
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Free Tools for Network Security
Jeffrey Shuron
May 16, 2001
Version 1.2d

Congratulations! You’ve just been appointed the person in charge of information and
network security for your company. Not only do you need to ascertain what is running
on your network from a hardware and software standpoint, but also what security risks
exist and how to eliminate them. The tools that allow someone to accomplish the task of
finding security breaches in a network are numerous indeed. While a good number of
these tools have a price tag associated with them, there are a number of free tools that you
can download to aid in the never-ending struggle to locate and patch security
vulnerabilities. We will take a look at Nmap (the popular port scanner), and Ethereal (a
packet sniffer). Both are excellent tools that will prove advantageous many times over.

One caveat that must be mentioned is what operating systems these tools will run on.
Nmap will only run on Unix, or a Unix-type platform. Ethereal will run on either a
Windows or a Unix-type system. To install either on a Unix or Unix-type platform
please consult the installation documentation at the specific web site.

NMAP

Nmap is the popular port scanner courtesy of Fyodor at www.insecure.org. According to
a Security Watch article in InfoWorld from July of 1998, “If your goal is to understand
your network from a 40,000-foot view, then Windows port scanning tools will suffice.
But if you’re serious about your security and looking for the holes that crackers will find,
then take the time to install a Linux box and use nmap.”1

So what does Nmap do, and why is it so useful? Nmap is a utility that will allow an
individual to scan an entire network or a single host, allowing you to discover what
services are running on individual boxes along with what hosts are actually up and
running. This tool will give you the opened ports on a particular host, allowing you to
see what service someone could connect to. Important? You bet it is! Let’s say that a
new server farm is about to go live on your network. Are you going to allow someone to
place a new server on your network without knowing what ports it’s listening on? Let’s
hope not! Nmap allows you to perform various types of scans to gather information
about your network so that you can take the appropriate measure to make sure that the
machines are as secure as possible.

One note before we continue. We’re not going to go in depth on TCP, UDP, and ICMP
protocols. If any part of this paper raises question, please consult your favorite tome.

Before we begin to run some sample scans, we’ll take a look into the types of scans
Nmap can perform, and what some of the command line options are (There is a GUI
interface for Nmap for those who are so inclined2,3).

Nmap supports, among others, the following techniques: TCP connect (), TCP SYN (half
open), ftp proxy (bounce attack), ICMP (ping sweep), FIN, ACK sweep, Xmas Tree,
SYN sweep, UDP, and Null scans. You can also do OS detection via TCP/IP
fingerprinting4, decoy scanning, and fragmentation scanning.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The command line syntax for Nmap looks like this:

 Nmap [Scan Type(s)] [Options] <network or host #1…..[#N]>

Here are some of the scan types, followed by a brief description.

-sT TCP connect () scan: The basic TCP scan. It is easily detected, and will generate

connection errors for any service which accepts the connection then has it shut
down.

-sS TCP SYN scan: A “half-open” scan, as you never open a full TCP connection via
 the three-way handshake. A SYN is sent, and a SYN | ACK reply means the port
 port is listening while a RST replay indicates a closed port. A SYN | ACK reply
 generates a RST to tear down the connection. This type of scan is harder to

detect.

-sF Stealth FIN, Xmas Tree, and Null scans: These scans are useful in testing the
-sX ability to scan through a firewall/filtering device undetected. These scans are
-sN recommended for experts.

-sP Ping scanning: This option allows you to perform a ping sweep without doing
 any actual scanning.

-sU UDP scans: Nmap sends a 0 byte UDP packet to each port on the scanned
 machine. An ICMP unreachable reply means the port is closed.

-sA ACK scan: This scan is used primarily to map out firewall rule sets, determining

if it is doing plain packet filtering, or stateful inspect

-sR RPC scan: Takes all the UDP/TCP ports found and floods them with SunRPC

Null command to figure out if they are RPC ports.

Now we will list some general options available with a brief description. While there is
no need to add any of the options, you will find some of them valuable when performing
scans.

-P0 Don’t ping hosts before scanning them. Handy when ICMP echo is disabled

through a firewall.

-PT Determine what hosts are up by using TCP ping. Instead of ICMP requests, ACK
 packets are sent out on the network. A RST response means the host is alive

-PI Uses a true ping packet. Also looks for subnet-directed broadcast addresses on

your network.

