
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Leadership Essentials for Managers (Cybersecurity Leadership 512)"
at http://www.giac.org/registration/gslc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gslc

!! Version!1.4!August!2014! !
! !

How the SANS Critical Controls

Prevent the Red Team from
P0wning your Database

GIAC (GSLC) Gold Certification ISM 5100

Author: N. Dean Sapp, deansapp@hotmail.com
Advisor: Dr. Kees Leune

Accepted: August 31st 2014

Abstract

The SANS Critical Security Controls contain proven, battle tested security investments
that reduce the risk to businesses from cyber breach. This paper describes a real-world
scenario in which Red Team penetration testers compromised a highly confidential
database without detection and then, after the business applied three carefully selected
critical controls, the Red Team was prevented from compromising the same database
again.

Many security professionals will argue that a layered defensive approach is the only way
to prevent breach; while true in many cases, businesses need to prioritize and focus
attention on the security controls that are most effective in their environment.

The goal of this paper is to identify the security controls that effectively stop many real
world attacks against databases and can be used to help businesses balance security
project funding with an acceptable level of residual risk, ongoing.

Prevent the Red Team from p0wning your database ! 2
!

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

1. Introduction
Databases* are pervasive in the technologically savvy world we live in. If

electronic information is currency, then the database is the equivalent of the Federal

Reserve Bank for many companies (Litchfield, 2005). These databases often contain

financial records, account numbers, social security numbers/national IDs, electronic

personal health information (ePHI), and other valuable personally identifiable

information (PII) or corporate confidential data.

Hackers often target databases and then use the data harvested from them to

perform identity theft, obtain credit card accounts and commit financial fraud. In mature

organizations, such as those adhering to the SANS 20 Critical Security Controls,

databases are often protected with layers of security to prevent data loss or breach. In

less mature organizations, database security is often an afterthought (SANS.org, 2014).

This paper will describe a real-world scenario in which penetration testers

compromised a highly confidential financial database in an immature organization

without detection. After the business applied three carefully selected SANS critical

controls, the penetration testers were prevented from compromising the same database

again.

*Note to the reader, throughout this paper the terms: Red Team, penetration test, and exercise may

be used interchangeably. In addition, some common terms such as database or database engineer will be

abbreviated and designated with parentheses such as database (DB). These abbreviations are defined in

Appendix B for future reference.

Prevent the Red Team from p0wning your database ! 3
!

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

2. The Penetration test background
As with all penetration testing, it is important to get written permission from the

system owner and relevant service providers related to the scope of the testing before

beginning.

For the scope of this penetration test, The ACME Corporation (hereafter ACME)

allowed the penetration testers (Red Team) to act as if they were rogue employees who

had been granted access to the company intranet, but did not have access to the highly

confidential financial system (the target database). The Red team was not permitted to

use social engineering techniques, but was given the IP address of the target system and

the vendor’s name (Oracle).

This was the Red Team’s first assignment to attack an Oracle database.

Previously, they had focused primarily on web application attacks and defenses. For the

Red Team exercise, very little additional information was provided about the target.

Due to the sensitive nature of the financial records contained in the database, the

Red Team was also requested to stop all testing if a sample of database records within the

database could be retrieved.

The Red Team began the exercise by performing research on Oracle databases

and common vulnerabilities known to exist in default/typical installations. Several

websites, including work from security researchers such as Alexander Kornbrust, David

Litchfield, Pete Finnigan and Chris Gates were used. These internet searches provided

older but useful information on documented Oracle database vulnerabilities and methods

to exploit them. One such search returned Chris Gates’s Blackhat presentation from 2009

where he introduced his Oracle “Mixin” modules (Gates, 2009). Alexander Kornbrust

also published a similar attack methodology on his blog and included references to Pete

Finnigan’s Oracle default password list as well (Kornbrust, 2009).

Armed with this research, but uncertain of the value this aged data would

represent, the Red Team began the Reconnaissance process.

Prevent the Red Team from p0wning your database ! 4
!

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

2.1. Reconnaissance
For Reconnaissance and other phases of the exercise, the Red Team used the

Metasploit 3.3 framework and several add-on (auxiliary) modules to the standard

msf/core. These were used during the Reconnaissance, Attack (Scanning), and

Exploitation phases of the penetration test. Within Metasploit 3.3 (including the

manually installed Oracle Instantclient version 10, Ruby-dbi and Ruby Oci8) were

several different applications and tools that were used to carry out the exercise (Gates,

2009).

2.2. Reconnaissance Tools
 These included but were not limited to the list below, in addition to the

command(s) used for the task:

• Nmap was used to verify the DB ports, service and version used on the

database server (assuming it was default Oracle…which it was.) By

Scanning for a specific IP address and TCP port, the Red Team was able

to minimize the traffic sent to the database to avoid detection.

o Nmap –p T:1521 –sV (Target IP) –oG

tcp_oracle_scan_results.txt

(See Appendix C for further details)

• Metasploit 3.3 was used to run the, “Metasploit Mixin” modules to

confirm the TNS listener was accessible and the expected version. The

TCP Port 1521 and the IP address, RPORT and RHOST respectively,

were the data elements essential for the reconnaissance.

o Msf auxiliary (tnslsnr_version) > run

(See Appendix C for further details)

Another tool that was used to test direct access to the database during the

Reconnaissance phase of the test was SQL*Plus. SQL*Plus is a simple Oracle database

command-line tool use by administrators, programmers, and Red Team members alike to

test basic database functionality such as authentication and scripting (Oracle, 2006).

