
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Leadership Essentials for Managers (Cybersecurity Leadership 512)"
at http://www.giac.org/registration/gslc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gslc

The Scary and Terrible Code Signing Problem You
Don’t Know You Have

GIAC GSLC Gold Certi fication

Author: Sandra E. Dunn, Sandra.Dunn@HP.com
Advisor: Ty Purcell

Accepted: November 19th, 2014

Abstract

Code signing has proven to be an effective deterrent against black hats and criminal
forces looking for routes into attractive target networks. Code signing uses the x.509
version 3 standard [RFC5280] to verify signed code has not been altered and the source
that developed the code can be trusted by the person installing the software. Increasing
numbers of preventative security controls depend on code signing to tighten security and
make critical trust decisions.

Cyber attackers thwarted by the protection that code signing provides have pivoted and
now attack the code signing system itself. They do this by stealing private code signing
keys to sign malware such as Stuxnet and compromising code signing servers to sign
malware for their victims (Spectrum, 2013). It is not an exaggeration to consider private
code signing keys as the keys to the business’s kingdom. Compromising a single private
key can have a devastating impact on users and the private key owner (f-secure archives,
2011).

A close study of the Bit9 code signing server compromise in July 2012 provides insight
into areas where additional security controls may have prevented this attack. The Council
on Cyber Security Top 20 Security Controls provides a list of best practices for
minimizing the risk of a similar type of attack on an organization.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 2

sandra.dunn@hp.com

1. Introduction
SSL 3.0 / TLS 1.0 certificates are built on the X.509v3 PKI standard and provide

the framework that the code signing process uses. Code signing uses PKI and X.509v3

certificates issued by a trusted certificate authority to validate that the code being

installed on a device comes from a trusted vendor. This trust is anchored in the assurance

of the X.509v3 certificate. Revoking the trusted certificate’s serial number protects users

from certificates in the event that a certificate can no longer be trusted. The list of

revoked certificates is provided through a revocation list to parties before establishing a

trust [RFC5280]. The Microsoft Software Publisher Certificate is Microsoft’s

implementation of the X.509v3 code signing certificate which is how they reference code

signing certificates in most of their documentation. The .spc Software Publisher

Certificate format slightly changes the code signing certificate by combining multiple

X.509v3 certificates into a .spc code signing file (Software Publisher Certificate, n.d.).

The vendor-neutral term “Code Signing Certificate” is used for this paper.

The Certificate Authority Security Council (CASC) 1 and CA Browser Forum

(CAB) 2 are working groups that together promote code signing and X.509v3

compatibility. CASC was started in February 2013 with members from the world’s

leading Certificate Authorities. CASC provides guidance and education on the benefits

of code signing and devotes efforts to improving web security and online transactions.

The CASC Council works closely with the CAB whose members include certificate

authorities, browser vendors, operating system vendors, and other PKI-dependent

application providers. The CA/Browser forum provides industry guidelines on X.509v3

certificates to ensure compatibility between interacting dependent services.

Signing code to distribute to customers initially appears to be a simple process.

Protecting the private key signing key and the key signing server are vitally important

and fairly well understood by software developers and distributors who have

implemented a code signing process.

1CASC https://casecurity.org/

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 3

sandra.dunn@hp.com

2CAB https://cabforum.org/

It’s the undoing, the revoking, and the resigning where the house of cards begins

to fall and a business quickly realizes that they are unprepared for a major event. The

complexity of revoking a certificate can be attributed to the extensive amount of variation

in types of files that are signed, how signed code is executed, variations in operating

systems, and the different errors and warnings provided to the user. The compromise of

the Bit9 code signing server to sign 39 malicious files was an especially harsh reminder

that even a firm that is recognized as a security leader is only as secure as its weakest link

(Doherty, 2013). It also provided glaring evidence that cyber attackers are clever,

persistent, and patient.

Recent private key attacks and code signing server compromises provide

consistent patterns of attacks. Using the Bit9 compromise and guidance from the Council

On Cyber Security Top 20 Controls, other companies can learn how to prevent similar

attacks on their organizations. Another key learning point from attacked companies’

misfortunes is to be prepared if the attack isn’t prevented. Companies implementing code

signing should build a risk-based architecture design that limits impact to the company if

a code signing certificate must be revoked. This also minimized the revocation impact to

their code users who find applications failing because of the bad certificate. Lastly, in the

event of a private code signing key compromise, the firm’s Incident Response plan

should be a well-documented process that is easy to locate and kept with all other

Incident Response plans.

2. How Code Signing Works
2.1. X.509v3 PKI Framework
 The X.509v3 certificate provides the public key certificate with the signed code

used to validate the code signing key owner defined in the subject field. That owner is

defined as a Distinguished Name in the subject field of the certificate.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 4

sandra.dunn@hp.com

2.2. Code Signing: The Files and Steps
2.2.1. The Parts of Code Signing
Code signing uses the X.509v3 certificate PKI technologies which consist of

keys, certificates, and digital signatures.

1. A one-way hash of the file is calculated.
2. The hash is encrypted with the private key which signs the file.
3. The file is provided on a website, DVD, email, or other file transfer method.
4. The file receiver also calculates a one-way hash of the file.
5. The recipient then decrypts the signed hash with the sender's public key. Code

signing public keys are generally found in the Trusted Root Store on Windows
Systems (Ene-Pietrosanu, Yiu, Crossman, Lewis, & Murton, 2005).

Validating the signed code hash verifies the identity of the code developer and

confirms the integrity of the software (Morton, n.d.). Code signing does not prevent the

inclusion of defects that could be exploited or the intentional or accidental inclusion of

malware in the package before it is signed. Code signing only confirms who signed the

code and that the user is receiving the same code that was signed.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 5

sandra.dunn@hp.com

Signing a hash or digest of the file instead of the whole file is normal practice.

The hash is signed with the code signing private key which creates a digital signature that

can be verified by the receiver of the file. The X.509v3 private key-created digital

signature can be included with the file, embedded or sent separately as an attached

signature (Morton, n.d.). Requirements for code signing are dependent on the

environment and the operating system. Examples of code file types that are either

required to be or should be signed are Windows files .cat, .dll, .ocx, CAB, Adobe Air,

Flash, Java, Adobe, Android, Apple IOS, and Macintosh (Jones, 2009).

