
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A “Black Box” Audit of a Microsoft
.NET web-based application

An External Auditor’s Perspective

GIAC Systems and Network Auditor Practical
Assignment
Version 2.1

Option 1

William Blake
July 2003

Abstract

This paper presents the results of the audit of a web-based application that
was conducted from an external viewpoint. That is, the primary objective of
the audit was to determine the level to which the application is vulnerable to
attack from the Internet. An initial risk evaluation was conducted to determine
the assets with the highest level of risk. A checklist was then developed to
test the identified areas of risk for possible vulnerabilities. Following the
conduct of the nominated tests, the results of the audit are presented as a
“Report to Management.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

1. Research in Audit, Measurement Practice and Control3
1.1. System Description..3
1.2. Risk Evaluation..4

1.2.1. Introduction...4
1.2.2. Risk Rating Tables ...4
1.2.3. Identification of Assets..5
1.2.4. Identification of Agents ...6
1.2.5. Risk Assessment ..7
1.2.6. Summary of Risk ..8

1.3. Current State of Practice ...8
2. Audit Checklist ..10

2.1. Introduction..10
2.2. Approach ...10
2.3. Checklist ..11

2.3.1. Phase 1 – Project Initiation (PI) ..11
2.3.2. Phase 2 – Footprinting (FP) ...11
2.3.3. Application Assessment (AA) ...15
2.3.4. Application Behaviour (AB)...20
2.3.5. Other ..23

3. Conduct the Audit ...24
3.1. Introduction..24
3.2. Audit Results ...24
3.3. Residual Risk...29
3.4. Is The System Auditable?..30

4. Audit Report..31
4.1. Executive Summary...31
4.2. Audit Findings..31

4.2.1. Failed Tests..31
4.2.2. Passed Tests..34

4.3. Risks Identified ..35
4.4. Recommendations...35

4.4.1. Implementation Costs...36
4.4.2. Compensating Controls ..36

5. APPENDIX A ..37
5.1. Nessus Report...37
5.2. N-Stealth Report ..40
5.3. Error Page from HIDDEN_FIELD manipulation...............................40

6. References ...42

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1. Research in Audit, Measurement Practice and
Control

1.1. System Description

The application being audited is a web-based application that makes
exclusive use of Microsoft products. Microsoft’s Internet Information Server
(IIS) is used as a web server with SQL Server providing database services.
The Microsoft .NET framework provides application services.

The application is hosted within the XYZ inc. acceptance environment. A
firewall and other security devices are used to protect this environment from
the Internet. The application does not currently contain any “live” data – this
audit is being undertaken prior to the initial release to Production.

Data passing between client and server is encrypted via 128-bit SSL
certificates.

The application itself was developed in-house by XYZ inc. a company that
provides customer financial information to a large number of third party
financial advisors. It is a portal-type application that allows authorised users
to perform actions such as:

• View financial details about their customers;
• View various reports;
• Print forms;
• Submit questions/receive answers from XYZ inc. via an inbuilt ‘mail’

component

The application ‘home page’ also contains a News section, which allows XYZ
inc. to post articles of interest to their customer population.

As stated above, the application stores personal financial data about a large
number of individuals. It is vitally important that this data is not accessible by
unauthorised parties. This includes both:

• Legitimate users of the system. These people should only be able to
view records to which they have been explicitly granted access.

• Other parties attempting to subvert application security. These people
should not be able to view any application data.

The scope of this audit is to determine the level to which the application is
vulnerable to attack from the Internet. Auditors were given little information
about the operating environment or the controls and practices/procedures
governing this environment. These items were considered to be out of scope,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

as a person deliberately attacking the application would not be overly
concerned with any practices, policies and procedures that may be in place.

At the request of XYZ inc., several types of attack were considered to be out
of scope. These included Denial of Service attacks, attacks on other devices
within the network and physical attacks on the infrastructure.

The scope of the audit strongly influenced the risk assessment and
development of the audit checklist. For example, many common control
objectives such as reviews of policies and procedures and application patch
levels and change control were not directly included.

1.2. Risk Evaluation

1.2.1. Introduction
In order to evaluate the risk to the system, there is a need to develop a risk
profile. This will provide a means of ‘measuring’ the level of risk. As
suggested by the Australian Defence Signals Directorate, Threat likelihood X
consequence = Risk (Australian Defence Signals Directorate, Handbook 3).
Using this approach, the following steps will be followed to develop such a
profile:

• Identify the Assets which need to be protected;
• Determine the consequences if these Assets are damaged or

destroyed;
• Identify the Threats against the Assets;
• Identify the agents, or possible source of the Threats; and
• Determine the likelihood of the Agents successfully executing the

Threats.