Prevent the Red Team from p0wning your database ! 5
!

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

• SQL*Plus provided access to the database directly after an account was

found with working credentials.

o C:\Program Files>sqlplus

username/password@10.10.10.47:1521/SID

Due to the older version of the database and the missing patches, this research and

Reconnaissance work ultimately provided the technique used by the Red Team to breach

the database.

2.3. Reconnaissance Techniques
From the research and Reconnaissance efforts, it became apparent to the Red

Team that four important pieces of information were needed to attempt to access data in

the database (Gates, 2009). These included the:

• Database Internet Protocol (IP) address 10.10.10.47

• The port number the TNS listener was using (default TCP 1521)

• The database Service Identifier/Name or SID – to be determined (TBD)

• The Username (TBD)

• The Username Password (TBD)

Prior to launching these attack tools, The Red Team was not aware of the version,

patch levels, SID, default TNS Listener port, default accounts or any of the other

information needed to access the financial database. With the IP address of the database

provided during the scoping process of the penetration test and the TNS Listener port

determined through a basic Nmap scan, the Red Team was only missing the last three

data elements to launch an attack.

2.4. Attack Tools
During the Attack phase, Metasploit was used almost exclusively to pinpoint the

database details and to launch the auxiliary Mixin modules. However, the Checkpwd

1.23 tool from red-database-security.com was later used to brute force/guess the DES

password hashes for several Oracle accounts including SYSADM.

Prevent the Red Team from p0wning your database ! 6
!

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

Oracle hashes, both DES and SHA-1, are stored in the data dictionary tables (read

only tables used by the database to operate) and were retrieved with the monfog account.

The tables include the PASSWORD column of SYS.USER$ accessible through the

DBA_USER view of the data dictionary (Stuber, 2009).

• Metasploit 3.3 was used to run the, “Metasploit Mixin” modules to

confirm the TNS listener was accessible and the expected version as well

as other attacks. These included:

o Msf auxiliary (tnslsnr_version)

o Msf auxiliary (sid_enum) or (sid_brute)

o Msf auxiliary (login_brute)

o Msf auxiliary (lt_findricset)

(See Appendix C for further details)

• Checkpwd 1.23 was used once the salted DES hashes were downloaded

and guessed/cracked offline against a known password list in addition to a

custom Red Team password list.

o C:\>checkpwd

system/monfog@//10.10.10.47:1521/ACME

password_list.txt

(A handful of accounts were guessed…one with DBA privileges)

Because of the default database settings and the deliberate and somewhat lucky

actions of the Red Team, none of the Red Team activities were identified in the ACME

monitoring or alerting systems. This would need to change for round two.

2.5. Attack Techniques/Methodology
Although some steps were conducted very quickly, due to ease of the attack, the

Red Team progressed from Reconnaissance to Exploitation following these steps: (1)

verifying the target IP and port, (2) determining the Oracle version, (3) determining the

Oracle SID, (4) enumerating the user accounts on the database, (5) locating an account

with privileges to the data dictionary, (6) downloading all of the hashes from the data

Prevent the Red Team from p0wning your database ! 7
!

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

dictionary, (7) cracking the hashes offline to obtain a DBA equivalent privileged account

and ultimately, (8) data exfiltration of a few dozen highly sensitive financial records for

evidence collection as screen shots (Gates, 2009).

In a typical penetration test, a real attacker would also likely (9) establish a

backdoor with shell access for further attacks or (10) hide the evidence of the attack by

altering logs or other common indicators of breach.

As discovered during the Attack phase, ACME maintained an Oracle 11g

database. With some internal knowledge, the Red Team surmised it had been installed

and configured by the ACME central database team and then handed over to the

application specific DBE for ongoing management. It appeared the DBE used the

standard database image which included the default logging and monitoring accounts for

the corporation. (Fortunately for the Red Team, it also included a legacy monitoring

account as well).

2.5.1. Determine the Oracle Version
Once the Red Team determined the IP address they were provided was, in fact, an

Oracle database, they launched the Metasploit Mixin (tnslsnr_version) to verify the

version and port. It was determined to be a highly vulnerable version of Oracle 11g

(11.1.0.6.)

2.5.2. Determine the Oracle SID
The next step was to determine the Oracle Service Identifier (SID). The version

of the TNS listener was vulnerable to attack so the Metasploit Mixin module (sid_enum)

was used to find the SID for later use in the attack.

(For details on this attack see Appendix C)

2.5.3. Enumeration of User Accounts
During the enumeration process, a detailed list of common Oracle user names and

default passwords were downloaded from Pete Finnigan’s website and copied into

Metasploit (Finnigan, 2014). However, none of the default account user name and

password combinations were successfully able to access the database. Many of the

Prevent the Red Team from p0wning your database ! 8
!

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

default accounts were on the database, but the passwords had all been changed, or the

accounts were administratively disabled.

However, during the enumeration process, a few other non-default Oracle account

were identified on the database. One of these accounts (monfog) caught the Red team’s

attention.