Time stamping the code signing signatures is strongly encouraged but is not a

requirement. When the user installs the time stamped code, a timestamp authority (TSA)

verifies that the code’s digital signature’s existed when the timestamp was issued. Using

time stamps is also advantageous when a certificate is revoked. If a code signing

certificate was signed with a compromised certificate it can be revoked by a specific time

period instead of the entire length of time it was used. Since code signing certificates are

only valid for a few years, time stamping benefits both code signers and code users since

it provides security but limits continuously resigning the code (Code Signing Best

Practices, 2007).

Revoking a certificate by the time stamp cannot be manually configured by a user

or administrator. Testing by the author verified if a certificate is manually moved into the

untrusted folder then the entire time that the certificate was valid is now untrusted.

Windows, Ubuntu, Red Hat, JAVA, Apple, and Android operating systems use

code signing to validate the code distributor and the code integrity. Other applications

and appliances that validate digital signatures on code to evaluate and block unsafe or

unapproved software are Host Intrusion Prevention Software (HIPS), Web Proxy services

software, File Transfer Services, Email Security services (Enterprise ingress/egress),

Intrusion Prevention Systems (IPS), and 4th generation Firewalls.

Most types of file signing are simple for the developer to do and easy for the end

user to validate the signer. Code signing for Windows operating systems is more

challenging for developers, code platform managers, and users because of the many

different types of files that are signed, variety of supported platforms, and options to

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 6

sandra.dunn@hp.com

apply different levels of security controls. Scrutinizing the complex variables provides

insight into why code signing, private key protecting, and key revocation requires

extensive planning, well written policy, and trained individuals.

2.2.2. Window Code Signatures
Windows code signatures are either attached or embedded. Embedded signing

refers to adding a digital signature to the driver's binary image file instead of putting the

file hash in a signed catalog file. If the signed file needs to load during Windows

operating systems boot it should embed the signature inside the .sys file. Attaching the

signature can be used after the operating system has booted. Embedded signatures should

be used if a user will be downloading the binary directly or when the binary is not part of

a catalog file. When a driver is loaded into kernel memory, Windows verifies the digital

signature of the driver image file by checking the Certificate Trust List, (CTL). The CTL

is a predefined list of items signed by a trusted certificate. This can be the signed hash

value in the catalog file or an embedded signature in the image file. The load-time

signature check does not have access to the Trusted Root Certificate Authorities

certificate store. Instead, it must depend on the root authorities that are built into the

Windows kernel (Microsoft, 2007). Microsoft’s release of Windows Vista 64 bit

increased the control for code signing from warning a user that the software publisher

could not be verified to requiring code signature on a CAT file be verified before the .sys

file was loaded into the kernel. A security catalog or CAT file contains a list of file

names and a cryptographic hash of the contents of each file with a digital signature

attached. Only CAT files use file hashes and attached signatures. A signed catalog file

must be added to the Windows Catalog Database for Windows features such as UAC and

the Windows kernel to find it (Code Signing Best Practices, 2007). Catalog files for Plug

and Play drivers are automatically added to the security catalog during installation. Non-

Plug and Play drivers, third party applications or installation programs use

CryptCATAdminAddCatalog to add signatures to the Windows Security Catalog (Code

Signing Best Practices,). The Windows files that use embedded code signing for the

Portable Executable format files are .msi, .msp, .exe, .dll, .sys, .ocx, and .cab files.

Cabinet (.cab) store multiple compressed files in a file library and it is ok to just sign the

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 7

sandra.dunn@hp.com

final compressed .cab file. If the .ocx, .vbd or.dll will be provided without a .cab

package, the individual files should be signed (Kernel-Mode Code Signing, 2007).

The .NET Framework adds additional use of code signing to its process that other

Windows files do not use. The final executable should be signed with an Authenticode

signature just like the other Windows files. Microsoft adds an additional code signing

requirement that the assembly must also be signed by the actual developer using “Strong

Naming”. Strong Naming uses code signing to ensure uniqueness to the assemblies by

requiring that each assembly be signed with the private key of the specific assembly

developer. Its primary use is to verify that the assembly you downloaded is not an

assembly with a similar name. Strong Names are only used for .net files and only

provide verification on who created the assembly. There is no method that validates the

key, and no process for revoking (Kernel-Mode Code Signing).

2.2.3. Windows Certificate Stores
Windows organizes X.509v3 certificates into a hierarchy of certificate stores that

are stored locally on the system. These certificates can be managed with the command

line tool CertMgr.exe or through the Microsoft Management Console (MMC). There is a

service certificate store, local machine certificate store, and a current user certificate store

in the certificate store (Local machine and Current User Certificate Stores, n.d.). There is

one set of machine certificate stores per computer that is global to all users of the system.

Each user account has their set of user certificate stores. All user certificate stores

inherit the contents of the machine- level certificate stores. If a certificate is added to the

Trusted Root Certification Authorities machine certificate store, all Trusted Root

Certification Authorities user stores will also contain that certificate. Trusted Root

Certification Authorities certificate store automatically includes the set of public

Certificate Authorities that Windows trusts and have met the Microsoft Root Certificate

program requirements. Additional public key certificates can be added to the Trusted

Root Certificate Store with the import certificate wizard. The required level of privilege

to configure a certificate store depends on the type of store. Users with administrator

privilege can configure the machine certificate store and their own user certificate stores.

Users with lower privileges can configure only their own user certificate stores. Different

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 8

sandra.dunn@hp.com

Windows features make decisions based on different certificate stores. Processes that are

running under LocalSystem, LocalService, or NetworkService settings trust certificates in

the machine certificate stores. Applications that run in a user’s specific profile trust that

user’s certificate stores (Code Signing Best Practices, 2007).

