
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

An Integer Overflow Attack Against SSH Version 1
Attack Detectors

David J. Bianco
March 1, 2001

Assignment version 1.2d

Introduction
On June 11th, 1998, Ariel Futoransky and Emiliano Kargieman of Core SDI, the
Argentinean information security research group, published an advisory detailing how it
was possible for an attacker to insert arbitrary information into the encrypted data stream
between an SSH version 1 client and server. SSH version 2 clients and servers were not
vulnerable. Due to architectural issues in the version 1 protocol, the attack could not be
prevented without changing code, which would render the new versions of the software
incompatible with existing version 1 code. Instead, they chose to pursue a strategy that
would allow the clients and servers to detect that such an attack had already taken place
and thus allow the program to react. Core SDI released a file called deattack.c which
implemented this function. The file was subsequently incorporated into most
implementations of SSHv1 clients and servers.

Ironically, it is this attack detection routine which is itself vulnerable to an integer
overflow attack. This paper describes the attack, lists software known to be vulnerable
and provides technical detail on the attack itself and on prevention.

Description
The suggested fix to the original problem included a new routine, detect_attack(), which
defined a 16-bit local variable. This variable was used in conjunction with 32-bit local
variables and due to 16-bit integer overflow, it was possible to send long (length > 216
bits) input packets to the server or the client which would cause this variable to be set to
an effective value of 0. This led to unintended side effects in the code, such as an array
table overflow, which would allow an attacker to modify arbitrary addresses within the
address space of the program. This attack can be executed without having to successfully
authenticate to the target system. Table 1 shows several popular SSHv1 implementations
and their vulnerability state. Even if not explicitly listed, all versions of SSHv1 that use
the attack detector should be considered vulnerable.

Program/Vendor Version Notes
OpenSSH All versions prior to 2.3.0

are vulnerable. 2.3.0 and
later are not vulnerable.

SSH.com Versions 1.2.24 through
1.2.31 are vulnerable.
Versions prior to 1.2.24 did
not include the attack
detector, and thus are not

SSH.com recommends that
users of v1 software
upgrade to SSH2.
Nevertheless, a patch has
been applied to their source

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

detector, and thus are not
vulnerable. Version 2.x is
not vulnerable

been applied to their source
tree and future versions of
the v1 product will not be
vulnerable.

F-Secure SSH Version 1.3 is vulnerable
AppGate See notes The server is not vulnerable

in the default configuration
because v1 support is
disabled. If v1 support has
been enabled, contact the
vendor for a fix.

TTSSH Not vulnerable
LSH Not vulnerable LSH does not support the

v1 protocol.
JavaSSH Not vulnerable There is no attack detection

mechanism in the code.
OSSH (by Bjoern
Groenvall)

Version 1.5.7 and below are
vulnerable. Version 1.5.8 is
not vulnerable.

Cisco SSH Not vulnerable They have implemented
their own code, and thus do
not use the vulnerable
attack detector.

Van Dyke Technologies
SecureCRT

Unknown.

Table 1: SSHv1 Implementations

Detail
The function signature for detect_attack() looks like the following1:

/*
 detect_attack
 Detects a crc32 compensation attack on a packet
 */int
detect_attack(unsigned char *buf, word32 len, unsigned char *IV)
{
 static word16 *h = (word16 *) NULL;
 static word16 n = HASH_MINSIZE / HASH_ENTRYSIZE;
 register word32 i, j ;
 word32 l;

The line in bold italics shows the first troublesome variable, n. Although n is declared as
a 16-bit integer, it is later used in conjunction with 32-bit values, which leads the root of
the problem.

for (l = n; l < HASH_FACTOR(len / SSH_BLOCKSIZE); l = l << 2);
 if (h == NULL) {
 debug("Install ing crc compensation attack detector.");
 n = l;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 h = (u_int16_t *) xmalloc(n * HASH_ENTRYSIZE);
}

As you can see in the code sample1 above, the loop control variable l is left-shifted at the
end of each iteration. If the length of the buffer in the incoming packet (len, in this
example) is sufficiently large, l will eventually grow to the value of 65536, which is just
one bit larger than can be stored in the the 16-bit value n, as is shown inside the loop.
This will cause the integer overflow, causing n to become 0. In the next line, a call to
xmalloc() with an parameter effective parameter of 0 (after all, 0 * HASH_ENTRYSIZE
always equals 0), will cause the variable h to become a valid pointer to a zero-length
object within the program’s namespace.

Now the real fun begins.

Consider the following code3:

for (c = buf, j = 0; c < (buf + len); c += SSH_BLOCKSIZE, j++)
{
 for (i = HASH(c) & (n - 1); h[i] != HASH_UNUSED;
 i = (i + 1) & (n - 1))
 {
 i f (h[i] == HASH_IV)
 {
 i f (!CMP(c, IV))
 {
 if (check_crc(c, buf, len, IV))
 return (DEATTACK_DETECTED);
 else
 break;
 }
 } else if (!CMP(c, buf + h[i] * SSH_BLOCKSIZE))
 {
 i f (check_crc(c, buf, len, IV))
 return (DEATTACK_DETECTED);
 else
 break;
 }
 }
 h[i] = j;
}

The outer loop simply breaks up the one large packet into chunks of length
SSH_BLOCKSIZE. By default, this means that it processes the buffer 8 bytes at a time.
You’ll notice fairly quickly that the second loop (the one using i as the loop counter)
contains a logical AND of the value of HASH(c) and n. In this case, c is the variable
containing the data in the packet that we’re checking. Since n is set to an effective value
of 0, (n – 1) comes out to be –1, which of course is represented by the bytes 0xffff (all
binary 1). If you AND a value with 0xffff, you get the original value back, thus this
piece of code is effectively equal to the following:

 for (i = HASH(c); h[i] != HASH_UNUSED; i = (i + 1))

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Unfortunately, the HASH() function in this case doesn’t really do anything special. It
simply fetches gets the first 4 individual bytes from this 8 byte chunk and treats them as
though they were one long 32-bit integer, which it returns.