1.2.2. Risk Rating Tables
These risk rating tables provide a standard means of estimating consequence
of damage, likelihood of damage occurring and resulting level of risk. They
are based on tables within the Australian Communications-Electronic Security
Instructions 33 (Australian Defence Signals Directorate, Handbook 3). They
have been designed for use by Government, however they are still perfectly
acceptable for use within the private sector.

Insignificant Will have almost no impact if threat is realised

Minor Will have some minor effect on the asset value. Will not require
any extra effort to repair or reconfigure the system.

Significant
Will result in some tangible harm, albeit only small and perhaps
only noted by a few individuals or agencies. Will require some
expenditure of resources to repair (eg “political embarrassment”).

Damaging
May cause damage to the reputation of system management,
and/or notable loss of confidence in the system's resources or
services. Will require expenditure of significant resources to
repair.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Serious
May cause extended system outage, and/or loss of connected
customers or business confidence. May result in compromise of
large amounts of Government information or services.

Grave
May cause system to be permanently closed, and/or be
subsumed by another (secure) environment. May result in
complete compromise of Government agencies.

Table 1: Consequence Estimation Rating

Negligible Unlikely to occur
Very Low Likely to occur two/three times every five years
Low Likely to occur once every year or less
Medium Likely to occur once every six months or less
High Likely to occur once per month or less
Very High Likely to occur multiple time per month or less
Extreme Likely to occur multiple times per day

Table 2: Threat Likelihood Rating

Consequence
Insignificant Minor Significant Damaging Serious Grave

Negligible Negligible Negligible Negligible Negligible Negligible Negligible
Very low Negligible Low Low Low Medium Medium
Low Negligible Low Medium Medium High High
Medium Negligible Low Medium High High Critical
High Negligible Medium High High Critical Extreme
Very high Negligible Medium High Critical Extreme ExtremeTh

re
at

 L
ik

el
ih

oo
d

Extreme Negligible Medium High Critical Extreme Extreme

Table 3: Resultant Risk

1.2.3. Identification of Assets
The primary assets used by the application can be broken into two groups,
information and equipment. Information refers to the data that is stored within
the application and provided to the end user. Equipment refers to the
hardware and software used to deliver the application. Due to the fact that
Denial of Service attacks and physical attacks on the system are out of scope,
this audit will be concentrating primarily on informational assets.

Informational assets can be further divided into the following three sub-
groups:

• Confidentiality of Data – this includes the data stored within the
application database and data being transmitted between client and
server. Unauthorised disclosure of personal financial data could have
serious consequences for both XYZ inc. and users of the application.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Integrity of Data – ensuring the accuracy of information and the
integrity of the application processes used for creating, updating and
displaying that information is of vital importance. Unauthorised
modification of data either within the application or in transit between
client and server would have damaging consequences.

• Availability of Data – this relates to the reliability of the application
from a users perspective. This also has obvious implications on the
infrastructure delivering the application. Loss of service (i.e.
unavailability of data) would have damaging consequences.

1.2.4. Identification of Agents
The scope of this audit is to determine the level to which the application is
vulnerable to attack from the Internet. Therefore, the only Agents to be
considered are external (Internet) users. These Agents can be divided into
two groups:

• Known sources without intent. This group consists of the legitimate
users of the system. These users typically have a low level of intent –
any harm they cause the application may well be accidental.
Legitimate users will have varying levels of skill (which is important to
understand when considering the likelihood of a successful attack).

• External sources with intent. These people will have a high level of
intent and determination – for some reason they want to gain
unauthorised access to the application. It has to be assumed that this
Agent group has a high level of skill.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1.2.5. Risk Assessment
The following table provides a risk profile for the XYZ inc. web application.

(Legend for Agent Column: KS – Known Sources (Without Intent). ESWI – External Sources (With Intent)).
Asset Nature of Threat Agent Likelihood Consequence Risk
Confidentiality of
Information

Valid user can obtain access to
system data which they should not
be able to view.

KS Low Serious High

Attacker can gain unauthorised
access to system data.

ESWI Low Serious High

Application data is intercepted in
transit.