-O Used to identify the OS of the host via TCP/IP fingerprinting.

-v Verbose mode. This shows you more information about what is taking place

during the scan.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

-h This option will display a help screen in quick reference format, as the man page

for Nmap is quite extensive!

-oN <logfilename>
 Logs the results of the scan in readable format to a file you specify.

-iL <inputfilename>
 Allows you to read the target(s) specified from a file rather than the command

line. The file should contain hosts separated by commas, or spaces, or new lines.

-p Use this option to specify what ports, or range of ports, you want to scan.

-F Use this option to scan only the ports listed in the services file of Nmap. This will

give you a much faster scan than trying all 65535 ports per host.

-D <decoy1, decoy2,…..me>
 This allows you to make your scan appear to come from multiple hosts at once.

Make sure the decoys you are using are up or you could accidentally SYN flood
your targets!

-n NEVER do reverse DNS resolution on active IP addresses found.

-R ALWAYS do reverse DNS resolution.

We’re not done yet! Now we’ll take a look at some timing options that can be used when
the default is insufficient.

-T <Paranoid|Sneaky|Polite|Normal|Aggressive|Insane>
 These are timing options to let Nmap know how you would like to proceed with

the scan.
Paranoid mode is extremely slow, and waits 5 minutes between packets. This is
ideal for avoidance of IDS systems.
Sneaky is similar, but it only waits 15 seconds between packets.
Polite is used to prevent machines from crashing on the network, waiting 0.4
seconds between packets.
Normal is the Nmap default, trying to run as quickly as possible without missing
hosts.
Aggressive mode has a 5-minute waiting period between hosts. It waits no more
than 1.25 seconds for a response.
Insane should only be used if you don’t mind losing information, or are dealing
with a very fast network.

Please note that using the Paranoid or Sneaky options should really be used to test the
validity of your own network monitoring tools, or to examine suspicious hosts on the
internal network only.

But wait, there’s more! We need to cover one more thing before we start having some
fun with Nmap; target specification. Target specification covers everything that isn’t an
argument or option. Basically it’s the hosts, or networks that you would like to scan.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Let’s say that you want to scan an entire class B network. You could use ‘192.168.*.*’
(remember that in Unix an ‘*’ is interpreted by command shells, so if you use them don’t
forget to put single quotes around your argument). Another way would be
192.168.0.0/16. You could even specify a range like 192.168.1-5.50-175.

The moment of truth. Now we will take a look at some sample scans and what the
command syntax looks like for each, along with parts of the results.

Nmap (V. nmap) scan initiated 2.53 as: nmap -sS -sR -v -D
216.32.74.53,64.58.76.176,216.239.37.100 -oN /mnt/hda1/temp/nmap_3 63.50.x.x
Interesting ports on pool-63.50.x.x.bob.grid.net (63.50.x.x):
(The 1512 ports scanned but not shown below are in state: closed)
Port State Service (RPC)
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
80/tcp open http
98/tcp open linuxconf
111/tcp open sunrpc (rpcbind V2)
113/tcp open auth
443/tcp open https
513/tcp open login
514/tcp open shell
6000/tcp open X11

As you can see, this host was scanned using the TPC SYN scan (-sS) combined with the
RPC scan (-sR). Three decoy IP addresses (-D) were used to evade detection. The file
was sent, in readable form (-oN) to the specified file. Our target was IP address
63.50.x.x. Take a look at the ports Nmap returned as “listening”. This host could be a
combination web/ftp server running some flavor of Linux. If we were “black hats” this
information would narrow the scope of attacks that we could run against the target
system, such as a web site hack or ftp exploit. Refer to Appendix A for a printout of the
netstat command. This shows what the scanned host saw.

Nmap (V. nmap) scan initiated 2.53 as: nmap -sT -oN /mnt/hda1/temp/nmap_1
192.168.20.52
Interesting ports on (192.168.20.52):
(The 1511 ports scanned but not shown below are in state: closed)
Port State Service
7/tcp open echo
9/tcp open discard
13/tcp open daytime
17/tcp open qotd
19/tcp open chargen
25/tcp open smtp
80/tcp open http
135/tcp open loc-srv
139/tcp open netbios-ssn
443/tcp open https
1025/tcp open listen

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1433/tcp open ms-sql-s

This test host was scanned using the basic TCP connect () scan (-sT), and the output was
sent to a specific file for late dissection (-oN). The one opened port that stands out is

TCP port 1433. This indicates that this host is running a version of SQL Server from
Microsoft. One possible exploit could be an attempt to connect to the server and logon
using the default administrator username “sa” and a blank password.