Since this “hash” is used as the array index, by crafting your own packet, you can control
the contents of the first 4 bytes of each chunk, thus, you can control the array index.
Remember that h is always a valid pointer to somewhere within the memory address
space of the running program. You don’t necessarily know where it is, though, which
makes things tricky. Let’s say that the 4 bytes you choose are all 0xff. The array indexes
h[i], which comes out to be h[0xffffffff] or the address 0xffffffff bytes offset from the
address pointed to by h. In most cases, you’re pretty much stuck with guessing where h
is really pointing to, though, which is one of the things that makes this a difficult hole to
exploit. More on this a little later on.

Ok, so now you’ve got an offset somewhere in memory. What next? How can you
assign a value of your own choosing to the address? The answer is simple. Recall the
second to last line of the above sample, h[i] = j. In this case, j is a simple loop counter
variable. If you want to place a value of, say, 10, into your own custom h[i], you craft
your packet such that the 10th chunk contains the offset you want to write to. You’re
limited to writing only loop counter’s value to your chosen memory address, but since the
maximum packet size in SSHv1 is 256K, you can pretty much take your pick of values.
By sending multiple packets, you can see how easily an attacker could build a chunk of
malicious code in the program’s address space.

 It’s worth noting that although h[i] is offset from h by i bytes, if i is sufficiently large, it
could wrap around and start pointing to the beginning of the address space, so it’s
possible to point anywhere in the program. If the attacker doesn’t accidentally crash the
server, they could modify variables or other important values rather than simply insert
their own code.

Many of those who have issued Internet security bulletins about this attack have noted
that there is an additional step required to successfully inject your own custom packets
into the SSH transmission. The receiving SSH client or server process will expect that
your packet has already been encrypted with the negotiated symmetric session key.
Thus, sending your crafted packet in the clear would cause it to contain the wrong values
after it is “decrypted” and sent through detect_attack(). This is easily solved by
negotiating the beginning of an SSH session, which establishes the session key. With
this, it is straightforward (in fact, almost trivial) to perform the proper encryption with
your favorite plaintext bytes.

Although this exploit is an extremely difficult one to exploit, code has already been
posted 3 to the Internet that can successfully attack OpenSSH 2.1.1 if the
‘emptypasswords’ option is set on the server to allow NULL passwords to be legal. This
code works by writing to a predetermined offset for the variable that holds the pw-
>pwent data for the account the session is trying to log into. The attacker can

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

presumably find this offset by compiling the same SSH server version on his own
machine of the same type he is attacking (with the same compiler and compilation
settings, of course). In this case, the exploit simply makes the first byte in this string a
NULL, so the attacker can enter a NULL password on the client and log in to any
account, including root.

Fixes & Recommendations
The best fix most vendors recommend, of course, is to upgrade to SSHv2 compliant
software if possible, then disable all v1 support. In cases where this is not possible,
contact your vendor immediately and obtain a patch for your software. If you have a
source distribution, Core SDI has already released the fix, which is simply to change n’s
data type to a 32-bit integer, as shown in the following patch file for SSH.com’s SSH
v1.2.311.

--------------------- begin deattack patch ------------------
This is the patch for ssh-1.2.31 package.
Using the patch:
Copy the ssh-1.2.31.tar.gz package and the ssh-1.2.31-
deattack.patch in a directory.
Decompress the ssh-1.2.31.tar.gz package:
 tar xzvf ssh-1.2.31.tar.gz
Apply the patch:
 patch < ssh-1.2.31-deattach.patch
Compile the ssh package.
--- ssh-1.2.31/deattack.c-old Wed Feb 7 19:45:16 2001
+++ ssh-1.2.31/deattack.c Wed Feb 7 19:54:11 2001
@@ -79,7 +79,7 @@
 detect_attack(unsigned char *buf, word32 len, unsigned char IV)
 {
 static word16 *h = (word16 *) NULL;
- static word16 n = HASH_MINSIZE / HASH_ENTRYSIZE;
+ static word32 n = HASH_MINSIZE / HASH_ENTRYSIZE;
 register word32 i, j;
 word32 l;
 register unsigned char *c;
--------------------- end deattack patch -------------------

References
1. Core SDI, “SSH1 CRC-32 compensation attack detector vulnerability”, 8

February 2001, URL: http://www.core-sdi.com/advisories/ssh1_deattack.htm (1
March 2001)

2. Core SDI, “SSH INSERTION ATTACK”, 11 June 1998, URL: http://www.core-

sdi.com/advisories/ssh-advisory.htm (1 March 2001)

3. Starzetz, Paul, “ssh1.crc32.txt”, 21 February 2001, URL:
http://packetstorm.securify.com/0102-exploits/ssh1.crc32.txt (1 March 2001)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

4. Unknown, “OpenSSH FAQ”, 26 February 2001, URL:
http://www.openssh.com/faq.html (1 March 2001)

5. Zalewski, Michal, “Remote vulnerability in SSH daemon crc32 compensation

attack detector”, 8 February 2001, URL:
http://razor.bindview.com/publish/advisories/adv_ssh1crc.html (1 March 2001)