On Windows systems trusted publisher’s public end-entity certificates are stored

in the Trusted Publishers Certificate Store. Services verifying the public key hash in the

Trusted Publishers Certificate Store cannot “walk the chain” of certificates. To validate

the signature the code is signed with, the service verifying the public key signature uses

the end-entity certificate. The service finds the trusted public code signing key in the

store and verifies it is trusted or the verification fails (Trusted Root Certification

Authorities Certificate Store n.d.).

Windows Certificate verification uses multiple steps to check the unique trust

stores for certificate confirmation.

1. All possible certificate chains are built using locally cached certificates. If

none of the certificate chains ends in a self-signed certificate, CryptoAPI then selects the

best possible chain and attempt to retrieve issuer certificates specified in the authority

information access extension to complete the chain. This process is repeated until a chain

to a self-signed certificate is built.

2. For each chain that ends in a self-signed certificate in the trusted root

store, revocation checking is performed.

3. Revocation checking is performed from the root CA certificate down to

the evaluated certificate (How Certificate Revocation Works, 2012).

2.2.4. Where Windows Checks for Valid Code Signing Signatures
How Windows systems users are protected from malicious code by validation of

the code signing signatures depends on the Windows Operating system and which

additional Windows Security Controls have been enabled. There are five different

Windows features that employ code signing as a security control.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 9

sandra.dunn@hp.com

1. Browser downloads all major browsers check the CRL list to verify the validity

of the provided signed certificate. Browser download signatures are checked on

all operating systems that they support (Vandeven, 2014).

2. Software Restriction Policies are Windows policy Group Policy that use code

signing to restrict applications. There are four types of software restriction rules

to specify which programs can or cannot run.

x Hash rules

x Certificate rules

x Path rules

x Network Zone rules

Rules are applied in this order and multiple rules can be used (Determining

Your Application Control Objectives, 2012).

3. Windows User Account Control (UAC) Checks the validity of the code

signature depending on the level of controls implemented. four different types of

configuration settings are available that vary from limited security that ignores a

program attempting a privileged action or the maximum security that notifies a

user anytime any program requests to run with higher privileges. (User Account

Control, n.d.)

4. AppLocker is included with Windows Server 2012, Windows Server 2008 R2,

Windows 8, and Windows 7. It extends the code signing verification that the

Software Restriction Policies feature provides. It contains new options and

extensions that helps administrators control how users access and use files

(AppLocker: Frequently Asked Questions, 2012).

5. SmartScreen is a new security feature that is supported Windows 7 Internet

Explorer 8. In Windows 8 Internet Explorer files and other files on the desktop

can access the SmartScreen feature. “When the files are downloaded a file

identifier and the name of the publisher are sent to a reputation services that is

managed in the cloud. If the file is well known and has a good reputation the user

does not receive a warning. If the file has a bad reputation the file is blocked If it

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 10

sandra.dunn@hp.com

is from an unknown publisher the notification bar provides this lack of reputation

information to the user” (Introducing SmartScreen Application Reputation, 2010).

3. Notable Private Code Signing Key Compromises
3.1. The Trend

It must be noted that although the Bit9 code signing server compromise grabbed

headlines and reverberated across it’s customer’s in the Fortune 100 and the U.S.

Government causing security professionals to completely rethink their enclave and

secure networking strategy it has not been the only case of private code signing key

compromise. There have been a number of high profile cases that made world

headlines and have severely impacted business, government, and user’s security.

These incidents fall into four categories: Stolen Private Key, Direct Attack on

Certificate Authority, Compromised Code Signing Server, and Human Error.

How it happened Date Company Description of incident
Stolen Private Key
(spectrum.ieee.org,
2013)

January 2011 Jmicron
RealTek

Stuxnet used to infect nuclear plants for
the enrichment of uranium in Iran. The
malware was signed using digital
certificates associated to Realtek
Semiconductor and Jmicron.

Stolen Private Key
(Symantec, 2011)

October
2011

Duqu A code signing certificate belonging to C-
Media Electronics was stolen and used to
sign the Duqu malware.

Stolen Private Key
(f-secure,2011)

November
2011
(f-secure
archives,
2011)

Malaysian
Government

Legitimate certificate used to sign
malware. Certificate stolen “a long time
ago”.

Stolen Private Key
(Threatpost,2013)

June 2013 Opera Targeted attack and expired certificate
was stolen.

Stolen Private Key
(Microsoft, 2014)

December
2013

Software
Developers

Rogue:Win32/Winwebsec
Signed with credentials from 12 different
developers. Trojans like early versions of
Ursnif are capable of stealing certificates
and private keys.

Direct Attack on
Certificate Authority
(Comodo, 2011)

March 2011 Comodo The Comodo registration authority was
compromised the username and password
of a Comodo Trusted Partner was stolen.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 11

sandra.dunn@hp.com

The account was used to issue nine
certificates across seven domain.
including: login.yahoo.com
(NSDQ:YHOO), mail. google.com
(NSDQ:GOOG), login.skype.com, and
addons.mozilla.org.

Direct attack on
Certificate Authority
(f-secure, 2011)

September
2011

DigiNotar A security breach resulted in the
fraudulent issuing of certificates and
resulted in the bankruptcy of DigiNotar.

Compromised Code
Signing Process
Server
(Wired, 2013)

February
2013

Bit9 Malicious third party was able to illegally
gain access to a digital code-signing
certificates that was used to sign 32
malicious files.

Compromised Code
Signing Process
Server (Converge,
2012)

September
2013

Adobe Attackers penetrated the network and
reached a build server on which they
requested a signature for two malicious
utilities.

Human Error
(Googleonlinesecurity,
2013)

ANSSI ANSSI France's cyber defense gave
France's Finance Ministry an intermediate
CA key, which means the French Ministry
of Finance could create as many keys as
they want for any domains they wanted.

Human Error
(techdirt, 2012)

TrustWave TrustWave issued a certificate to a
company allowing it to issue valid
certificates for any server. This gave the
company similar rights as a RA, allowing
it to issue certificates for any domain such
as google or yahoo.

3.2. The Bit9 Incident
Bit9 is a well-respected security company that provides white listing service to

many large security customers including the US Government and many Fortune 100

companies (Doherty, 2013). It is believed that Bit9 was compromised because the

actual target was being effectively protected by the Bit9 solution (Doherty, 2013).

