
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Linux Security Auditing

Paul Whelan

GIAC ID: paul.wh001
GIAC Security Essentials Certification (GSEC)

Version 1.2e
Original submission – on extension

Course taken at Portsmouth, NH March, 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Introduction
One of the most important tools for an administrator is the audit trail. When something
goes wrong or something seems amiss this is the first place the trained administrator will
look. This is true not only for support personnel troubleshooting issues but especially for
security administrators who are investigating possible system breach. The significance of
the audit trail should never be underestimated when attempting to maintain a reasonably
secure system. This means that auditing should be taken into consideration in the overall
system design when determining what is needed for system capacity and the ability of
selected applications to log meaningful data.
Effective and successful auditing involves more than relying on the log files of
applications and services. It involves deciding where to physically log the data (to local
disk or to a log server), using utilities to monitor log files and alerting upon certain events
as they happen, deploying a network sniffer or IDS to audit activity, using file integrity
checkers, and other methods. The strategy is the old “defense in depth” concept where
reliance is not placed on a single method but on several methods working in tandem.
The focus in this document is on the Linux operating system and is concerned primarily
with concept and not attempting to be a “Howto” as there is sufficient documentation for
the individual utilities and programs covered here.

Planning
When designing a system, take system auditing into account when determining the
capacity that is needed. Far too often, systems are not built with this in mind. For
example, say I want to deploy a web application server for a high volume site and I
planned for enough disk space for my apps, databases, and system files. When I see how
much space the logs are taking up due to the shear volume of requests my tendency will
be to sacrifice the logs over the application. After all, what do I have the box for in the
first place? So, I implement a poor log rotations scheme in order save on my disk space
(they’re only logs, right?). Now I’ve lost my ability to know what’s happening on my
system beyond my last log rotation. I’ve lost the ability to establish any trends or
patterns that would help me in the investigative process.
The problem with not anticipating or projecting how much space or power you will need
in the auditing process is that when it comes down to running my services or keeping my
logs – the logs always lose. The best thing a cracker can hope for is that you have poor
logging and auditing processes because if it’s not in the logs – then it didn’t happen.

Some recommendations are as follows:

• Use a separate physical disk and, if possible, a separate controller. Logging for
high volume sites can prove disk intensive and it helps to have a dedicated disk
and controller to increase performance.

• Use a dedicated partition if the above is not possible or if you are using a RAID
array. The problem with this approach is in knowing how much space to allocate
to the partition. Too little space and you will run out of disk (and logging) in little
time. Too much and you’ve begun to waste space that could be used for other
things. If available, check to see how much data is already being logged and use
that as a guideline for a minimum starting point. Also, on Linux systems, you

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

should put your logs on a separate partition to prevent a DOS attack by filling up
your file system where your system binaries and files reside.

• Memory and CPU. You don’t necessarily need more memory just to log data, but
if you are going to deploy sniffers, IDS, log monitors, etc., then you have to
consider how much memory and CPU cycles those services are going to take up.

• Log not only to the local disk but also log to a protected syslog server. Also,
rotate the logs off line to some form of backup media.

What to audit
Three basics are: application, file system, and network. First of all, by application I mean
services/daemons as well, or basically anything software that is executed interactively by
a user or in the background by the system. Most decently written applications have some
type of logging capabilities some are descriptive and verbose and some are as useless as a
three-legged chair (that is, if the chair is designed to have four, of course). We need to
pay attention to what written the logs. This is where you’ll find some of your most
descriptive information as to what’s going or has gone on in the system.
Audit your file system as well. What files have been added or deleted. What files have
been changed either in content or permissions? It’s interesting to find out that
/etc/passwd has changed in the middle of the night on Saturday. Or to find out why
/bin/login is giving you different output or behavior than you are used to seeing. Or why
is there a symlink from /.bash_history to /dev/null?
Network auditing can be the most interesting. The other types of logging prove
interesting when somebody has already gotten on to your system. But network auditing
can show what was happening on the network that led to the break in. Was it a buffer
overflow, was it a dos attack? The network auditing will show you that including giving
an indication of the attempted break-ins or probes to your system.