After a few minutes of research, monfog was determined to likely be an older

monitoring account for the database team’s use. A short password list was created based

on common passwords information from Reconnaissance on the ACME intranet site.

The Red Team started running the Metasploit Mixin brute force password module

(login_brute) and was successful logging in on the first try. The password was the same

as the account name.

2.5.4. Download the Hashes from the Data Dictionary
Once the Red Team was able to access the monfog account, they started checking

to determine the privileges the account had. Fortunately for the Red Team, the account

had access to the data dictionary. Once the data dictionary was accessed, it was clear that

data dictionary was storing both DES and SHA1 forms of the password hashes.

2.5.5. Crack the Hashes Offline
The Red Team then downloaded both sets of the password hashes locally to a

secure partition of one of the penetration testing computers and configured Checkpwd

1.23 to brute force/guess the passwords hashes. For the first round of brute force

attempts, the Red Team chose the DES hashes (Korbrust, 2009). They included the

common password lists from Pete Finnigan’s site as well as a previously successful list of

common passwords used at ACME. The Red team had planned on running the password

hashes cracking modules on the more secure, SHA1 hashes if the first batch was

unsuccessful, but that ended up not being necessary. They secured the penetration testing

computer and launched the brute force cracking module on the DES hashes and let it run

overnight. Upon returning in the morning, the Red team discovered several username

and password accounts were guessed correctly.

Prevent the Red Team from p0wning your database ! 9
!

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

2.5.6. Login as SYSADM
As the Red Team reviewed the privileges for the accounts on the database that

were guessed, one of the accounts was found to be the SYSADM user. This account had

also been granted the SYSDBA role, apparently for convenience when managing the

database. With this SYSADM account, the Red Team started to review the table space

and structure of the database. It was not long before they found an unencrypted column

of employee IDs, first and last names, and annual salary information. This finding was

documented and brought the Red Team exercise to a halt.

2.6. Red Team Wins
In total, from the time the tools were set up and the troubleshooting completed, it

took approximately six hours of hands on labor to execute the different phases of the

penetration test and to log into the database with a DBA user (excluding the time

overnight when the offline password guessing occurred).

As a result of the Red Team exercise, a report was prepared including a brief slide

deck as well as a presentation of the findings for ACME management.

The Risk Manager for ACME began researching mitigating strategies that would

protect the company from a similar insider attack in the future. The Information Security

& Risk Manager began researching the SANS 20 Critical Security Controls and identified

three controls that appeared to provide the best value to the organization for the

investment needed to protect this highly confidential financial information (SANS.org,

2014).

These recommendations were budgeted, prioritized and implemented by the DB

team in the subsequent quarter to prepare for round two of the Red Team exercises.

3. SANS Critical Controls for Round Two
3.1. Playing Defense

The Red Team exercise demonstrated that additional defenses were necessary for

ACME to prevent breach from an internal employee, vendor or third-party determined to

cause harm. ACME consulted with their Risk Manager to review the SANS 20 Critical

Prevent the Red Team from p0wning your database ! 1
0 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

Security Controls and to identify the controls that would provide the most value for the

desired levels of protection (SANS.org, 2014).

The Risk Manager researched the current security controls, monitoring efforts,

and defensive posture to recommend three controls for ACME to focus on. These

controls included:

1. Control 11 – Limitation and Control of Network Ports, Protocols and Services

2. Control 3 – Secure Configuration for Hardware & Software on Laptops,

Workstations and Servers

3. Control 16 – Account Monitoring and Control

3.2. Limitation and Control of Network Ports, Protocols
and Services. (Network Segmentation)

SANS Critical control 11 pertains to the, “Limitation and Control of Network

Ports, Protocols and Services.” During the pen test, the Red Team was able to access the

confidential database listener easily since the database resided on the same logical

network as the end-user computers. The Red Team was able to TNSPing the Oracle

listener without having to find and crack VPN credentials or other more sophisticated

pivoting techniques to attempt authentication requests directly on the database. In

addition, the default Oracle database port, 1521 was used, so the Nmap scan quickly

identified and fingerprinted the database accurately.

3.2.1. Control of Network Ports and Protocols
ACME management decided an inexpensive configuration change they could

make on the database was to alter the default port from 1521 to a non-standard port to

reduce the ease with which the Red Team or unauthorized users could find the Oracle

listener during future Reconnaissance attempts.

ACME agreed a more expensive but important control needed was network

segmentation. The Risk Manager argued that segmentation would limit the exposure to

the database listener from unauthorized attack while also helping to reduce the scope of

the security monitoring needed from the end-user network. A new network segment was

created with VPN access required to connect end-users to the segment. This access was

Prevent the Red Team from p0wning your database ! 1
1 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

provisioned for the DB team and a limited number of other users with a legitimate

business need.

They also authorized the security team to use an existing Network Intrusion

Detection System (NIDS) sensor and re-configure it to review the network traffic

traversing the secure zone and to alert whenever connections were attempted on the

default Oracle TNS Listener (1521), MS SQL (1433/1434), MySQL (3306) PostgreSQL

(5432) or other common DB ports (Litchfield, 2005).