The start of the compromise happened on July 2012. The attackers used a SQL

injection flaw on an Internet- facing Web server (Bit9, 2013). The public internet

facing server was sitting in the DMZ and was compromised with a SQL injection

attack. A Trojan called Backdoor.Hikit was installed on this server (Doherty, 2013).

This system was used as a pivot point and credentials for two legitimate user

accounts on another virtual machine were stolen. One of the systems accessed was a

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 12

sandra.dunn@hp.com

virtual machine that stored a legacy code signing certificate that still had a valid

signing date but was no longer being used (Doherty, 2013). The compromised

signing server was only active until the end of July, 2012 and no malicious code has

been identified as being signed in the narrow amount of time from when the server

was initially compromised and when it was archived. The system was brought back

online in January 2013. After it was online the compromised server was used to

sign at least 32 different files with the stolen private key.

Bit9 became aware of the compromise when one of their customers who had

been impacted by a Trojan signed with the stolen Bit9 certificate contacted them.

Bit9 confirmed that the Trojan was signed with a legitimate Bit9 certificate and then

immediately revoked the certificate (Doherty, 2013).

Since Bit9 was no longer signing their code with the certificate it makes sense

that it was shut down. Bit9 did not disclose why the server was reactivated. The

reactivation provides visibility to two observations. First, the attackers had

visibility to the system being brought back onto the network and secondly that there

was a gap in the process of reactivation of VM images since Bit9 attributes the

malware being undetected to the system being shut down.

4. Council on Cyber Security Top 20 Security Controls
The Council on Cyber Security Top 20 Security Controls is a list of the most

important controls that an organization should evaluate to determine best practices for

protecting valuable assets and hardening their network. The objective is to prioritize on

effectiveness with a smaller list of controls that provide the best return on investment and

have the highest impact on improving the overall security landscape within an

organization (Council on Cyber Security Controls, n.d.). The chain of events that lead to

the Bit9 code signing server compromise in July of 2012 yields insight into areas where

additional security controls may have prevented this attack. Using the Council on Cyber

Security Top 20 Security Controls for guidance a list of best practices is provided to

minimize the risk of a similar type attack at other organizations.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 13

sandra.dunn@hp.com

4.1. Council on Cyber Security Top 20 Security Control
Breakdown

1: Inventory of Authorized and
Unauthorized Devices

Bit9 review of the code signing system
compromise incident attributed missed
notification of the Hikit Trojan on the code
signing server because the hosting VM was
shut down. Following the guidance of CSC
1-1 an Inventory of systems may have
alerted someone that the decommissioned
code signing server missed scheduled virus
scanning.
CSC 1-1 Deploy an automated asset
inventory discovery tool and use it to build a
preliminary asset inventory of systems
connected to an organization’s public and
private network(s). (The Critical Security
Controls for Effective Cyber Defense,
v.5.1,nd, p.9)

2: Inventory of Authorized and Unauthorized
Software

Bit9 does not offer an explanation on why
the code signing operation was being
executed on a VM where the private key
was also located but following CSC 2.7
guidance this important activity should not
have been located on virtual machine that
was not air gapped from the rest of the
network.

CSC 2-7 Virtual machines and/or air-
gapped systems should be used to isolate
and run applications that are required for
business operations but based on higher risk
should not be installed within a networked
environment. (The Critical Security
Controls for Effective Cyber Defense,
v.5.1,nd, p.15)

3: Secure Configurations for Hardware and
Software on Mobile Devices, Laptops,
Workstations, and Servers

Following configuration and patching
guidance provided in CSC 3-2 control may
have helped Bit9 prevent this attack by
locking down configurations, minimizing
the number of applications installed, and
applying the latest patches to minimize their
attack surface.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 14

sandra.dunn@hp.com

CSC 3-2 Implement automated patching
tools and processes for both applications
and for operating system software. When
outdated systems can no longer be patched,
update to the latest version of application
software. Remove outdated, older, and
unused software from the system. (The
Critical Security Controls for Effective
Cyber Defense, v.5.1,nd, p.17)

Implementing CSC 3-8 is especially
important on systems that perform critical
activities. If Bit9 had been alerted that there
was a file change on their DMZ server they
may have been able to prevent the code
signing server compromise.
CSC 3-8 Utilize file integrity checking tools
to ensure that critical system files (including
sensitive system and application
executables, libraries, and configurations)
have not been altered. All alterations to such
files should be automatically reported
security personnel. The reporting system
should have the ability to account for
routine and expected changes, highlighting
unusual or unexpected alterations. (The
Critical Security Controls for Effective
Cyber Defense, v.5.1,nd, p.21)

4: Continuous Vulnerability Assessment and
Remediation

Bit9 had implemented the guidance
provided in CSC 4-1 to scan environments
for vulnerabilities but their acknowledged
gap was that compromised code signing VM
was shut down and then brought back up
between scans. Implementing a process that
requires a vulnerability scan and updating
patches before an archived system could be
brought back on the network adds an
additional layer of defense to network
systems.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 15

sandra.dunn@hp.com

CSC 4-1 Run automated vulnerability
scanning tools against all systems on the
network on a weekly or more frequent basis
and deliver prioritized lists of the most
critical vulnerabilities to each responsible
system administrator along with risk scores
that compare the effectiveness of system
administrators and departments in reducing
risk. (The Critical Security Controls for
Effective Cyber Defense, v.5.1,nd, p.28)
Adding the CSC 4-2 control to vulnerability
defense process ensures that a team is doing
what they believe they are doing which is
logging known vulnerabilities and asking
teams to patch before serious issues happen.
If an event does happen they can validate
that they were aware of the vulnerability
and improve their escalation and
communication process if necessary.