Auditing on Linux
Syslog
Syslog is the standard logging facility for Unix/Linux operating systems. On a RedHat
Linux system it stores the syslog files in /var/log and comes with “logrotate” pre-
configured to rotate the logs once a week and to keep the logs for 4 rotation cycles (1
month). You can change these default settings by editing the /etc/logrotate.conf file. For
instance you tell it to keep the logs for 52 rotations cycles (1 year based on weekly
rotations) and compress the files that were rotated. The logrotate program is an excellent
utility to maintain your log files. It basically takes the current log file, renames it
logfilename.1, if logfilename.1 already exists then it moves the existing one to
logfilename.2, it then creates a new, empty logfilename. An easy way to look at is to
remember that logfilename is always the current log and logfilename.1 is the previous.
But syslog is not without it’s shortcomings. There is a syslog replacement called syslog-
ng (syslog new generation) that was written to pick up in functionality where the standard
syslog leaves off. You can download syslog-ng from
http://www.balabit.hu/en/products/syslog-ng/ and there’s also a good article on it
published on Linux Gazette (http://www.linuxgazette.com/issue43/scheidler.html).
Standard syslog puts data into certain files on the basis of which facility the program has
called syslog. You can customize which facilities log to which files by editing the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

/etc/syslogd.conf file. But with syslog-ng you can log based on regular expressions. This
enables you to detail where syslog-ng will log what data, like, having all of the ftpd log
data written to /var/log/ftpd, or having all occurrences of “failed login” be written to
/var/log/badlogins. There is flexibility here.

Swatch/Logwatch
Most of us do not have the ability to sit down in front of a console and tail the logs all
day long. Enter Swatch and Logwatch. Swatch and Logwatch is just a couple of the
many utilities out there that can help you keep an eye on your logs. Swatch is a fairly
powerful utility in that it has the ability execute a program or script when a particular
pattern is matched. It runs as a deamon (service) tailing the log file your specify looking
for given patterns as they are written to the log file. You can configure swatch to sound a
beep, send an email, or execute a program (such as a script that will page you) when a
pattern is found. You can get real detailed with what you tell Swatch to alert you on,
thereby reducing the possible false-positives you may encounter (not eliminating –
reducing). Lance Spitzner’s Armoring Linux document recommends the use of swatch
(http://www.enteract.com/~lspitz/linux.html). You can get the latest code and documents
for swatch from http://www.oit.ucsb.edu/~eta/swatch/.
Logwatch, on the other hand, runs as a cron job that will tail your log file email you a
report (ftp://ftp.kaybee.org/pub/linux/logwatch-2.1.1.tar.gz).
The usefulness of programs like these is that you a chance of getting informed about an
event before a hacker can cover his tracks.