While the secure zone was being built, the DB environments (production and non-

production lanes) were monitored to identify (learn) the expected and actual ports and

applications connecting to the database for a period of several months. During the

monitoring window, the ACME business units using the financial system ran their

standard monthly, quarterly and yearly reports to identify all of the standard DB system

connections. This list was reviewed, approved and documented as the baseline.

Once monitoring was completed, the non-production DB was logically moved

into the secure network zone and related, non-production, application configurations

changes were made. Troubleshooting ensued. This process was repeated for the

production DB and after another round of troubleshooting related problems, host based

firewall access control list (ACL) rules were applied to the TNS listener (valid node

checking) and host OS to drop all network traffic attempting to connect to the listener

that was not identified in the monitoring baseline. Then, real-time alerting was

configured to report any unusual attempts to access the DB to the DBE, DB team and the

Information Security & Network Operations Center (ISNOC).

3.2.2. Secure Zones
After the second penetration test, ACME further expanded control 11 into a,

“Secure Zone” philosophy where basic security services were established to protect any

of the databases, web or fileservers residing in the same logical network. This control

included other important layers such as ongoing vulnerability Scanning, rogue network

device detection, system inventory discovery, boundary defenses and other controls

described in SANS 20 critical controls (SANS.org, 2014). Of course, in a layered

approach, these were added as the organization matured over time.

Prevent the Red Team from p0wning your database ! 1
2 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

3.3. Secure Configuration for Hardware & Software on
Laptops, Workstations and Servers (DB Hardening)

SANS Critical control 3 pertains to the, “Secure Configuration for Hardware &

Software on Laptops, Workstations and Servers.” During the pen test, the Red team was

able to leverage exploits targeting the TNS listener since it had not been patched to the

most recent major or minor versions available. As a result, once the IP address,

(provided to the Red Team) Oracle TNS listener version, and SID were discovered, it was

only a matter of time before the database was compromised.

The ACME Risk Manager communicated to the business the critical importance

of patching and maintaining sensitive systems such as the financial database as part of

routine maintenance and not as one-time project work (as well as recounting the results of

the risk assessment conducted several months prior to the penetration test as evidence).

As a result, ACME management prioritized the patching of the database from

11.1.0.6 to 11.2.0.3. This effort was significant since it required a minor version release,

but was managed well by the DB team as they tested the changes in the non-production

environment and worked with the application teams to upgrade the financial software to a

current version as well. Once the software version was patched with the latest Oracle

Critical Patch Updates (CPU), future attacks bypassing other layers of defense, would

also need to have zero-day exploits or other social engineering attacks ready to make any

additional progress in an attack; thus significantly reducing the risk from breach.

3.3.1. Secure DB System
ACME further expanded control 3 into a, “Secure System” philosophy where

important database scripts were created to automatically harden the database. These

scripts were developed utilizing the Oracle, “Project Lockdown” recommendations, and

best practices from industry experts, SANS.org and other regulatory bodies. These

controls included, but were not limited to the following:

• Changing all default passwords on the database after build-out

• Revoking unnecessary privileges and public grants

• Expiring and locking important but unused accounts

Prevent the Red Team from p0wning your database ! 1
3 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

• Enabling valid node checking (as described earlier)

• Configuring post authentication validation (an additional layer of defense

for valid accounts that should not have privileges granted to them)

• Disabling the remote password file

• Verifying password strength of privileged accounts met the password

policy security standard guidelines

• Ensuring logging was enabled for drop, adds, inserts, deletes and other

significant (DDL and DML events)

 The value of creating lockdown scripts became evident after subsequent Oracle

databases major and minor versions were installed at ACME and the DBEs became more

aware of the Oracle’s practice of rolling back default permissions and account settings

during the version upgrade process.

To gain visibility on the DB security effort, the DB team also produced a DB

security dashboard (SharePoint site) to report violations from the database scripts to

ensure ACME management understood the progress on securing the financial database

and for ongoing database security efforts.

As an aside, like many penetration tests, the results of the Red Team exercise

were used as the catalyst by the Risk Manager and others to drive a significant culture

change and to help prioritize the security investments for ACME. Prior to this exercise,

the ACME management team did not have sufficient data to make sound risk

management and business decisions pertaining to the financial database.

 The last of the three SANS critical security controls implemented to prevent a

repeat of the financial database breach was, “Account Monitoring and Control.”

3.4. Account Monitoring and Control
During the pen test, the Red Team was able to access different user accounts on

the database without detection. The TNS listener logs were not granular enough to detect

the user enumeration on the DB. Once an account was found (monfog) the first login

attempt made by the Red Team was successful, so no failed logins were reported. This

Prevent the Red Team from p0wning your database ! 1
4 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

finding resulted in significant changes to the daily operations of the ISNOC and the

account management of the DB, with the understanding that successful account logins

could also be malicious.

During the penetration testing post mortem the DB team made three significant

observations that were documented. (1) Few, if any of the privileged user accounts, or

important roles or privileges granted to traditionally non-privileges accounts (making

them higher risk) were being logged. This included the unnecessary (legacy) monfog

account. In addition, (2) listener logs were being sent to the ISNOC, but tasks related to

the TNS listener were not refined enough for the ISNOC analysts to clearly understand

the actions they needed to take. (3) Further review indicated that failed logins were not

sent via syslog or other logging methods nor were they reviewed as standard tasks by the

ISNOC; although, it wouldn’t have made a difference in this case. As a result, all three

of these changes were made, improved upon, and included as standard tasks for every

ISNOC shift.