 CSC 4-2 Correlate event logs with
information from vulnerability scans to
fulfill two goals. First, personnel should
verify that the activity of the regular
vulnerability scanning tools themselves is
logged. Second, personnel should be able to
correlate attack detection events with earlier
vulnerability scanning results to determine
whether the given exploit was used against a
target known to be vulnerable. (The Critical
Security Controls for Effective Cyber
Defense, v.5.1,nd, p.28)

 5: Malware Defenses

The Backdoor.hikit was installed on the
Bit9 DMZ server. This Remote Access
Trojan was the tool that was used to
exfiltrate the signed malware code out of the
network. The guidance in CSC 5 includes
automated malware detection for
workstations and the network as well as
additional hardening guides such as
implementing Data Execution Prevention
(DEP), Address Space Layout
Randomization, (ASLR), and the Enhanced
Mitigation Experience Toolkit provided by
Microsoft (EMET).

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 16

sandra.dunn@hp.com

CSC 5-1 Employ automated tools to
continuously monitor workstations, servers,
and mobile devices with anti-virus, anti-
spyware, personal firewalls, and host-based
IPS functionality. All malware detection
events should be sent to enterprise anti-
malware administration tools and event log
servers.
CSC 5-6 Enable anti-exploitation features
such as Data Execution Prevention (DEP),
Address Space Layout Randomization
(ASLR), virtualization/containerization, etc.
For increased protection, deploy capabilities
such as Enhanced Mitigation Experience
Toolkit (EMET) that can be configured to
apply these protections to a broader set of
applications and executables.
CSC 5-9 Use network-based anti-malware
tools to identify executables in all network
traffic and use techniques other than
signature-based detection to identify and
filter out malicious content before it arrives
at the endpoint.
(The Critical Security Controls for Effective
Cyber Defense, v.5.1,nd, p.34)

 6: Application Software Security

The initial foothold into the Bit9
environment was a SQL injection attack.
Implementing CSC 6-2 may not have
prevented this attack from this persistent
and determined attacker but it would
certainly made it more difficult.

CSC 6-2 Protect web applications by
deploying web application firewalls (WAFs)
that inspect all traffic flowing to the web
application for common web application
attacks, including but not limited to cross-
site scripting, SQL injection, command
injection, and directory traversal attacks.
(The Critical Security Controls for Effective
Cyber Defense, v.5.1,nd, p.39)

9: Security Skills Assessment and
Appropriate Training to Fill Gaps

Bit9 own assessment points to a lack of
diligence and process. Recognized as a
leader in the whitelisting space and security
experts, it is a stark reminder that training
and skills assessment is not a one-time
activity but is a continuous process.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 17

sandra.dunn@hp.com

CSC 9-5 Use security skills assessments for
each of the mission-critical roles to identify
skills gaps. Use hands-on, real-world
examples to measure mastery. If you do not
have such assessments, use one of the
available online competitions that simulate
real-world scenarios for each of the
identified jobs in order to measure skills
mastery. (The Critical Security Controls for
Effective Cyber Defense, v.5.1,nd, p.53)

13: Boundary Defense It is reasonable to assume that the SQL
injection attack that compromised the Bit9
network wasn’t the first attack attempted on
the Bit9 network. Monitoring who is
accessing your network from where and
logging that information for analysis can
allow a company to quickly implement
defensive measures such as black listing
suspect IPs. CSC 13-2 recommends
recording network packet information and
sending to a SIEM for analysis.

CSC 13-2 On DMZ networks, configure
monitoring systems (which may be built in
to the IDS sensors or deployed as a separate
technology) to record at least packet header
information, and preferably full packet
header and payloads of the traffic destined
for or passing through the network border.
This traffic should be sent to a properly
configured Security Information Event
Management (SIEM) or log analytics
system so that events can be correlated from
all devices on the network. (The Critical
Security Controls for Effective Cyber
Defense, v.5.1,nd, p.70)
CSC 13-4 reinforces that DMZ system
traffic should be carefully monitored.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 18

sandra.dunn@hp.com

CSC 13-4 Deploy network-based IDS
sensors on Internet and extranet DMZ
systems and networks that look for unusual
attack mechanisms and detect compromise
of these systems. These network-based IDS
sensors may detect attacks through the use
of signatures, network behavior analysis, or
other mechanisms to analyze traffic. (The
Critical Security Controls for Effective
Cyber Defense, v.5.1,nd, p.70)

14: Maintenance, Monitoring, and Analysis
of Audit Logs

Bit9 was notified of a breach on their
network by a customer infected with
malware signed by Bit9. Reports on the
Bit9 incident do not provide details on log
information but either the unusual traffic
was not being logged or it was being
ignored. There were multiple events where
adequate logs should have alerted Bit9
something unusual was happening on the
network and needed to be investigated. Bit9
may have implemented CSC 14-4 since they
were able to analysis the code signing VM
compromise that took place over a several
month period.
CSC 14-4 Develop a log retention policy to
make sure that the logs are kept for a
sufficient period of time. (The Critical
Security Controls for Effective Cyber
Defense, v.5.1,nd, p.77)
CSC 14-5 Have security personnel and/or
system administrators run biweekly reports
that identify anomalies in logs. They should
then actively review the anomalies,
documenting their findings. (The Critical
Security Controls for Effective Cyber
Defense, v.5.1,nd, p.77)
CSC 14-6 Configure network boundary
devices, including firewalls, network-based
IPS, and inbound and outbound proxies, to
verbosely log all traffic (both allowed and
blocked) arriving at the device. (The Critical
Security Controls for Effective Cyber
Defense, v.5.1,nd, p.77)

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 19

sandra.dunn@hp.com

16: Account Monitoring and Control

Credentials that were stolen from the
compromised VM system were used to
access the code signing server. Although not
specifically stated in any of the reports it is
reasonable to believe that this indicates it
was a common account. Traffic from a
system on the DMZ should be considered
suspect. Don’t reuse account information.
CSC 16 provides guidance on Account
monitoring and control.
CSC 16-1 Review all system accounts and
disable any account that cannot be
associated with a business process and
owner. (The Critical Security Controls for
Effective Cyber Defense, v.5.1,nd, p.85)
CSC 16-13 Profile each user's typical
account usage by determining normal time-
of-day access and access duration. Reports
should be generated that indicate users who
have logged in during unusual hours or have
exceeded their normal login duration. This
includes flagging the use of the user's
credentials from a computer other than
computers on which the user generally
works. (The Critical Security Controls for
Effective Cyber Defense, v.5.1,nd, p.86)