Great, you say. So how can I apply this to my network? Glad you asked! In every
company there is always some individual(s) that load extra services on their machines for
whatever reason. One part of any defense-in-depth strategy is to make sure all hosts are
running only the services necessary. So let’s take this one step further and look at 3
scans of a network (one sample each from the last two). The first scan is a ping sweep to
see what hosts are alive on the network. The second scan uses the OS fingerprinting
scan, and a TCP scan without pinging the hosts. The third scan is a UDP scan. I’ll
explain the method to my madness at the conclusion of the examples.

Nmap (V. nmap) scan initiated 2.53 as: nmap -sP -v -oN /mnt/hda1/temp/nmap_ping
192.168.x.0/24
Host (192.168.x.0) seems to be a subnet broadcast address (returned 6 extra pings). Still
scanning it due to positive ping response from its own IP.
Host (192.168.x.1) appears to be up.
Host (192.168.x.2) appears to be up.
Host (192.168.x.3) appears to be up.
Host (192.168.x.5) appears to be up.
Host (192.168.x.6) appears to be up.
Host (192.168.x.7) appears to be up.
Host (192.168.x.8) appears to be up.
Host (192.168.x.9) appears to be up.
Host (192.168.x.15) appears to be up.
Host (192.168.x.30) appears to be up.
Host (192.168.x.31) appears to be up.
Host (192.168.x.50) appears to be up.
Host (192.168.x.51) appears to be up.
Host (192.168.x.54) appears to be up.
Host (192.168.x.55) appears to be up.
Host (192.168.x.56) appears to be up.
Host (192.168.x.200) appears to be up.

Interesting ports on (192.168.20.54):
(The 1518 ports scanned but not shown below are in state: closed)
Port State Service
135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open listen
1058/tcp open nim

TCP Sequence Prediction: Class=random positive increments

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Difficulty=11216 (Worthy challenge)

Sequence numbers: 945F7F34 94607639 946155F8 94625263 9462ECCD 94638607
Remote operating system guess: Windows 2000 RC1 through final release

Interesting ports on (192.168.x.3):
(The 1442 ports scanned but not shown below are in state: closed)
Port State Service
137/udp open netbios-ns
138/udp open netbios-dgm
445/udp open microsoft-ds
500/udp open isakmp
3456/udp open vat
5632/udp open pcanywherestat

Ok. We see that this is a small network by the number of hosts that responded during the
ping sweep. One of the hosts is found to be running Windows 2000. The last scan shows
pcAnywhere running on the host. Now, after finding out what each host does from the
ping sweep, we find that 192.168.x.3 is a server. A server running pcAnywhere??? If
improperly configured, that server could be exploited from another host. My point is that
never take anything for granted. You would need to make sure that there is a valid reason
for pcAnywhere to be running on a server. If so, take the necessary steps to secure it
(passwords, encryption, etc.).

SUMMARY

Nmap is a valuable port scanning tool that can be used to discover the services running
on your network hosts. As an integral part of your security toolbox Nmap should be run
on a regular basis to uncover rogue applications on unauthorized hosts. Nmap can also
be used to ferret out Trojan horses such as SubSeven and Back Orifice. Used properly
and wisely, Nmap could be an outstanding addition to your defense-in-depth strategy. If
you wish to examine the Namp command line options in depth, please visit
www.insecure.org/namp.

One final note. Please make sure you have written permission to run Namp on your
network. There is always the possibility that a scan could cause disruption to normal
network traffic or even disable machines.

ETHEREAL

Ethereal is a protocol analyzer originally authored by Gerald Combs. It is available from
www.ethereal.com. As stated earlier it can be run on either a Windows or Unix-type
platform. Ethereal allows you to view real-time packet data from a network by decoding
the traffic, or load a file that had been saved from a previous capture. You can also read
the capture files of other programs such as LanAlyzer, Sniffer, Sniffer Pro, and NetXray.
Ethereal runs as a GUI, but you can run it from a command line using the program
Tethereal, which is part of the Ethereal download.

