
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

General Security Guidelines for an Apache Web Server on Solaris
Scott Tieman
Jun 24, 2001

Abstract

This document is based on security considerations for running an
Apache web server on a Solaris 8 (Intel) platform. Although the
operating system and web server are specific, the platform
hardening concepts can be applied to support other Unix based
platforms and applications.

Introduction:

Majority of web server vulnerabilities on a Unix platform are
stemmed from open default services specific to any Unix host. The
primary goal will be to limit network exposure of these services
and provide knowledge and application of some valuable open-
source security tools. Addressed will be Network-Based Security,
Host-Based Security, Apache security elements, and position of
the web server in relation to your network infrastructure.

Network-Based Security:

Network services are primarily generated from the Internet
daemon and the run control scripts as the system goes through its
run levels during boot-up. Many of these services have inherent
vulnerabilities associated with them and are normally not
required for the operation of a web server.

• Internet daemon services or Inetd: Located in the
/etc/inetd.conf file. When a service is requested from
another host, the Internet daemon intercepts the request
and hands it to the appropriate server. The inet.conf file
determines which services are available by whether there is
a comment or not in front of the entry.

 - Example of an offered telnet service:

 telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

 - Example of telnet NOT being offered:

 #telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

Securing these services are simply accomplished by editing this
file and “commenting out” the entries. Note: After commenting

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

them out, a kill hup signal must be sent to the Inetd process
for it to take effect.

• Services started in Run Control scripts: Located in the
/etc/rc*.d directories. The asterisk refers to the number
of the corresponding run level. These files, contained
within the directories, beginning with "K" are ran to
terminate (Kill) a process. Files beginning with "S" are
ran to (start) a system process. Scripts are ran in
numerical order. The number following the first letter
designates the order in which the scripts are ran.

 - Example: ls /etc/rc2.d

 S71rpc
 S75cron
 S88sendmail

One way to secure services not required, even when the system is
rebooted, is to edit the corresponding services within the rc*.d
directories. Change directories to the appropriate rc*.d and
rename the "S" to lowercase "s" for the particular service you
want to stop when system is initialized at boot-up.

- Example: mv S88sendmail s88sendmail
 ls /etc/rc2.d

 S71rpc
 S75cron
 s88sendmail

• Verifying running services: There are several ways to
verify what services are running on your platform. They
range from simple commands to open source ports scanners
launched from another host. Remember the primary goal:
“limit network exposure” from the outside world.

Commands:

netstat –a Displays all TCP/UDP connections you are running.
TCP connections that are offered will be denoted with “LISTEN”
while UDP connection are denoted as “IDLE”.
rpcinfo –p Displays all the Remote Procedure Calls (RPC)
programs and what port they are running on.
Port Scanners:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

NMAP is an extremely versatile port scanner from
http://www.insecure.org/ with many options. At a minimum you should run
the following commands.

./nmap –sT <IP> #This option will scan TCP ports.
./nmap –sU <IP> #This option will scan UDP ports.
./nmap –sR <IP> #This option will scan for rpc ports.

Host-Based Security:

There are many aspects to host-based protection. I will focus on
one that is packaged with Solaris and other open source tools,
which are similar in functionality that look for specific host
vulnerabilities.

• ASET or Automated Security Enhancement Tool: ASET is Sun’s
packaged host-based security tool. It was originally
packaged with Solaris 2.5 and continued its support to
Solaris 8. It contains three preset levels of security
features: Low, Medium, and High. At each level, the
degree of security is implemented, ranging from file
permissions of key files to certain network services not
being offered. More information can be found in the man
pages or at http://www.sun.com/smcc/solaris-
migration/docs/transition-guide_2.5/security.html

• COPS or Computer Oracle Password System: This security

tool was written by Dan Farmer and although similar to
ASET, is has been tested on a variety of Unix flavors. It
was written in C and individual shell scripts designed to
look at a multiple host-based issues. Note, COPS does NOT
actively set policies to your system, they are only
suggestions. What may be a security problem to Dan Farmer,
could be necessary for your systems operation.