ESWI Very Low Serious Medium

Availability of Resources
and Services

Denial of service attack ESWI Very Low Damaging Low

Equipment failure All sources Very Low Damaging Low
Integrity of Information Corruption of data KS Medium Damaging High

Unauthorised access and
tampering with data

KS Medium Damaging High

Hacking of web page ESWI Medium Damaging High
Corruption of data ESWI Medium Damaging High

Equipment, including
Software

Theft of equipment ESWI Medium Damaging High

Table 4: Risk Profile

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1.2.6. Summary of Risk
Based on Table 4, the overall risk to the XYZ Inc. web based application is
evaluated as HIGH. It should be noted that the likelihood estimations may be
somewhat on the high side. As the audit has not yet been performed, little
consideration has been given to any mitigation strategies that may be in place
(Although it is assumed that some controls are in place, otherwise the
likelihood ratings would have been even higher). Following the conduct of the
audit, an evaluation of the residual risk will be performed. This evaluation will
consider any mitigation strategies and the level to which (if any) they reduce
the likelihood of a successful attack. This may, in turn, reduce the overall
level of risk.

1.3. Current State of Practice

There is a huge amount of information, both on the Internet and in print,
relating to the security of web applications. I found that the real skill required
when researching the current state of practice was the ability to quickly
determine which pieces of information were useful and which should be
discarded.

I began by researching current approaches to auditing web-based
applications. Once the approach had been determined, it would then be
possible to tailor that approach to suit the particular audit being conducted.
An obvious place to start was the material presented during the SANS Audit
Track, in particular Rhoades’ “Auditing Web Servers and Applications”. I
found this document to be invaluable – it proved to be my primary resource. It
provides a great overview of the type of activities that should be performed
during the audit of a web-based application. It also provides a useful list of
references for further research.

Peer discussion was another resource of great benefit. I have been working
in the IT Security field for a number of years. During that time I have met and
worked with many highly skilled individuals, a number of whom specialise in
the assessment of web-based applications. By talking to these people I was
able to learn a lot about successful, proven auditing approaches and
strategies for identifying application weaknesses.

The SecurityFocus web site http://www.securityfocus.com contains some very
useful information. This site has recently published two articles on
“Penetration Testing for Web Applications” (with additional articles on the
subject to be published in the future). These articles complemented Rhoades’
document, providing a greater level of detail and re-enforcing the approach
and techniques. The SecurityFocus site also hosts the bugtraq mailing list
that is a good resource for researching vulnerabilities.

The above resources provided me with sufficient information to begin
developing an audit checklist. The next step was to develop testing
techniques for assessing specific application vulnerabilities.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I began researching this from the bottom up. That is, the first step was to
determine the hosting platform and discovering whether the software being
used contained known vulnerabilities. As this information was not provided to
the auditor, this discovery phase became an item on the audit checklist. Once
the software was identified, possible vulnerabilities were researched using
sites such as:

• http://cve.mitre.org - CVE (or Common Vulnerabilities and Exposures)
“provides a list of standardised names for vulnerabilities and other
information security exposures”. The list is searchable, enabling the
researcher to quickly locate published vulnerabilities relating to a
particular piece of software.

• Bugtraq – this mailing list is hosted by SecurityFocus.com (mentioned
earlier).

• http://xforce.iss.net - a commercial vulnerability research site, hosted
by Internet Security Systems

• The CERT Coordination Center at http://www.cert.org - a good site for
researching vulnerabilities.

• Microsoft – useful for this audit as the site made exclusive use of
Microsoft products. A search for “.NET security” reveals many articles
relating to security and the .NET framework. This search also led me
to a recent article by Foundstone titled “Security in the Microsoft .NET
framework.” I found this document provided a useful overview of .NET
security architecture.

My final stage of research was to gain a more detailed understanding of data
input validation and its relationship to web-based applications. I concentrated
on Cross-Site Scripting and SQL Injection techniques, as my previous
research suggested that these two attacks had a lot of potential to cause
serious damage, whilst at the same time providing a good basis for testing the
overall robustness of an application. SPI Dynamics has two very good papers
on Cross-Site Scripting and SQL injection, both of which provide a step-by-
step methodology for testing whether an application is vulnerable to these
techniques. NGSSoftware also publish a great paper titled “Advanced SQL
Injection in SQL Server applications.” This paper provides an excellent
description of SQL Injection techniques.