17: Data Protection

In Bit9’s public disclosure of the certificate
signing server’s compromise they offer
some transparency on areas where there
where operational gaps but the one thing
that we are to left to postulate and wonder
about is why such an important activity as
code signing was left to VM that could be
spun up or down seemingly with few
procedural or technical controls. CSC 17-3
Reinforces the importance of identifying
what information needs to be protected and
then implementing the proper controls to
protect it. CSC 17 -10 Emphasizes the
importance of using trustworthy root
authorities.
CSC 17-3 Perform an assessment of data to
identify sensitive information that requires
the application of encryption and integrity
controls.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 20

sandra.dunn@hp.com

CSC 17-10 Only allow approved Certificate
Authorities (CAs) to issue certificates
within the enterprise; Review and verify
each CAs Certificate Practices Statement
(CPS) and Certificate Policy (CP). (The
Critical Security Controls for Effective
Cyber Defense, v.5.1,nd, p.92)
CSC 17-14 Define roles and responsibilities
related to management of encryption keys
within the enterprise; define processes for
lifecycle. (The Critical Security Controls
for Effective Cyber Defense, v.5.1,nd, p.92)
Why Bit9 private code signing keys were
not protected in a hardware security module
is anyone’s guess. Did an accountant ax a
request for one and say it wasn’t in the
budget? Did someone from the risk team
crunch some numbers and say that it was
unlikely to happen? Did a fast moving
developer team insist that it was more costly
to lose time? We also don’t know for sure
if having the private code signing keys
protected in a HSM would have prevented
the malware being signed. It certainly would
have made the attack more difficult and
provided credible evidence that Bit9 was
taking network security as seriously as they
tell their customers to. HSM’s are an
investment but for a large software company
should be viewed as important as having
locks on the front door of the building and
security people at the front entrance.
CSC 17-15 Where applicable, implement
Hardware Security Modules (HSMs) for
protection of private keys (e.g., for sub
CAs) or Key Encryption Keys. (The Critical
Security Controls for Effective Cyber
Defense, v.5.1,nd, p.92)

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 21

sandra.dunn@hp.com

18: Incident Response and Management

Reports from Bit9 do not provide details
regarding an established Incident Response
process but it would be unusual if they did.
Code signing key compromise is still a
unique enough event that it is not covered in
most incident response plans. CSC 18-1
provides guidance on what to include in an
incident response procedure which can be
tailored specifically for code signing key
compromise.

CSC 18-1 Ensure that there are written
incident response procedures that include a
definition of personnel roles for handling
incidents. The procedures should define the
phases of incident handling. (The Critical
Security Controls for Effective Cyber
Defense, v.5.1,nd, p.96)

19: Secure Network Engineering

For the Bit9 compromise the devil is in the
details. Bit9 did have a DMZ architecture
implemented. Unfortunately a system
located in the DMZ was vulnerable to a
SQL injection attack. Even more damaging
there were accounts that had the same user
name and passwords on both the DMZ
systems and the internal network. CSC 19
provides guidance on network design but
important to reinforce that mindful
consideration of the other CSC controls is
necessary.

CSC 19-1 Design the network using a
minimum of a three-tier architecture (DMZ,
middleware, and private network). (The
Critical Security Controls for Effective
Cyber Defense, v.5.1,nd, p.99)

20: Penetration Tests and Red Team
Exercises

Either Bit9 was not performing regularly
scheduled penetration tests or they were and
the SQL injection vulnerability was missed.
Penetration testing needs to be prioritized
and executed as diligently as a fire drill or
disaster recovery exercise. It is important to
clearly differentiate the difference between
a vulnerability scan and a penetration test
and that they are different but supporting
activities. CSC 20 guidance lists a number
of controls that ensure testing and validation

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 22

sandra.dunn@hp.com

of implemented security processes and
controls.

CSC 20-1 Conduct regular external and
internal penetration tests to identify
vulnerabilities and attack vectors that can be
used to exploit enterprise systems
successfully. Penetration testing should
occur from outside the network perimeter.
(The Critical Security Controls for Effective
Cyber Defense, v.5.1,nd, p.102)
CSC 20-6 Use vulnerability scanning and
penetration testing tools in concert. The
results of vulnerability scanning
assessments should be used as a starting
point to guide and focus penetration testing
efforts. (The Critical Security Controls for
Effective Cyber Defense, v.5.1,nd, p.103)

4.2. Code Signing Best Practices
Code signing best practices include creating policies, standards, and checklists that

establish responsibility and accountability for code signing. It also includes defining

what the specific requirements are, the process to follow in the event of a breach,

designing the topology and documenting the code signing process.

4.2.1. Code Signing Policy
A security policy establishes the “laws” and rules of protecting a business, its

information assets, and the people tasked with protecting it. Polices specific to code

signing to consider implementing are:

x The Code Signing Process Policy

o Test Code Signing Process and Production Code Signing Process

o Approval Chain for Code Signing Operations

x The Policy for Protecting Private Code Signing Keys

x The Private Key Compromise Incident Response Policy

x The Policy for Certificate Revocation

 The Policy for Certificate Revocation is often overlooked. A Code Signing

Compromise Incident Response plan should be included in either the master incident

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 23

sandra.dunn@hp.com

response plan or as a separate sub plan. It should include appropriate business executive

contact names, internal IT contact names, code signing service owners contact

information and the incident response contact at the issuing Certificate Authority.

4.2.2. Planning the Code Signing Schema
 The foundation for the code signing schema is provided by the code signing process

architecture. The schema design requires careful analysis of the volume and type of code

that will be signed and the impact to the business from revoking a code signing SSL

x.509 certificate. Risk and impact to the business for certificate revocation can be costly

if a large volume of code must be re-signed. It may also require increased customer

service staffing, distribution of new media with resigned code, whole systems

replacement, or onsite customer visits to update malfunctioning systems. Impact from

revoking a single certificate can be reduced by maintaining a code repository, changing

keys frequently, and updating packages with legacy code signing keys to newer keys.