In order to understand Ethereal that much better, a working knowledge of TCP/IP and
“sniffing” is key. There is an excellent FAQ5 by Robert Graham, who was one of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

authors for Network General Corporation’s Sniffer Network Analyzer, discussing such
things as how to discover if someone is sniffing your network and protocol analysis. An
excellent book for reference or learning TCP/IP is Internetworking with TCP/IP Vol. I:
Principles, Protocols, and Architecture by Douglas Comer.

First we will take a look at some of the command line options for Ethereal, followed by
some examples of capture and display filters, and end with some real-life examples.

Ethereal comes with, among others, the following options:

-c Sets the default number of packets to read when capturing live data.

-f Sets the capture filter expression.

-n Disables network name resolution, such as hostname and TCP or UDP port

names.

-r Reads the packet data from file <filename>.

-R If reading a captured file (with the –r option) this option causes the specified

display filter to be applied. Packets not matching the filter are discarded.

-Q Has Ethereal exit when a capture session has ended, and is useful in batch mode if

using the –c option. This option does require the –i and –w parameters.

-i The name of the network interface or pipe that will be used for capturing live

packets. Pipe names should be a named pipe or “-“. Libpcap format must be used
for data read from pipes.

-w Sets the default capture file name.

-p Takes the interface out of promiscuous mode.

Capture filter syntax and display filter syntax are different, and cannot be substituted for
one another. Both allow you to filter out “noise” either during or after a session so that
you are able to view only the information that you deem necessary.

Capture filters contain one or more “primitives” and their keywords. A primitive consists
of an id, which is a name or number, preceded by one or more qualifiers. The three types
of qualifiers are type, dir, and proto. Let’s take a closer look:

type What the id or name refers to. Host, port, and net are the possibilities.

dir The transfer direction to and/or from the id. The options are src, dst, src or dst,

and src and dst. If no dir qualifier exists src or dst is the default.

proto Restricts the match to a specific protocol. Possible choices are ether, fddi, ip,

arp, rarp, decent, lat, sca, moprc, mopdl, tcp, and udp.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

There are special primitives that are the exception. They are gateway, broadcast, less ,
and greater. You create complex filters by using and, not, and or in combination with
multiple primitives. Sounds confusing you say? Why don’t we take a look at some
examples.

src host 192.168.1.100- Will capture packets that come from the host with IP address

192.168.1.100 only.

src net 192.168.1.0/24- Will capture packets if the source IP address has a network

number of 192.168.1.x

‘gateway test and (port ftp and smtp)’- Will capture all traffic going through the

gateway named test that is either on port 21 (ftp) or 25 (smtp). Remember quotes
are needed in Unix so the shell won’t misinterpret the ().

‘tcp[13] & 3 != 0 and not src and dst net localnet’- Will show all the start and end

packets of every TCP conversation that includes a non-local host (SYN and FIN
packets).

For a complete description of the capture filters please see the following link:
www.ethereal.com/tcpdump.8.html.

Display filters allow you to filter for such things as a specific value in a certain protocol,
or to check and see if a certain field or protocol was captured. One simple example
would be to use udp to display any udp traffic. Fields, using English abbreviations or C
programming symbols, can be compared against values. Some examples would be equal
(eq or ==), not equal (ne or !=), and greater than (gt or >). You can also use logical
expressions to combine filters. Some logical expressions are logical AND (and or &&),
logical NOT (not or !), and logical OR (or or | |). It would take some time to explain
every nuance, so we’ll look at some examples. For an in-depth look at display filters
please see www.ethereal.com/ethereal.1.html.

ip.addr == 192.168.0.0/16- Would show all packets in the 192.168.0.0 B class network.

tcp.port == 5190 && tcp.port == 21- Show all packets using AOL Instant Messenger

and the File Transfer Protocol.

! (ip.addr 10.1.1.138 or ipx)- Show all packets except those from host 10.1.1.138 and

leave out any ipx traffic as well.

Now that we have a basic understanding of filters, let’s take a look at some real examples
of what Ethereal can do for you.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Above we have output from Ethereal showing an FTP session. Notice anything
interesting? YES, you can see the username and password in plain text. Quite handy if
you wanted to monitor unauthorized attempts to your FTP server.