3.4.1. Account Control
To reduce the risks from unauthorized accounts being used on the database, the

database team reviewed and systematically removed legacy accounts that were not

needed on the database. This process effectively reduced the accounts on the database

from well over 250 to a few dozen. Shared accounts were disabled and replaced with

unique accounts that could be attributed to a single, named individual.

For user or service accounts that were needed, the team began enforcing (via

scripts) a password policy requiring all passwords to be at least 16+ characters with

requisite alpha-numeric and supported symbol complexity including letters, numbers and

the symbols “#”, “_” and “$” (Emmons, 2005). (Prior to 11g, case sensitivity was not

enforceable). After the DB team upgraded the database to version 11.2.0.3 and removed

the legacy 10G password flag, they were able to require case sensitivity on all passwords.

Password aging was also enforced through automated scripting and policy configuration.

The DB team also set many of the accounts that were necessary for DB

functionality but not used by administrative users to be administratively expired and

locked. Some accounts were also set to have an, “Unbreakable” password hash. This is a

Prevent the Red Team from p0wning your database ! 1
5 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

process where the DBE replaced the actual DES and SHA1 hashes in the data dictionary

with the word, “Unbreakable” so they could never be used in an unauthorized manner.

(An example of changing the hash is below.)

o SQL> alter user CTXSYS identified by

Unbreakable;!

o User altered.!

(See Appendix C for further details)

These user and service level account controls significantly improved the security

of the DB for the second round of Red Team exercises.

4. Red Team Tries again
Upon completion of the three critical controls, the ACME management team

requested another penetration test of the financial system database. For the second round

of testing, the same information was given to the Red Team as part of the scoping and

approval exercise.

Unfortunately for the Red Team, the additional security controls provided

significant obstacles requiring substantially more time and effort to make it through the

steps of the penetration test.

4.1. Control 11— Limitation and Control of Network Ports,
Protocols and services

!
The Red Team began Reconnaissance of the database much the same way as the

first exercise. One notable difference was the inability of the Red Team to quickly and

easily access the database server directly. After substantial effort and several failed

attempts, the Red Team acknowledged they could not successfully access the database

without the need to socially engineer a privileged user with VPN access to access the

secure segment.

With this concession, the ACME management team provided VPN credentials to

the Red Team to continue testing as if they were a privileged user, attackers or insiders

Prevent the Red Team from p0wning your database ! 1
6 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

who had already compromised VPN account access. It was inevitable that the Red Team

would have found a way to access the database through some out of scope channel, so

providing the VPN access was considered a time savings agreement to determine if the

other security controls were also implemented correctly. Arguably, this is where the Red

Team exercise could have concluded, but ACME really wanted to exercise the other

critical controls once inside the secure network.

4.2. Control 3 – Secure Configuration for Hardware &
Software on Laptops, Workstations and Servers

After accessing the secure network zone, the Red Team began the process of

trying to identify the database version and other details necessary to repeat the initial

attack. They were disappointed again. The quiet Nmap string failed to identify the DB

port running on TCP 1521. With a wider search, their Nmap fingerprinting software was

able to identify the non-default TNS listener port, but the ISNOC was able to detect the

Red Team’s scan attempts and reported the unauthorized NIDS traffic to management.

ACME management was delighted to know that the defenses were working and

the real-time alerting controls and operational tasks were effective. ACME management

allowed the Red Team to continue attacking even though they had been identified, to

determine if the other countermeasures were equally strong.

Moving ahead, the Red Team attempted to perform vulnerability scans on the

TNS Listener but continued to get connection resets. They concluded that a host based

firewall was involved and requested permission to spoof the IP Address of the Backup

server for the remainder of the attack. The request was permitted as well as the request to

disable any other valid node checking features. Again, this would have likely been the

end of the exercise, but management wanted to see if the Red Team could still get in

(simulating the DBE forgetting to turn the defenses back on after maintenance work or

other human errors).

 The Red Team then attempted to connect to the TNS listener but the Metasploit

TNS Mixin’ modules were unable to identify the SID or enumerate any user accounts on

the database since the vulnerability used in the exploit had been patched. The Red Team

was then able to identify the SID by researching on the database team’s intranet site and

Prevent the Red Team from p0wning your database ! 1
7 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

Wiki; a fact that was later corrected with stronger authentication requirements added the

sites.

4.3. Control 16 – Account Monitoring and Control
With this last piece of critical information, the Red Team used the previously

successful Pete Finnigan, Oracle password list as well as an internal word list to attempt

to brute force the database. After several days of guessing/brute forcing passwords, none

of the username/password lists provided successful access to the database. All the while,

the DBE and the ISNOC received large numbers of failed login account alerts that clearly

indicated unauthorized access attempts. The Red Team was officially out of time and the

defenses held.

 Had this been a real attack, likely the hackers would have used out of scope

targets, social engineering or other methods to bypass many of the layers of defenses.

The defense in depth approach of the SANS 20 Critical controls are designed to make

real attacks difficult, time consuming and noisy enough that they alert the ISNOC and the

DBEs that they are under attack so they can take appropriate actions (SANS.org, 2014).

