceptionEx[BOServerSocket.]: cannot access 8080

at com/ms/security/permissions/NetIOPermission.check
at com/ms/security/PolicyEngine.deepCheck
at com/ms/security/PolicyEngine.checkPermission
at com/ms/security/StandardSecurityManager.chk
at com/ms/security/StandardSecurityManager.checkListen
at java/net/ServerSocket.
at java/net/ServerSocket.
at BOServerSocket.
at BOHTTPD.init
at com/ms/applet/AppletPanel.securedCall0
at com/ms/applet/AppletPanel.securedCall
at com/ms/applet/AppletPanel.processSentEvent
at com/ms/applet/AppletPanel.processSentEvent
at com/ms/applet/AppletPanel.run
at java/lang/Thread.run

For the second flaw, Microsoft’s Virtual Machine is protected because Microsoft’s custom
Security Manager strictly disallows URL connections to the local machine.

What, If Anything, Is in Place to Prevent Similar Flaws From Being Exploited?
Given the current state of the practice in software development there can be no credible guarantee
from any of the vendors that their Java VM or the core classes are implemented 100% correctly.
Exacerbating the situation is the inherent complexity of the Java Security Model, which almost
guarantees that more, as yet undetected flaws, exist in all implementations. Only continued,
diligent searching will weed-out some of the remaining flaws while, hopefully, not introducing

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

new ones.

Conclusion
“Brown Orifice” shows how simple, small mistakes in the implementation of the large and
complex Java Virtual Machine and trusted core classes can lead to serious security holes. If the
Java VM and the core classes are not secure then downloaded Java code is not secure, and thus
your client machine is not secure. Since it is beyond our capability to guarantee the security of
the Java VM and core classes, all of us using browsers and allowing applets to execute are
accepting some indeterminate level of threat to having our machines catastrophically
compromised.

Acknowledgments
Thanks are due Tyrel McQueen without whom this paper would never have been completed.

References
“What is the Java™ Platform?” 19 October 1999. URL: http://java.sun.com/nav/whatis/ 1.
(13 August 2000).
“Java Security API.” 11 Aug. 2000. URL: http://java.sun.com/security/ 2.
(13 Aug. 2000).
“Current Security Notes.” Netscape Security Notes. 8 Aug. 2000. URL: 3.
http://home.netscape.com/security/notes/index.html
(13 Aug. 2000).
Brumleve, Dan. “Brown Orifice HTTPD.” 10 Aug. 2000. URL: 4.
http://www.brumleve.com/BrownOrifice/BOHTTPD.cgi
(12 Aug. 2000).
McGraw, Gary and Edward Felten. “Securing Java.” New York: Wiley, 1999.5.
“Microsoft VM.” Microsoft Technet Security Bulletins. 3 Aug. 2000. URL: 6.
http://www.microsoft.com/technet/security/current.asp?productID=23
(13 Aug. 2000).
“Experts warn of Netscape security hole.” 8 Aug. 2000. URL: 7.
http://www.usatoday.com/life/cyber/tech/review/crh387.htm
(8 Aug. 2000).
“Articles: Java Security Hole Make Netscape Into Web Server.” 6 Aug. 2000. URL: 8.
http://slashdot.org/comments.pl?sid=00/08/06/0222241&cid=208
(12 Aug. 2000).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix A
Core classes are as follows:
All Three JVM’s Microsoft Specific* Netscape Specific* Sun Specific*
java.applet com.ms.activeX netscape.plugin sun.audio
java.awt com.ms.applet netscape.net sun.awt.image
java.awt.datatransfer com.ms.awt netscape.javascript sun.beans.editors
java.awt.event com.ms.beans netscape.security sun.beans.infos
java.awt.image com.ms.com sun.io
java.beans com.ms.debug sun.misc
java.io com.ms.dll sun.net
java.lang com.ms.fx sun.net.ftp
java.lang.reflect com.ms.io sun.net.nntp
java.math com.ms.lang sun.net.smtp
java.net com.ms.license sun.net.www
java.rmi com.ms.net
java.rmi.dgc com.ms.object
java.rmi.registry com.ms.packagemanager
java.rmi.server com.ms.security
java.security com.ms.ui
java.security.acl com.ms.util
java.security.interface com.ms.vm
java.sql com.ms.win32
java.text
java.util
java.util.zip

* The current Microsoft Virtual Machine implements all of the Microsoft Specific packages, but
also some (but not all) of the Netscape or Sun Specific packages. Neither the Netscape nor the
Sun Virtual Machine implement any of the Microsoft Specific packages.