Other risk and impact variables that should be considered are:

x Should code that is contained in other executable packages be signed with a

different code signing key?

x It is important to consider that increasing the number of private code signing key

increases the attack surface by having more keys to protect but rotating the keys

reduces the impact if a key must be revoked. Weighing both of these, how often

should keys be changed?

x How long should code be maintained in a code repository for possible resigning?

The CA Browser forum recommends that Certificate Revocation Lists (CRL) and

Online Certificate Status Protocol (OCSP) lists validate code for up to ten years

after it has been signed which leaves businesses at risk to an impact for a lengthy

window of time.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 24

sandra.dunn@hp.com

4.2.3. Separation of Duties

The code signing process should separate required roles to minimize malicious or

accidental abuse of the code signing system. The person submitting the code for code

signing should be completely independent of the person’s whose role it is to sign the

code. Microsoft recommends that the code signing process be broken into a minimum of

three roles:

 Submitter: The submitter is typically a developer.

Approvers: The approvers should understand software development but also be

somewhat independent of the submitter to increase objectivity during the approval

process. Requiring multiple approvers reduces the chance of accidentally signing

software and mitigates the risk of a single employee signing inappropriate

content. Face-to-face meetings to review code for approval are also encouraged.

Signers: The individuals who actually sign should be independent of the

development and approval process. For example, an operations team could be

responsible for the actual code signing.

Organizations should require more than one approver for a code-signing operation. This

is referred to as "k of n," where a specific number of authorizations must be present to

perform any cryptographic operations. For example, three trusted individuals out of seven

must be present to digitally sign software (Code Signing Best Practices, 2007).

4.2.4. Establish and Maintain a Code Repository and Certificate

Inventory
A mature code signing process maintains a code repository, certificate inventory, and

a code signing log to be prepared for a private key compromise. The inventory includes a

list of the code that has been signed and which code signing private key each package

was signed with. If an incident requires that a code signing certificate be revoked, the

response team can quickly contact the appropriate code owners and they can take

appropriate action.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 25

sandra.dunn@hp.com

4.2.5. Test Signing and Production Signing
Signed code should be tested throughout the development process to ensure that it

functions as expected using a test code signing certificate. Microsoft and the CA

Security Council (CASC) best practices document recommend separating the

development and the final production code signing process.

Duplicating the code signing into a test and production process reduces the

volume of code that is signed with the real code signing key, minimizes the number of

developers who require access to the production code signing key, and reduces the risk of

code that should not be signed being signed. Test and production code signing services

have the option to include a Time Stamp.

 To include a Time Stamp with the code signing signature the Time Stamping

Server must have access to a Time Stamping Service. If an internal time stamping service

is not available then internet connection to a public Time Stamping Service is needed so

that it can validate the timestamp against a public timestamp authority. In a test

environment the Time Stamping server and the code signing process can both be on the

same server. For production code signing it is important to separate the two different

services onto two different servers especially if a public Time Stamping Service is used.

 Incorporate a careful security review process for all code that is sourced from

outside your organizations. This should include virus scans by multiple vendors as well

as an established control chain process (Code Signing Best Practices, 2007).

4.2.6. Code Signing Key Physical Security
The post mortem of the Bit9 incident found a series of missing security controls

that may have prevented the attack. In my opinion the most damaging oversight was the

storage of the private code signing keys on a Virtual Machine (VM) and not in a

Hardware Security Module (HSM). Physical Security for the HSM can range from a

simple locked compartment with restricted access to the other extreme of enclave systems

protected by security guards, biometric authentication, and video cameras. The required

physical controls would depend on, the environmental risk, the business impact in the

event of compromise, and the impact to the business from the additional controls that

make the system more restrictive and harder to use.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 26

sandra.dunn@hp.com

4.2.7. Revoking the Certificate

A compromised signing key requires that the certificate be revoked and adds the

serial number and the affected dates to the Certificate Revocation (CRL). How quickly

the certificate must be revoked depends on the reason why the certificate must be revoked

(Digicert, 2011).

5. Conclusion
The Bit9 code signing process compromise shows that even businesses that really

understand security can be guilty of lax processes and poor oversight. Bit9 learned an

expensive lesson and provided an opportunity for other enterprise code signing architects

to know how to build better protected code signing networks. The Bit9 product team

may not have fully comprehended the risk to their customers or their business by

implementing their code signing process on a VM which was not isolated from the rest of

the network with the private code signing keys unprotected. It’s possible their release

manager made the all too common mistake of viewing it as just one more step in the code

release process with little value and assuming its only function was to eliminate the

annoying user warning messages that pop up about software from untrusted or unknown

publishers.

In the arms race of attacking and defending networks, attackers are driven to assault

the code signing system by the extra protection provided by security controls validating

code signing signatures. In response, defenders must now raise their own bar to this

added threat by increasing their code signing process protection.

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 27

sandra.dunn@hp.com

References

Bit9, (2013, February 25) Bit9 Security Incident Update. Retrieved November 7, 2014

from Bit9.com: https://blog.bit9.com/2013/02/25/bit9-security- incident-update/

Codeverge, (2012, September 28) Adobe Releases Security Bulletin About Code Signing

Certificate. Retrieved October 9, 2014 from Codeverge.com:

http://codeverge.com/grc.security/adobe-releases-security-bulletin-about-code-

sign/1667553

Comodo, (2011, March 15) Comodo SSL Affiliate The Recent RA Compromise.