In this scenario, that was precisely the case.

Prevent the Red Team from p0wning your database ! 1
8 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

 5. Conclusion

The Red Team exercises crystalized the importance for ACME to get back to

security basics described in several of the SANS Critical Controls. These basics included

but were not limited to the following: enforcing and using strong passwords (control 16),

proactively managing privileged DB accounts (control 16), and following a regular patch

cycle for sensitive systems (control 3).

ACME also realized that to defend against skilled attackers, additional detective

controls were needed. These controls, though not explicitly identified in the SANS

Critical Controls but were inferred in the related controls including: changing default

TNS Listener ports (control 11), establishing NIDS rules to fire when connections to

default DB ports were attempted (control 11), and creating effective ISNOC tasks and

procedures to alert when unauthorized attempts were discovered (control 16).

Over time, and in an attempt to provide additional layers of protection, ACME

also discovered that their implementation of a secure zone (control 11) was very costly

and difficult to implement in a large enterprise environment. Significant planning and an

accurate inventory of network diagrams, ports and dependencies were needed prior to

making a network segmentation move. The process to implement this control was the

longest and most time consuming of them all and is recommended only after completing

the more basic controls.

In summary, these findings suggest the SANS Critical Controls do provide strong

protections again both Red Team and real world adversaries wishing to access

confidential databases or other highly sensitive systems. It is understood that given

enough time and opportunity, cyber-hackers can often circumnavigate or bypass many of

the security controls in use. Businesses can protect themselves and take reasonable due

care to protect their information using a defense in depth approach described in these

three controls and expanding to include other security controls as needed.

Prevent the Red Team from p0wning your database ! 1
9 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

References
Emmons, Jon (2005). What are the default restrictions on Oracle Passwords?

Retrieved August 25, 2014 from http://www.lifeaftercoffee.com/2005/11/07/what-are-

the-default-restrictions-on-oracle-passwords/

 Finnigan, Pete (2014). Default Password List. Retrieved August 5, 2014 from

http://www.petefinnigan.com/default/default_password_list.htm

Gates, Chris (2009). Attacking Oracle with the Metasploit Framework. Retrieved

August 2, 2014 from http://www.blackhat.com/presentations/bh-usa-

09/GATES/BHUSA09-Gates-OracleMetasploit-SLIDES.pdf

Gates, Chris (2009). Attacking Oracle with the Metasploit Framework. Retrieved

August 2, 2014 from https://www.defcon.org/images/defcon-17/dc-17-

presentations/defcon-17-chris_gates-breaking_metasploit.pdf

Kennedy, David (2011). Metasploit: The penetration tester's guide. San

Francisco: No Starch Press.

Kornbrust, Alexander (2009). Oracle Metasploit Presentation. Retrieved August

5, 2014 from http://blog.red-database-security.com/2009/07/30/oracle-metasploit-

presentation/

Kornbrust, Alexander (2009). Oracle Security blog. Retrieved August 2, 2014

from http://blog.red-database-security.com/2009/11/29/ighashgpu-cracking-oracle-

passwords-with-790-million-passwordssecond/

Litchfield, David (2007). The Oracle hacker’s handbook: hacking and defending

Oracle. Indianapolis, IN: Wiley Technology Pub..

Litchfield, David (2005). The database hacker's handbook: defending database

servers. Indianapolis, IN: Wiley Pub..

Mastin, R. (2001). Telecom & Networking Glossary: A plain English guide to

cutting-edge telecommunications technology, terms and acronyms (2nd edition). Newport:

Aegis Pub..

Prevent the Red Team from p0wning your database ! 2
0 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

McClure, S., & Scambray, J. (2009). Scanning. Hacking exposed 6: network

security secrets & solutions (10th anniversary ed.,). New York: McGraw-Hill.

Oppleman, V., & Friedrichs, O. (2005). Redefining the DMZ: Securing Critical

Systems. Extreme exploits: advanced defenses against hardcore hacks. New York:

McGraw-Hill/Osborne.

Oracle.com (2006). Oracle database express edition 2 day developer guide.

Retrieved August 29, 2014 from

http://docs.oracle.com/cd/B25329_01/doc/appdev.102/b25108.pdf

SANS.org (2014). Critical Security Controls. Retrieved August 2, 2014 from

http://www.SANS.org/critical-security-controls/

Stuber, Sean (2009). How Oracle Stores Passwords. Retrieved August 24, 2014

from http://www.experts-exchange.com/Database/Oracle/A_855-How-Oracle-Stores-

Passwords.html

Prevent the Red Team from p0wning your database ! 2
1 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

5. Appendix A
5.1.1. Critical Security Controls - Version 5

The SANS Critical Security Controls are described on the SANS.org website as

an effective cyber defense against growing and increasingly sophisticated cyber warfare.

The history and practicality of these defenses are described below (SANS.org, 2014).

“Over the years, many security standards and requirements frameworks have been

developed in attempts to address risks to enterprise systems and the critical data in them.