Tripwire/AIDE
Tripwire and AIDE are used to verify the integrity of the files on your system. It’s a
great way to know if someone has replaced /bin/login or modified /etc/passwd. But there
is a caveat to it; you have to store the database offline, preferably on a floppy or other
removable media. Why? If you leave the database on the disk then that is open game for
a hacker. What’s to stop him from updating the database with the new signatures of his
modified files? Of course, this poses a problem in administration. Most security
administrators do most of their administering remotely. How are they going to pop in a
floppy disk from miles away? Or how can the program run from a cron job if the
database is unavailable?
One way to help this problem would be to have a baseline database of your systems
binaries and configuration files (after everything has been properly configured, of course)
and store the database on read-only media, like a CD. This way the database cannot be
modified. Update the database on a regular basis (monthly, quarterly, etc.) to allow for
changes in a system (the password file may grow or shrink).
The bottom line is that these should be considered essential tools that can only be trusted
as long as the database is trusted. If the database is left on the disk – it can’t be trusted.
You can get the open source Linux edition of Tripwire from
http://www.tripwire.com/products/linux/. AIDE is available from
http://www.cs.tut.fi/~rammer/aide.html. I would recommend trying them both out.
AIDE hasn’t had the press that Tripwire has but AIDE is no slouch – it’s a very powerful
alternative to Tripwire.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Snort/Tcpdump
Snort is a network sniffer. Actually, that’s an understatement. Snort has the ability to be
a powerful network intrusion detection system, completely customizable. You can write
your own rules for snort or you can use the provided rules. Snort, depending on the rule
set, can detect attacks by looking for certain signatures and behaviors in the packets that
it looks at. More than just telling you if somebody tried to connect to UDP port 31337 on
your system Snort alert on the content or payload of the packets if it knows what to look
for (it knows what to look based on what is in the rule set).
A good thing to do to get started is to establish baselines. For a period of time take a look
at ALL the traffic. This will help you to know what can be considered “normal” traffic
patterns for the subnet you are on. You can then adjust your rule set based on these
baselines. If you alert and log everything in a production environment, it will get old fast
and you won’t want to look at any of the alerts or logs because you know 99 percent of it
is nothing you should worry about so you end up not worrying about it period.
Know your systems and know your network. Find out what’s normal traffic looks like.
Find out what unknown traffic is. For instance, on this system you’re only offering http
and ftp services – so why are there a multitude of connection attempts on port 6667?
Tcpdump is another valuable utility. It’s built using the pcap (packet capture) libraries to
give you the ability to filter output. It doesn’t come with a ready set of abilities that snort
has to offer. But you can use it to roll a little something of your own. For instance, take
a look at the Shadow Project. With Shadow, you take a tcpdump log file (a file that’s
created by running tcpdump with the –w filename switch) and parse through it with an
advanced set of predefined filters.
The benefit of snort is that it’s all “real time”. You don’t have to write all the snort data
to a database and then later on parse through it later.
At http://www.snort.org you can find binaries, source code, pre-written rule sets, add-
on/companion utilities and ample documentation. There’s even a Win32 port that I’ve
personal tested on NT/W2K with great results.
Tcpdump is pretty standard on Linux distributions but in case you don’t have it you can
get it at http://www.tcpdump.org. You can also find a link to the pcap library, which is
necessary for compiling tcpdump.

System utilities
Make use of standard system utilities such as ps, netstat, ifconfig, lsmod, w, who, last,
and find (to name a few). Use ps often to find out what’s running on your system. Is
there anything unknown or suspicious? Use netstat to find out what ports you’re listening
on and what processes have those ports open (netstat –anp | grep LISTEN). Use ifconfig
to see if any adapters have put into promiscuous mode. If you run snort then your
interface will be in promiscuous mode unless you run it with the –p switch. Use lsmod to
find out what modules are loaded on your system. Use w to find out who is currently on
the system and what processes they are running. Use “who” to find out who is currently
on the system. Use last to find out when the last logins occurred by whom and from
where.
You can also use find to discover suid files and new files or directories.
The problem with using these utilities is determining what level of trust you can place in
them. We’ll look at that issue next.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Integrity
The thing we are most concerned with on this matter is integrity. What good is all the
auditing that we can do if we can’t trust the data? There are measures you can take to
add layers of security to your implementation. Remember, security is more of a journey
than a destination (I would give credit to the source of that if I could remember where I
read it).
I want to make sure that I can trust the data I am seeing. A good rule of thumb is, a
system cannot be trusted after it’s been compromised. Don’t trust the logs; don’t trust the
file checkers or even trust system utilities – any of them. You have to be sure you can
trust them.

With syslog it’s best to not only log locally but to log off the system. This includes
logging to a remote, locked down syslog server, or logging to a line printer via lpd, or
logging to another system via a serial line. LPD may be the most impractical of those for
the average site due to it’s large use of ink and paper and the ease of which someone can
merely delete the lpd daemon (which I’ve seen done in one of the hacks I’ve
investigated). If you log remotely to another syslog server then make sure that server is
inaccessible to the rest of the Internet. When you invoke syslogd from your log server
(the machine dedicated to receive log messages from the other machines) use the “-r”
switch so it is enabled to receive messages from other machines. If it’s on the DMZ that
make sure firewall rules are appropriately setup to make it unreachable from the Internet.
Set up the remote syslog server so that the only service that it is running is syslog (and
maybe ssh for remote administration). Additionally, if it’s a Linux box, setup ipchains or
iptables rules only allowing connections to your syslog daemon from the other system
(/sbin/ipchains –A input –p udp –s ip_of_sender ! –d ip_of_this_system 514 –j DENY).