Now suppose you would like to monitor Internet traffic from a specific network because
of some complaints. Here’s what the capture filter would look like:

Our source network is the 192.168.20.0 net, and we want only port 80 traffic. Also
checked is the enable name resolution, to make it easier to view actual site names. You
could be more specific in the filter if you wished by adding the destination of a forbidden
site. And here’s part of the output:

Ethereal has two other panes that can give you extensive information about the actual
packets, as well as a hex dump as shown below:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

One way to filter traffic that you are looking for is to highlight a field in one of the
windows. You can then go up to the menu and click on Display, and then choose Match
Selected. Ethereal will show you packets that contain your selection. Another
convenient feature allows you to colorize your filters. Say for example that you were
looking for NetBus and SubSeven traffic on your network. You could create a color filter
for the ports that these trojan viruses use.

Yet another way to use Ethereal to as an added layer of defense-in-depth would be to get
yourself a file that contained packet information for say a Denial of Service attack. You
could use Ethereal’s powerful capture filtering capabilities. Let’s say that you wanted to
watch your old Windows NT IIS server for Snork attacks. You could write a capture
filter that looked like this: dst host 192.168.1.10 && dst port 135 && (src port 7 or 9 or
135). This particular filter says to capture traffic going to IP address 192.168.1.10 (IIS
server) and that has a destination port of 135 (tcp or udp) and a source port of 7, 9, or
135.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The best way to put Ethereal to the test, however, is to experiment with display and
capture filters. You’ll eventually learn what you need to filter, but make sure you’ve
established a baseline of your network traffic first. It will make writing filters easier,
when you know what you don’t need to look at.

SUMMARY

Ethereal is an excellent packet-capturing tool that will allow you to see just what’s
traveling over your network. With the proper filters and, Ethereal could act in
conjunction with your IDS system to give you more coverage of your network. As
always, please have written and signed permission before you start sniffing traffic.

CONCLUSION

I thank you for your time, and hope that you are ready to add Namp and Ethereal to your
security toolkit. Both tools will greatly aid in the battle against those who mean to do
your network and its information harm. A small investment in the time that it takes to
learn to use both tools will reap satisfying results in the immediate future.

There are many other free security tools available on the Internet. Your favorite search
engine will help get the job done.

1 McClure, Stuart and Scambray, Joel. “ Free Windows-based scanners are pl enti ful, but only Asmodeus
shows promise.” InfoWorld 6 July 1998.
URL: http://www.infoworld. com/cgi-bin/displayNew.pl?/security/980706sw.htm

2 NmapFE is available at the following link as a RedHat Program Manager (RPM) install.
URL: http://www.insecure.org/nmap/dist/nmap-frontend-0.2.53-1.i386. rpm

3Nmap is bundled with NmapFE as a regular gzip file.
URL: http://www.insecure.org/nmap/dist/nmap-2.53.tgz

4An arti cle on OS fingerprinting.
URL: http://www.insecure.org/nmap/nmap-fingerprinting-arti cle.html

5Graham, Robert. “ Sniffing (network wiretap, sniffer) FAQ”.
URL: http://www.robertgraham. com/pubs/sni ffi ng-faq.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendix A

** This was derived using the netstat -t •u command**

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 29 pool-63.50.x.x:sunrpc 64.9.x.x:16527 LAST_ACK