Using the research into audit approach and vulnerability assessment
techniques described above, I was able to develop an audit checklist
containing detailed testing procedures. This checklist will provide the auditor
with a means of determining whether a web-based application is vulnerable to
common Internet attack scenarios.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2. Audit Checklist

2.1. Introduction

This audit checklist has been designed to test against the threats identified in
the risk assessment. The checklist contains a series of tests which can be
used as a means of assessing the likelihood of each threat being successfully
carried out by an attacker.

Due to the nature of the scope of this audit, the tests will primarily concentrate
on the application itself, as opposed to the surrounding environment.

2.2. Approach

The checklist has also been designed in accordance with the audit approach.
This audit will follow a phased approach, consisting of the following steps:

Phase 1 – Project Initiation - This phase consists of a briefing with key
personnel, describing the assessment approach and discussing details such
as IP address, connectivity and configuration procedures.

Phase 2 – Footprinting - Footprinting is the process of acquiring information
about the target system and includes:

• Host scanning including port and service discovery; and
• Discovering information on software versions and patch levels.

Footprinting is primarily a tools-based activity.

Phase 3 – Application Assessment - Using the information obtained from
the footprinting activity, this phase attempts to exploit the application and
associated infrastructure. For this particular audit, the focus was on using
IIS/ASP .NET and operating system vulnerabilities directly against the
application, including their use to perform functions that the application was
not designed to do. Typical tests conducted during this phase include:

• Specific attacks that attempt to ‘overflow’ input checks;
• Cross site-scripting vulnerability testing;
• SQL Injection vulnerability testing;
• Combination system / OS attacks to expose application data

vulnerabilities;
• Deeper network exploration – in the case where further access is

afforded by previously uncovered vulnerabilities;
• URL manipulation;
• Attempts to bypass bounds checks; and
• HTML source code reviews to find ways to abuse information

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Phase 4 - Analysis and Reporting - This is the final phase of the
vulnerability assessment. This includes:

• Analysis of data;
• Immediate needs out-brief; and
• Report preparation, review and presentation

2.3. Checklist

2.3.1. Phase 1 – Project Initiation (PI)
Identifier PI–1.
Description Briefing with key XYZ personnel
Reference Personal Experience
Control Objective Ensure all relevant parties are aware of the audit and

the approach being taken. Also include the scope
inclusions and exclusions.

Risk It is important to ensure that the audit is being
conducted in accordance with XYZ’s expectations. It
is also important to demonstrate professionalism and
knowledge. This will help assure XYZ that the audit
has been conducted in a competent manner and the
results can be relied upon.

Compliance Compliance achieved through verbal agreement from
all parties.

Testing Not applicable for this step.
Objective/Subjective Subjective

2.3.2. Phase 2 – Footprinting (FP)
Identifier FP-1
Description Determine open ports on target device(s)
Reference Personal Experience

http://www.securityfocus.com/infocus/1704

Control Objective Ensure unnecessary services have been disabled.
Risk Unnecessary services may provide avenues for

system compromise. Many services have well-known
weaknesses that, if exploited, could provide an
attacker with a means of gaining unauthorised access
to application data.

Compliance Only web servicing ports should be open (i.e. 80 and
443).

Testing Use NMAP to detect open ports. NMAP can be
obtained from http://www.insecure.org/nmap/
Use the following command:
Nmap –sS –PT –O –T 3 <IP address>

Objective/Subjective Objective.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier FP-2
Description Identify operating system and application versions.
Reference http://www.securityfocus.com/infocus/1704

Control Objective Facilitate research activity - to determine whether any
known vulnerabilities exist for identified software.

Risk There are long lists of application vulnerabilities
publicly available on the Internet. Tools designed to
exploit some of these vulnerabilities are also available
for download. It would be trivial to exploit any such
vulnerabilities which may exist on the system.

Compliance Develop a list of possible vulnerabilities.
Testing User automated tool-based signature profiling (see

FP-4 for detail).

Check HTTP responses using a proxy tool such as
Achilles.