With tripwire and AIDE, store the databases on read-only media. Also, you may want to
store the actual tripwire binaries on the CD as well to prevent tampering. Or at least have
a location of where you store a known good copy of the binaries so they can be compared
and restored to the system.

With the system utilities (ps, netstat, etc.) you have know way of knowing if you are
using trojaned binaries (unless you use tripwire or you happen to know the md5sum by
memory or from a known good copy of the binary). If your system is penetrated then
these utilities cannot be trusted. They can all be built to lie to you about the output that it
shows you. Even a quick and dirty perl or shell script can be written to accept your
command line input then run the real program and filter the data that is seen on output (as
I’ve seen in one of my investigations).
It’s best, as well, to keep a known, good copy of these utilities on a CD. This way you
can be sure that the binaries are good. You can also you use an encrypted loop back file
system. You can download BestCrypt, which is a tool to create loop back file systems
that you can encrypt with blowfish. Mount it and copy your tools there. Now you can
mount it when you need it and dismount it when you’re done. It would require a
passphrase to be able to mount it. You can get BestCrypt from

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.jetico.com/linux.html. CD is still better because someone can delete the loop
back file containing your data (unless of course you store the loop back file on a cd – then
you have an encrypted file system that can’t be deleted).
Does that mean that you still can’t be lied to? Nope. Someone can install a loadable
kernel module on your system that modifies the /proc file system. Kernel module root
kits raised the bar in system compromise. The most popular have been Adore (originally
available from http://www.kalug.lug.net - although you can’t find it there anymore) and
LRKM (the Linux Root-kit Kernel Module). The /proc file system is used by just about
all these system utilities to get their information. You may have good binaries but what if
where they are getting their information from can’t be trusted? There are measures you
can put in place that can detect suspicious modules be loaded into your kernel but there is
only one sure way to make sure that won’t happen (such as St. Jude
http://www.sourceforge.net/proj ects/stjude) – remove loadable module support from your kernel.
On a secure system you don’t want to give anyone the possibility of loading a root-kit
module onto your system. This means that when configuring your kernel – first remove
everything you don’t need (if you don’t need isdn, usb, sound, etc. don’t put it in there –
you will need the space). Then add everything you do need as directly in the kernel and
stead of modules (remember say “No” on the questions that ask you if you want loadable
module support). Some avoid this route because they think the kernel will be too big or
that they will lose the flexibility of being able to add and remove modules on the fly. If
you get rid of everything in the kernel that is not needed for your system (if you don’t
know what you need or not - read the kernel Howto) then you should be fine. Is it
inconvenient? Sure it is. But what is when it comes to security?
So, now you have your trusted set of databases and system utilities on read-only media
and you’ve disabled loadable kernel modules. We have just made the hackers job that
much harder and you can place a little more confidence in the data you are looking at.

Running network intrusion detection software is a perfect edition your audit toolkit.
Even if someone compromises your system and covers their tracks you can still look at
the network audit trail to determine where they were coming from. That statement must
qualified by saying: only if you’re network intrusion detection system can be trusted.
There’s nothing to prevent you from running snort on the very system you are building
the audit scheme for, but the best place to put it is on a dedicated system with plenty of
disk space. You will need to put this node in a place where it can “hear” all of the traffic
going to and from the system or network you want to audit. If you are placing it on a
switched segment then you need to use a switch that has the capability of mirroring all
the traffic to the port your intrusion detection node is on. One method of building a
network intrusion node is to bring up the Ethernet adapter in promiscuous mode without
an IP address and use a second Ethernet adapter that is connected to the private segment
unreachable from the Internet. This makes the system unreachable from the Internet
while still able to “listen” in on the traffic going by.
Deciding on how to write your policy will be the biggest challenge in setting up a
network intrusion detection node. Do you log everything? Well, depending on your
organization that may be an imperative. Do you just log known badness? In other words,
create your rule set looking for known attack signatures. That’s the common approach
and works so long as you keep up to date with the latest attacks. Or do you make decide

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

on what’s good traffic and log everything else? That is decidedly a more difficult
approach since a lot of products don’t really allow one to create rule sets based on ‘here’s
what’s good – log everything else’. But that may yield some of the most interesting data.