- Example COPS Report:

 ATTENTION:
 Security Report from WED 15:15:28 CDT 2001 from host
 <Host Name>

 Warning! /etc/security is _world_ Readable!

 COPS can be downloaded from Dan Farmer’s actual site at
 http://www.fish.com/cops/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

• Tiger: Another host-based security tool developed by Texas
A & M University (TAMU). Was designed to allow access to
certain hosts from off the compass. The host would have to
be secured through the security suggestions from Tiger.
Designed for SunOS 4.x and 5.x, with partial checks with
other Unix flavors. Care must be taken in implementing
these suggestions, keeping in mind the purpose of this
security tool.

 - Example Tiger report:

 --warn—[permw] /etc/security should not be world readable.

 Tiger can be downloaded from TAMU at
 http://www.net.tamu.edu/ftp/security/TAMU/

• Tripwire: This tool can be classified as a file integrity

security tool. It was designed by Gene Kim and Gene Spaford
from Purdue University, but the management was
commercialized by Tripwire Inc. They are still required to
maintain a free version of this product as agreed by
Purdue. The free version follows the acronym ASR for
Academic Source Release. Basically, this tool compares a
predetermined set of files and directories against a
previously stored database. It uses multiple message digest
and signature algorithms to support integrity of
potentially manipulated files. Note, this tool does not
prevent system intrusions, but merely reports that
something has changed.

- Example of Tripwire report:

 Observed (What it is) Expected (What it should be)

 /etc/hosts.allow
 sf_size: 162 170
 st_mtime: Sun Jun 10 17:34 Fri Jun 9 16:04
 MD5(sig1) Ki8G54!O9XMlws2K5kL4SQ 7iGG5N3OQX9l7s2KhzLlY4

 This indicates that the file size and time stamp was
 altered on the /etc/hosts.allow file. Also the Message
 Digest 5 is indicating a different signature. Tripwire can
 be downloaded from http://www.tripwire.com/downloads/

 Additionally, Tripwire supports a trial “Web page” version
 specifically for the Apache web server which alerts when
 the web pages are being altered.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Apache Security Issues:

Apache is comes in two distributions, source code and binary.
The latest version is freely available at
http://httpd.apache.org/dist/httpd/ Although there is many
security aspects to Apache, this section will focus on Server
configuration within the httpd.conf file, Host-based access,
Host-based authentication, and logging.

• Httpd.conf: Apache is primarily configured through this
file and manipulated/controlled with multiple directives.
Completed documentation can be found at
http://httpd.apache.org/docs/

• Host-Based Access: Location for host-based

access/authentication can be accomplished in two locations:
the .htaccess file which resides within the particular
directory you are limiting access or the httpd.conf file.
Each have pro’s and con’s.

.htaccess

Pro: - Server does not have to be re-started after
 updating the file.

- If you need to relocate directories within your
 server, your .htaccess file containing your
 access controls will move with them.

Con: - No centralized location. Might have to access

 multiple directories.

Httpd.conf

Pro: - All access controls reside in centralized
 location.

Con: - Each time the file is updated, the server must be
 re-started before it takes effect.

Note: Regardless of the location, the syntax/content
remains the same. Host-Based access controls are normally
performed through container directives. The following are
the most popular ones utilized which control access to for
specific HTTP methods, directory and file access that
resides within your HTML pages.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

<Limit> Restricts directives that are contained within a
particular HTTP method such as “get” or “put”. These
methods are contained within the HTTP request header from
the client (browser) to the server (Web Server). Get,
informs the server that the client is requesting to
retrieve information, such as a document or a HTML page.
Put, informs the server to store something, such as a file.

- Example of limit Directive:

<Limit GET PUT>
order deny, allow
deny from all
allow from 199.211.200.131>
</Limit>

<Directory> This directive is applied to directories and
sub-directories.

- Example of Directory Directive:

<Directory /local/etc/html/trusted>
order deny, allow
deny from all
allow from <199.211.200.131>
</Directory>

<File> This directive is applied to files and utilizes the
same syntax as the <Directory> directive.

