
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
David Rothermel Page 1 1/15/2005 

The Zkey Exploit: The Capability of Malicious JavaScript Code 
 

By David Rothermel 
August 28, 2000 

 
 
 

On August 14, a hacker who calls himself “Blue Adept” completed an exploit of 
the Zkey.com information storage portal.  The exploit compromised the portal’s 
security by using malicious JavaScript code to capture usernames and 
passwords of Zkey email users.  This particular exploit is a good example of just 
one variety of a “cross-site” scripting attack, where the vulnerability is based on 
the violation of trust resulting from a malicious script or code running within the 
victim’s site or browser. 
 
The Zkey portal provides its approx. 300,000 users with free SSL-protected file 
storage space and web-based email services.  The exploit allowed a malicious 
Zkey account user to embed malicious JavaScript code in an email that could 
then be sent to another Zkey users email account.  When an unsuspecting Zkey 
user read the trojanized email, the embedded JavaScript code took complete 
control of the user-interface.  A message box was displayed indicating the 
session connection had expired, and using a copied Zkey login dialog box, forced 
the user to re-login.  Upon doing so, the code compromised the username and 
password of the victim and sent it to the malicious users account on another 
server.  This particular scripting exploit could just have easily been modified to 
attack other Zkey portal services available to the victim user.  One important note 
is that the exploit required the user to respond to the login prompt, and 
functionality was somewhat browser specific.  
 
Through a bit of programming and testing with HTML tags, Blue Adept found a 
way to embed all of his malicious code inside a form’s <textarea> tag.  He also 
used a transparent gif that covered the entire message and used an 
onMouseOver command to trigger the embedded code.  He then proceeded to 
create code that would control the Zkey GUI.  He experimented with how much 
script he could use in the SSL session without getting a browser warning that the 
message contained insecure elements or content.  He decided to use a spoofed 
re-login approach, so upon the user clicking any link in any frame, the script runs 
the re-login procedure.  A login box is displayed with a message indicating “you 
timed out of your session, please re-login”.  When the user does so, their 
username/password data is forwarded to a Perl script that enters the information 
on a database on the hackers’ server instead of the Zkey server.  To maintain the 
appearance of normality, the Perl script sends the user back to the Zkey server 
and logging them in to continue their session. [2] 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
David Rothermel Page 2 1/15/2005 

For full details on Blue Adept’s code testing efforts, and to view the JavaScript 
source code that he used, explore the following URL’s: 
 

http://www.because-we-can.com/zkey/notes.htm 
http://www.because-we-can.com/zkey/trojan.txt 

 
To grasp the seriousness of the exploit, consider the following ramifications.  
“Once a malicious user knows the username/password of the victim’s Zkey 
account, they can assume full control of the account, including the ability to: 

• Download files from the victim’s z-drive. 
• Delete/replace files from the z-drive. 
• Access/alter the victim’s contact information. 
• Access/alter the victim’s calendar/scheduling information. 
• Change the victim’s username/password, locking them from their account. 
• Access any shared drive z-drives from secondary accounts. 
• Read/delete the victim’s Zkey-email or send Zkey-email in the victim’s 

name. 
• Access email from any secondary email accounts configured for mail 

checking.”[1] 
 
Upon successfully testing his completed exploit, Blue Adept, apparently a “white 
hat” hacker did not use the exploit for his own gain, but instead immediately tried 
to notify the Zkey customer support and webmaster of the vulnerability and 
indicated that the exploit would be made public.  He recommended to Zkey that 
they should warn their users and fix the problem.  Three days later he still had 
not received a reply from Zkey and went public with the vulnerability.  When 
contacted by a web-based news service regarding the exploit, the company 
president of Zkey acknowledged the existence of the problem and indicated that 
it had been resolved.  He also downplayed the exploit’s severity and capability.  
 
The hacker, Blue Adept notes that “Zkey was an interesting exploit for two 
reasons.  First, the site is SSL’d – served off a secure socket layer (medium 
grade encryption key RC4-40) which encrypts data in transit and also restricts 
the kinds of cross-site scripting techniques that can be used without alerting the 
user to suspicious activity.  Secondly, the email service itself has filters in place 
to strip out malicious code from the body of email messages.  But both security 
measures were surmountable.”[2] 
 
This exploit demonstrates that cross-site scripting attacks cannot be prevented 
by the use of SSL servers alone since they don’t validate the legitimacy of the 
data being transmitted.  Likewise, “malicious code that attempts to connect to a 
non-SSL URL may generate warning messages about the insecure connection, 
but the attacker can circumvent this warning simply by running an SSL-capable 
web server.” [3] This type of attack is not vendor-specific, every web server and 
browser is effected. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
David Rothermel Page 3 1/15/2005 

There are two deterrents available to end-users to reduce their risks to such 
attacks. First, users should disable all JavaScript and active content functionality, 
such as ActiveX, in their browsers.  In certain instances, this may disable desired 
functionality that the user requires.  This will not eliminate the risk, and be aware 
that even if a browser does not support scripting, an attacker could still alter the 
appearance, behavior, or operation of a site’s web page.  Second, users should 
be discrete about what links they use to visit a web site, alternatively they should 
type the address into their browser. 
 
Developers on the other hand should apply any relevant vendor patches, check 
that their pages do not contain undesired HTML tags and possibly filter data for 
specific characters to detect malicious code.  For more specific detail on these 
steps refer to: http://www.cert.org/tech_tips/malicious_code_mitigation.html . 
 
Blue Adept turned out to be a good guy, just imagine if he had not. 
 
 
 
References: 
                                                             
[1] Unknown. “The Zkey Exploit And How To Protect Yourself”. 
URL: http://www.because-we-can.com/zkey  (8/17/2000). 
 
[2] Adept, Blue. “Blue Adept’s Notes On Zkey Exploit”. 
URL: http://www.because-we-can.com/zkey/notes.htm  (8/17/2000). 
 
Delio, Michelle. “Scary Hole Found at Zkey”. 
URL: http://www.wired.com/news/technology/0,1282,38292,00.html  (8/18/2000). 
 
Unknown. 
URL: http://www.because-we-can.com/zkey/trojan.txt  (8/17/2000). 
 
Unknown. “Zkey Security Hole Compromises User Accounts”. 
URL: 
http://www.securiteam.com/securitynews/Zkey_security_hole_compromises_user
_accounts.html  (8/21/2000). 
 
[3] Unknown. “CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in 
Client Web Requests".  Last Revised: February 3, 2000. 
URL: http://www.cert.org/advisories/CA-2000-02.html (8/28/2000). 
 
Unknown. “Cross-Site Scripting Security Exposure Executive Summary”. 
(2/2/2000). 
URL: http://www.microsoft.com/technet/security/ExSumCS.asp (8/28/2000). 