Test regularly
OK, so you have everything set up and working correctly, right? How do you know it’s
working correctly? Just because you haven’t seen anything in the logs doesn’t
necessarily mean nothing has happened. Maybe the logging is failing somewhere in the
process. Maybe snort was invoked on the loop back adapter instead of the Ethernet (but
that would never happen). Maybe I’m running tripwire against a bogus database. The
point is – you have to make sure it’s working. Do not just assume. This means, yes,
hacking your own system. Port scanning, brute force attacks, dos attacks, etc. Find out if
the auditing scheme you have put into place will actually tell you what’s going on. If not,
it should be fixed because that means it could have been going on all along without your
knowledge.
There are good commercial tools available to do this (which I have used) but I have to
admit I am partial to Nessus (http://www.nessus.org) and Nmap
(http://www.insecure.org).
The beauty in them is not just because they are free – it’s because they are good, darn
good. Nessus is comes in 2 pieces: a server and a client. The server runs on Unix and
there are clients that run on Unix and windows. Strong crypto between the client and the
server has also been added. Nessus seems to always be update to date with the latest
attack modules (called plugins). It also has a powerful scripting language, which you can
use to write your own attack plugins. Fire up Nessus and let it loose on your system (of
course, at an approved time window so as not to disrupt any business activity). Look at
the report that Nessus gives to see if there are any holes on the system you need to tighten
up, but also, look at your logs on the attacked host. Did your logs record any unusual
activity? Did your network intrusion node pick any of this up?
Nmap has a plethora of options to use when scanning a remote system. One of the most
interesting is the OS detection option. It attempts to make a guess at what the operating
system is based on the structure of the packets sent from the remote host (what is the
value of the ttl field, what is the window size, how does it respond when it’s sent a packet
with the FIN and SYN bit set, etc.) Most operating system vendors are somewhat unique
in the way the do things with the IP stack they implement and Nmap can take advantage
of these nuances.

Analyze (conclusion)
Once you have auditing set up properly, and you can trust the data, and you have tested it
to see that it works you have to use it. Simple enough. Don’t let the logs sit there
unlooked at. That’s why you have to determine baselines to find out what you should be
looking at. There is a danger in too much logging. It’s only a danger because of our
human nature to be uninterested in looking at the same old stuff everyday. We scan
through thousands of lines of logs knowing that we don’t need to be seeing all of it and
the danger is that we miss that one entry where there was a root login from a dial up
account from some obscure ISP in Europe. Make your auditing scheme useful and
useable. Otherwise it’s ineffective.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Resources and References
Online Articles and Documentation
Auditing your firewall. http://www.linuxvoodoo.com/security/audit.html
Armoring Linux. http://www.enteract.com/~lspitz/linux.html
Linux Security Howto. http://www.secinf.net/info/unix/linhowto/Security-HOWTO.html
Watching your log files with Swatch. http://www.secinf.net/info/unix/lance/swatch.html
Linux Administrator’s Security Guide (The LASG). http://securityportal.com/lasg/
Know your enemy series. http://project.honeynet.org/papers/

Books
Hacking Exposed. McClure, Scambray, Kurtz, Prosise.
Hack Proofing Your Network. Ryan Russel. Syngress Media.
Maximum Linux Security. Anonymous. SAMS
Practical Unix and Internet Security. Garfinkel, Spafford. O’Reilly.

Tools
Snort. http://www.snort.org
Nessus. http://www.nessus.org
Nmap. http://www.insecure.org
Tcpdump. http://www.tcpdump.org
Syslog-ng. http://www.balabit.hu/en/products/syslog-ng
Tripwire. http://www.tripwire.com
AIDE. http://www.cs.tut.fi/~rammer/aide.html
BestCrypt. http://www.jetico.com/linux.html