Note: Two container directives used together to support
Host-Based access:

<Directory /local/etc/html/trusted>
<Limit GET PUT>
order deny, allow
deny from all
allow from 199.211.200.131>
</Limit>
</Directory>

• Host-Based Authentication: Authentication refers to login
name and password entries to gain access to a specific
location on the server. Apache utilizes the <AuthType>,
<AuthName>, and <AuthUserFile> directives.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

<AuthType> Defines the authentication mechanism the server
will use.

 - Basic = Utilized the most. However, information is
 passed in the clear and is susceptible to sniffing unless
 utilized with SSL.
 - Digest = Uses a Message Digest (MD5) for authentication.

<AuthName> Defines the label that is passed to the
Authentication Directive. Also appears on the login prompt
as well.

<AuthUserFile> Defines the absulute path whare the
authorized users and their passwords are located.

 -Example of Authentication Directives:

 <Directory /local/etc/html/trusted>
 AuthType Basic
 AuthName Users
 AuthUserFile /usr/local/priv_users

<Limit GET PUT>
Require valid-user
</Limit>
</Directory>

 This example would require a valid user name and password
 to access the directory trusted. The File Directive could
 have easily been used instead of the Directory Directive.

 Creating valid users. Apache uses the htpasswd utility to
 create valid accounts that the Authentication Directives
 require.

 - Example of the htpasswd command:

 htpasswd –c /usr/local/priv_users bob

 This would create a user called bob and you would be
 prompted next to enter a password for the user. The “-c”
 will automatically create the file name priv_users.

• Logging: Monitoring logs that Apache generates is a
valuable asset for tracking server access and potential
server problems. By default, Apache generates two log
files:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

- Access_log = Tracks all HTTP connections by IP and
provides a time stamp.

- Error_log – Tracks server related events such as re-

 starts or general server problems.

 Note: Additional security considerations can be found at
 http://httpd.apache.org/docs/misc/security_tips.html

Web Server Location:

Assuming you are working with a publicly accessed server, it is
imperative of the placement in relation to your firewall. The
following diagram illustrates a typical “Dual-Honed” firewall
topology.

• Topology Features: Provides defense in depth (3 layers).
Perimeter and inside routers would utilize Access Control
Lists (ACL’s) with the firewall provides 3 layers of
protection.

• DMZ: De-Militarization Zone. Area between the perimeter

router and the firewall. If the public web server is
compromised, protection exists with the firewall itself.

Conclusion:

To reduce your percentage of vulnerabilities associated with
your platform and web server, you must proactively keep ahead of

DMZ

www

Perimeter
 Router

Inside
Router

Firewall

Outside
 World

Inside
Network

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

vendor patches and monitor various security alerts. The
following URL’s will assist you in keeping abreast of security
related issues:

Security related information for Sun products and vendor
patches:
http://sunsolve.sun.com/

Patches related to Apache:
http://httpd.apache.org/dist/httpd/patches/

References:

1. Gregory, Peter. “Solaris Security”. Sun Microsystem
Press/Prentice Hall, Inc. 2000. Page 124-128.

2. Fydor, “NMAP Man Page”. URL:
http://www.insecure.org/nmap/nmap_manpage.html

3. Calkins, Bill. “Solaris 7 Administrator Certification”. New
Riders, 2001. Page 174-176.

4. Farmer, DAN. “COPS Overview”. URL:
http://www.fish.com/cops/overview.html 18 May 1993.

5. Texas A & M University, “Tiger Readme Page”. URL:
http://www.net.tamu.edu/ftp/security/TAMU/tiger.README 19 Jul 1999.

6. Beale, Jay. “Tripwire – The Only Way To Really Know”. URL:
http://www.securityportal.com/topnews/tripwire20000711.html

7. Wainwright, Peter. “Professional Apache”. Wrox Press Ltd.
1999. Page 345-352.

8. Oppliger, Rolf. “Internet and Intranet Security”. Artect
House, Inc. 1998. Page139-140.

9. Goncalves, Marcus. “Firewall Complete”. McGraw-Hill. 1998.
Page 46.