Retrieved October 9, 2014 from Comodo.com:

https://blogs.comodo.com/uncategorized/the-recent-ra-compromise

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

Profile", RFC 5280, May 2008. Retrieved October 6, 2014 from RFC-

editor.org:http://www.rfc-editor.org/info/rfc5280

Council On Cyber Security (n.d.) Critical Security Controls v5.1. Retrieved November

02, 2014 from Council on Cyber Security: counciloncybersecurity.org:

http://www.counciloncybersecurity.org

Digicert (2011,May 3), Certification Practices Statement v4.03 Retrieved November 2,

2014 from https://www.digicert.com/docs/cps/DigiCert_CPS_v403.pdf

Doherty, S. (2013, September 17). Hidden Lynx – Professional Hackers for Hire[PDF

file]. Retrieved October 6, 2014 from Wired:

http://www.wired.com/images_blogs/threatlevel/2013/09/hidden_lynx_final.pdf

Ene-Pietrosanu, M., Yiu, K., Crossman, A., Lewis, A., Murton, D. (2005, June 14)

Deploying Authenticode with Cryptographic Hardware for Secure Software

Publishing. Retrieved October 7, 2014 from technet.microsoft.com:

http://technet.microsoft.com/en-us/library/cc700803.aspx

f-secure (2011, August 30), DigiNotar Hacked by Black.Spook and Iranian Hackers,

Retrieved October 6, 2014 http://www.f-

secure.com/weblog/archives/00002228.html

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 28

sandra.dunn@hp.com

f-secure,(2011, November 14) Malware, Signed With A Governmental Signing Key.

Retrieved October 9,2014 from f-secure.com: http://www.f-

secure.com/weblog/archives/00002269.html

Googleonsecurity, (2013, December 7) Further improving digital certificate security.

Retrieved October 9, 2014 from googleonsecurity:

http://googleonlinesecurity.blogspot.com/2013/12/further- improving-digital-

certificate.html

HP Code Signing, (n.d.) Internal Wiki on Code Signing. Retrieved November 2, 2014

from HP Corporate Network.

Jones, Don, (2009) Code-Signing Certificates. Retrieved October 7.2014 from

Verisign.com: http://www.verisign.com/static/dev044513.pdf

Krebsonsecurity, (2013, February 13) Security Firm Bit9 Hacked, Used to Spread

Malware. Retrieved October 9, 2014 from krebsonsecurity:

http://krebsonsecurity.com/2013/02/security- firm-bit9-hacked-used-to-spread-

malware/

Microsoft, (2007, July 25) Code Signing Best Practices. Retrieved October 7, 2014 from

Microsoft.com:

http://www.microsoft.com/whdc/winlogo/drvsign/best_practices.mspx

Microsoft, (2007, July 25) Kernel-Mode code Signing Walkthrough. Retrieved October

7, 2014 from Microsoft.com:

http://www.microsoft.com/whdc/winlogo/drvsign/kmcs_walkthrough.mspx

Microsoft, (2010, October 13) Introducing SmartScreen Application Reputation.

Retrieved October 7, 2014 from Microsoft.com:

http://blogs.msdn.com/b/ie/archive/2010/10/13/stranger-danger- introducing-

smartscreen-application-reputation.aspx

Microsoft, (2012, March 16) How Certificate Revocation Works. Retrieved October 7,

2014) from Microsoft.com: http://technet.microsoft.com/en-

us/library/ee619754(v=ws.10).aspx.

Microsoft, (2012, May 15) AppLocker: Frequently Asked Questions. Retrieved October

7, 2014) from Microsoft.com http://technet.microsoft.com/en-

us/library/ee619725(v=ws.10).aspx#BKMK_SRPdifferences

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 29

sandra.dunn@hp.com

Microsoft, (2012, June 21) Determining Your Application Control Objectives. Retrieved

October 7, 2014) from Microsoft.com: http://technet.microsoft.com/en-

us/library/ee449491(v=ws.10).aspx

Microsoft, (2013, December 15) Be a Real Security Pro – Keep Your Private Keys

Private. Retrieved October 9, 2014 from Microsoft Technet:

http://blogs.technet.com/b/mmpc/archive/2013/12/15/be-a-real-security-pro-keep-

your-private-keys-private.aspx

Microsoft, (n.d,) Local Machine and Current User Certificate Stores. Retrieved October

7, 2014 from Microsoft.com: http://msdn.microsoft.com/en-

us/library/windows/hardware/ff548653(v=vs.85).aspx

Microsoft, (n.d,) Software Publisher Certificate. Retrieved October 27, 2014 from

Microsoft.com: http://msdn.microsoft.com/en-

us/library/windows/hardware/ff552299(v=vs.85).aspx

Microsoft, (n.d.) Trusted Root Certification Authorities Certificate Store. Retrieved

October 7, 2014 from Microsoft.com: http://msdn.microsoft.com/en-

us/library/windows/hardware/ff553506(v=vs.85).aspx

Microsoft, (n.d.) User Account Control. Retrieved October 7, 2014) from Microsoft.com:

http://windows.microsoft.com/en-us/windows7/products/features/user-account-

control

Morton, Bruce, (n.d.) Code Signing. Retrieved October 7, 2014 from

casecurity.org:https://casecurity.org/wp-content/uploads/2013/10/CASC-Code-

Signing.pdf

Spectrum (2013, February 26), The Real Story of Stuxnet, Retrieved October 6, 2014

from Spectrum:http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet

Symantec, (2011, November 23) W32.Duqu. Retrieved October 7, 2014 from

Symantec.com:

http://www.symantec.com/content/en/us/enterprise/media/security_response/whit

epapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf

Techdirt, (2012, February 2012) Trustwave Admits It Issued A Certificate To Allow

Company To Run Man-In-The-Middle Attacks. Retrieved October 9, 2014 from

Techdirt.com:

The Scary And Terrible Code Signing Problem You Don’t Know You Have | 30

sandra.dunn@hp.com

https://www.techdirt.com/articles/20120208/03043317695/trustwave-admits- it-

issued-certificate-to-allow-company-to-run-man- in-the-middle-attacks.shtm

Threatpost, (2013, June 27) Opera Code-Signing Certificate Stolen, Malware Signed and

Distributed. Retrieved October 9, 2014 from threatpost.com:

http://threatpost.com/opera-code-signing-certificate-stolen-malware-signed-and-

distributed

Vandeven, Sally (2014, July 15) Digital Certificate Revocation. Retrieved October 7.

2014) from SANS.org: http://www.sans.org/reading-

room/whitepapers/certificates/digital-certificate-revocation-35292