However, most of these efforts have essentially become exercises in reporting on

compliance and have actually diverted security program resources from the constantly

evolving attacks that must be addressed. In 2008, this was recognized as a serious

problem by the U.S. National Security Agency (NSA), and they began an effort that took

an "offense must inform defense" approach to prioritizing a list of the controls that would

have the greatest impact in improving risk posture against real-world threats. A

consortium of U.S. and international agencies quickly grew, and was joined by experts

from private industry and around the globe. Ultimately, recommendations for what

became the Critical Security Controls… were coordinated through the SANS Institute”

(SANS.org, 2014).

The twenty domains of security controls in version 5 include:

1: Inventory of Authorized and Unauthorized Devices

2: Inventory of Authorized and Unauthorized Software
3: Secure Configurations for Hardware and Software on Mobile Devices, Laptops,
Workstations, and Servers
4: Continuous Vulnerability Assessment and Remediation

5: Malware Defenses
6: Application Software Security

7: Wireless Access Control
8: Data Recovery Capability

9: Security Skills Assessment and Appropriate Training to Fill Gaps
10: Secure Configurations for Network Devices such as Firewalls, Routers, and Switches

11: Limitation and Control of Network Ports, Protocols, and Services

Prevent the Red Team from p0wning your database ! 2
2 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

12: Controlled Use of Administrative Privileges
13: Boundary Defense

14: Maintenance, Monitoring, and Analysis of Audit Logs
15: Controlled Access Based on the Need to Know

16: Account Monitoring and Control
17: Data Protection

18: Incident Response and Management
19: Secure Network Engineering

20: Penetration Tests and Red Team Exercises (SANS.org, 2014).

Prevent the Red Team from p0wning your database ! 2
3 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

6. Appendix B – Glossary of Terms

Database (DB) – “1. A set of data that is required for a specific purpose or is fundamental

to a system, project, enterprise or business. A database may consist of one or more data

banks and be geographically distributed among several repositories. 2. A formally

structured collection of data. In automated information systems, the database is

manipulated using a database management system” (Mastin, 2001).

Database Engineer (DBE) – A technologist performing tasks related to a database.

Database Management System (DBMS) – The DBMS typically includes special software

and/or hardware, a data storage structure (schema) and a method for users to interact with

the data stored in a relational way.

Data Definition Language (DDL) – Database statements related to database schema or

structure operations. Common examples include Drop, Alter, Create, Rename, etc.

Data Encryption Standard (DES) – The cryptographic hash algorithm used by Oracle to

convert plain text into cypher text for storage of passwords in version 10g and earlier.

Data Manipulation Language (DML) – Database statements used to manage data within

schema objects. Common examples include Insert, Update, Delete, Select, etc.

Hash – The cryptographic process used by Oracle and other database vendors to convert

varying length plain text passwords into a fixed length numerical cypher text value. DES

and SHA-1 are common hash algorithms used by Oracle.

Information Security & Network Operations Center (ISNOC) – The team responsible for

24 X 7 X 365 monitoring, assessment and defense of the computer systems at ACME.

Internet Protocol (IP) address – “The method (or protocol) used to route information sent

from one computer to another on the Internet or other data networks, such as corporate

intranets or industry extranets” (Mastin, 2001). A unique network address allowing

computers on the ACME network to talk to one another.

Prevent the Red Team from p0wning your database ! 2
4 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

Oracle Service Identifier (SID) – The equivalent to the name of the database used by

Oracle as a unique identifier.

Red Team – The team of internal ACME penetration testers or, “ethical hackers” whose

purpose is to identify security risks before they are discovered and exploited by malicious

individuals.

Salted Hash – The concept of adding an additional piece of information (called the salt)

to the cryptographic process of hashing passwords (converting plaintext into cypher text.)

In Oracle version 10g, the salt value appears to be the same as the username.

Secure–Hash 1 (SHA–1) – The secure-hash cryptographic hash algorithm used by Oracle

to convert plain text into cypher text for storage of passwords in version 11g.

TNS Listener – Part of the Oracle architecture used to make connections to the database.

Often the contents of the tnsnames.ora file defines the TNS listener settings needs to

connect to the database.

Prevent the Red Team from p0wning your database ! 2
5 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

7. Appendix C – Tool Examples and Explanations

Nmap

Command: Nmap –p T:1521 –sV (Target IP) –oG

tcp_oracle_scan_results.txt

The Red Team used this specific Nmap command (–p T:1521) to scan for only the

default Oracle TCP port of 1521 to avoid a broad sweep of ports and detection by the

monitoring team.

The –sV switch allows Nmap to detect what service and version are running on

the target IP (which was obfuscated per ACME’s request), basically performing database

fingerprinting.

The –oG switch provides an organized way to output the results to a text file for

evidence collection for the penetration test report.

Metasploit “Mixin” modules – The Red Team followed Chris Gate’s four step

approach (Gates, 2009).

As a note, the older Metasploit 3.3 framework was used instead of newer releases

such as 3.3.3 or the more current 4.7.2 to ensure the fewest number of troubleshooting

steps during the testing, of which there were many particularly with the oracle

instantclient_10_2 install as well as the older version of Ruby 1.8.6.