tcp 0 0 pool-63.50.x.x:1032 64.9.x.x:1352 CLOSE

tcp 0 0 *:20337 *:* LISTEN

tcp 0 0 think:1024 *:* LISTEN

tcp 0 0 pool-63.50.x.x.kgp:X 64.9.x.x:16508 SYN_RECV

tcp 0 0 pool-63.50.x.x.kgp:X 64.9.x.x:16509 SYN_RECV

tcp 0 0 pool-63.50.x.x.kgp:X 64.9.x.x:16511 SYN_RECV

tcp 0 0 *:X *:* LISTEN

tcp 0 0 pool-63.50.x.x.k:www 64.9.x.x:16509 SYN_RECV

tcp 0 0 pool-63.50.x.x.k:www 64.9.x.x:16511 SYN_RECV

tcp 0 0 pool-63.50.x.x.k:www 64.9.x.x:16508 SYN_RECV

tcp 0 0 *:www *:* LISTEN

tcp 0 0 pool-63.50.x.x:https 64.9.x.x:16508 SYN_RECV

tcp 0 0 pool-63.50.x.x:https 64.9.x.x:16509 SYN_RECV

tcp 0 0 pool-63.50.x.x:https 64.9.x.x:16511 SYN_RECV

tcp 0 0 *:https *:* LISTEN

tcp 0 0 pool-63.50.x.x:linuxconf 64.9.x.x:16508 SYN_RECV

tcp 0 0 pool-63.50.x.x:linuxconf 64.9.x.x:16509 SYN_RECV

tcp 0 0 pool-63.50.x.x:linuxconf 64.9.x.x:16511 SYN_RECV

tcp 0 0 *:linuxconf *:* LISTEN

tcp 0 0 pool-63.50.x.x:login 64.9.x.x:16508 SYN_RECV

tcp 0 0 pool-63.50.x.x:login 64.9.x.x:16509 SYN_RECV

tcp 0 0 pool-63.50.x.x:login 64.9.x.x:16512 SYN_RECV

tcp 0 0 pool-63.50.x.x:login 64.9.x.x:16513 SYN_RECV

tcp 0 0 pool-63.50.x.x:login 64.9.x.x:16515 SYN_RECV

tcp 0 0 *:login *:* LISTEN

tcp 0 0 pool-63.50.x.x:shell 64.9.x.x:16512 SYN_RECV

tcp 0 0 pool-63.50.x.x:shell 64.9.x.x:16513 SYN_RECV

tcp 0 0 pool-63.50.x.x:shell 64.9.x.x:16515 SYN_RECV

tcp 0 0 *:shell *:* LISTEN

tcp 0 0 pool-63.50.x.x:telnet 64.9.x.x:16508 SYN_RECV

tcp 0 0 pool-63.50.x.x:telnet 64.9.x.x:16509 SYN_RECV

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

tcp 0 0 pool-63.50.x.x:telnet 64.9.x.x:16511 SYN_RECV

tcp 0 0 *:telnet *:* LISTEN

tcp 0 0 pool-63.50.x.x.k:ftp 64.9.x.x:16508 SYN_RECV

tcp 0 0 pool-63.50.x.x.k:ftp 64.9.x.x:16509 SYN_RECV

tcp 0 0 pool-63.50.x.x.k:ftp 64.9.x.x:16511 SYN_RECV

tcp 0 0 *:ftp *:* LISTEN

tcp 0 0 pool-63.50.x.x.k:ssh 64.9.x.x:16508 SYN_RECV

tcp 0 0 pool-63.50.x.x.k:ssh 64.9.x.x:16509 SYN_RECV

tcp 0 0 pool-63.50.x.x.k:ssh 64.9.x.x:16511 SYN_RECV

tcp 0 0 *:ssh *:* LISTEN

tcp 0 0 pool-63.50.x.x.:auth 64.9.x.x:16508 SYN_RECV

tcp 0 0 pool-63.50.x.x.:auth 64.9.x.x:16509 SYN_RECV

tcp 0 0 pool-63.50.x.x.:auth 64.9.x.x:16511 SYN_RECV

tcp 0 0 *:auth *:* LISTEN

tcp 0 0 pool-63.50.x.x:sunrpc 64.9.x.x:16509 SYN_RECV

tcp 0 0 pool-63.50.x.x:sunrpc 64.9.x.x:16511 SYN_RECV

tcp 0 0 *:sunrpc *:* LISTEN

udp 0 0 think:1059 think:1059 ESTABLISHED

udp 0 0 *:tftp *:*

udp 0 0 *:sunrpc *:*

some interesting output from /var/log/messages

May 11 12:53:53 thinkunix sshd[2456]: Did not receive ident string from 64.9.x.x.

May 11 12:53:56 thinkunix telnetd[2457]: ttloop: peer died: EOF

May 11 12:54:07 thinkunix xinetd[412]: warning: can't get client address: Invalid argument

May 11 12:54:20 thinkunix ftpd[2455]: FTP session closed

May 11 12:55:08 thinkunix rshd[2461]: Connection from 64.9.x.x on illegal port