Step 1–Determine the Oracle Version (Assuming you already have the IP
Address)
Msf auxiliary(tnslsnr_version)> set RHOSTS 10.10.10.47

RHOSTS=>10.10.10.47

Msf auxiliary(tnslsnr_version)> run

(Trimmed for Brevity)
[*] Host 10.10.10.47 is running: Linux: Version
11.1.0.6 - Production

Prevent the Red Team from p0wning your database ! 2
6 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

[*] Auxiliary module execution completed

Msf auxiliary(tnslsnr_version)> pt_notes

[*] Time: Fri May 23 15:40:32 -0600 2014 Note:
host=10.10.10.47 type=VERSION data=Linux: Version
11.1.0.6 - Production

Step 2–Determine the Oracle SID with sid_enum.
The Red Team used this to successfully identify the SID against a dictionary of
possible four letter SIDs in the sids.txt file.
Msf auxiliary (sid_enum) > run

[*] Identified SID for 10.10.10.47: PLSExtProc

[*] Identified SID for 10.10.10.47: ACME

[*] Identified SERVICE_NAME for 10.10.10.47:
PLSExtProc

[*] Identified SERVICE_NAME for 10.10.10.47: ACME

The (sid_enum) calls:
Msf auxiliary (sid_enum) > use
auxiliary/scanner/oracle/spy_sid

Msf auxiliary (spy_sid)> run

(Trimmed for Brevity)

Or, determine the Oracle SID with a brute force attack with a txt file of possible
SIDs.
Msf auxiliary (sid_brute) > run

[*] Starting brute force on 10.10.10.47, using sids

from /home/ds/ms/msf3/dev/data/exploits/sid.txt

[*] Found SID ‘ACME’ for host 10.10.10.47

[*] Auxiliary module execution completed

Step 3–Determine the Oracle Username/Password combinations
Using the Pete Finnigan default Oracle username and Password list, create or

download the list of default usernames and password combinations. For the attack, the

Red Team also used a list of well-known internal accounts.

Prevent the Red Team from p0wning your database ! 2
7 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

Msf auxiliary(login_brute)> set SID ACME

SID => ACME

Msf auxiliary(login_brute)> run

(This is where you would expect to see failed logins)
[-] ORA-01017: invalid username/password; login denied

But they did not since they had tested the account
access prior using SQL Plus.

[*] Auxiliary module execution completed

Msf auxiliary(login_brute) > pt_notes

[*] Time: Fri May 23 16:40:32 -0600 2014 Note:
host=10.10.10.47

Type=BRUTEFORCED_ACCOUNT data=MONFOG/MONFOG

Step 4–Putting it all together for the attack.
With the data found so far, the Red Team can launch Privilege Escalation SQL

Injection attacks with the lt_findricset module.

Msf auxiliary (lt_findricset) > set RHOST 10.10.10.47

RHOST=>10.10.10.47

Msf auxiliary (lt_findricset) > set RPORT 1521

RPORT=>1521

Msf auxiliary (lt_findricset) > set DBUSER MONFOG

DBUSER=> MONFOG

Msf auxiliary (lt_findricset) > set DBPASS MONFOG

DBPASS=>MONFOG

Msf auxiliary (lt_findricset) > set SID ACME

SID=>ACME

Msf auxiliary (lt_findricset) > set SQL GRANT DBA TO
MONFOG

SQL=> GRANT DBA TO MONFOG

Msf auxialry)lt_findricset)>run

(Trimmed for Brevity)

Prevent the Red Team from p0wning your database ! 2
8 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

This attack worked but in this case, it wasn’t necessary. The monfog account had

access to the data dictionary so hashes were available. Once cracked, the SYSADM user

with the DBA privileges was accessible and the database contents were known.

The code for the tnslsnr_version.rb and other Metasploit Mixin modules are

available from: https://github.com/pwnieexpress/metasploit-

framework/blob/master/modules/auxiliary/scanner/oracle/tnslsnr_version.rb

Setting an, “Unbreakable” password hash

The process for changing the password hash value to a value that will not match

the expected hash value for Oracle 10g and prior versions is simple; but it is

recommended to securely backup a copy of the existing hash if you believe there is a

chance you will need to ever use it again (Stuber, 2009).

SQL> connect dbadminusername/dbadminpassword@acme

(Connect to the database with a user with permissions to query DBA_USERS and

to ALTER USER.)

Connected.

SQL> select username, password from dba_users where
username = ‘CTXSYS’;

(Backup the hash value if you want to restore it later.)

USERNAME PASSWORD

---------- ------------------
CTXSYS 24ABAB8B06281B4C

SQL> alter user CTXSYS identified by Unbreakable;

User altered.

(Change the hash to “Unbreakable.”)

For Oracle version 11g, new security controls were introduced to support

passwords with case sensitivity. Prior to version 11g, all passwords were converted to

Prevent the Red Team from p0wning your database ! 2
9 !

N.!Dean!Sapp,!deansapp@hotmail.com! ! !

uppercase before hashing begins. For backward compatibility, Oracle includes legacy

support for DES hashes with a flag in the database labeled “10G”. If the 11g database

PASSWORD_VERSION column of the DBA_USERS contains this flag, these

instructions will work. If this flag is not present in the PASSWORD_VERSION column,

then the database is using the more secure SHA-1 hash and the DBE will need to find the

hash in the SYS.USER$.SPARE4 column (Stuber, 2009).

The Red Team discovered the 10G flag in the PASSWORD_VERSION column,

so they knew the database contained both the DES and SHA-1 versions of the hashes.