Telnet to the application on port 80 (or 443) and type:
OPTIONS / HTTP/1.0
Press Enter twice. You should receive a response
looking something like:
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Wed, 04 Jun 2003 11:02:45 GMT
MS-Author-Via: DAV
Content-Length: 0
Accept-Ranges: none
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT,
POST, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH,
LOCK, UNLOCK, SEARCH
Allow: OPTIONS, TRACE, GET, HEAD, COPY,
PROPFIND, SEARCH, LOCK, UNLOCK
Cache-Control: private

In this example, the web server is Microsoft IIS
version 5.0

Objective/Subjective Objective

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier FP-3
Description Determine susceptibility to possible weaknesses

identified during FP-2. (Note that this step is
repeated to a certain extent in the final audit step –
AA.O-1. This is deliberate – the final audit step is
intended to remind the auditor to consider whether
any further testing is warranted).

Reference Personal Experience
Control Objective Determine whether operating environment is patched

against known vulnerabilities.
Risk As with FP-2, it is vital that the application is

impervious to known, published vulnerabilities.
Compliance Difficult to determine whether environment is

compliant, especially considering the externally-
focussed scope of the audit. All that can really be
done is to study system behaviour and try to
determine whether application is susceptible.

Testing Compile list of vulnerabilities for software identified
during FP-2. Some resources include:

• http://cve.mitre.org
• Bugtraq -

http://www.securityfocus.com/archive/1
• http://xforce.iss.net
• http://www.cert.org

Objective/Subjective Subjective

Identifier FP-4
Description Scan device for known vulnerabilities using Nessus.
Reference Rhoades, p. 58

Personal Experience.
Control Objective Evaluate application and operating environment for

known vulnerabilities.
Risk Nessus provides a useful starting point for evaluating

the application. Its port scanning capabilities can be
used to confirm previous tests. Its vulnerability
assessment capabilities assist in identifying any
areas that might warrant further investigation.

Compliance Compliance involves an analysis of the Nessus
report. There should be no vulnerabilities identified.
Note that automated assessment tools are notorious
for reporting false-positives, so any weaknesses
identified need to be confirmed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Testing Nessus can be obtained from:
http://www.nessus.org/
Ensure latest signature file is obtained.
Run Nessus using the default settings.
Do not run DoS attacks – these are out of scope for
this audit.
Run all other attacks (including Unix attacks – the OS
may have been identified incorrectly).

Objective/Subjective Objective

Identifier FP-5
Description Scan for known vulnerabilities using HEAT.
Reference Rhoades, p. 58

Personal Experience
Control Objective Same as FP-4
Risk HEAT is a vulnerability assessment tool developed by

Computer Sciences Corporation. For more
information, see:
http://www.heatscanner.com
HEAT may pick up vulnerabilities missed by Nessus
and vice versa. Alternately, if both tools identify the
same vulnerability the chance of it being a false
positive is reduced. For this reason, it is useful to run
similar tests with multiple tools to compare results.

Compliance As with FP-4. No vulnerabilities should be identified.
Testing Run HEAT against identified IP address(es).

Select all tests other than Denial of Service Tests.
Objective/Subjective Objective

Identifier FP-6
Description Scan for CGI weaknesses using N-Stealth
Reference Rhoades, p.59

Personal Experience
Control Objective As for FP-4
Risk Weaknesses in application software could be

exploited to gain unauthorised access to information.
Compliance As with FP-4. No vulnerabilities should be identified.
Testing A demo version of N-Stealth can be obtained from:

http://www.nstalker.com/nstealth/
Run N-Stealth against identified IP address. Select
all tests other than Denial of Service Tests.

Objective/Subjective Objective

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier FP-7
Description Scan for CGI weaknesses using Nikto
Reference Rhoades, p.59

Personal Experience
Control Objective As for FP-4
Risk As for FP-4. Nikto can be used to verify results from

tests performed at FP-6
Compliance As with FP-4. No vulnerabilities should be identified.
Testing Nikto can be obtained from:

http://www.cirt.net/code/nikto.shtml
Note that Nikto requires Perl.

Run Nikto against identified IP address, using the
following command:

Perl nikto –h <IP address> -allcgi –output
<filename>

This command will output the results to the file
<filename>. Examine the contents of this file.

Objective/Subjective Objective

2.3.3. Application Assessment (AA)
The application assessment has been divided into a number of sub-
categories, each one designed to examine a different facet of application
behaviour.

2.3.3.1. Encryption (EN)

Identifier AA.EN-1
Description Ensure all pages are encrypted.
Reference Rhoades, p.109
Control Objective Determine whether any information is passed

between client and server in clear text.
Risk Sensitive information could be revealed to

eavesdroppers if it is passed in the clear.
Compliance All pages should be encrypted.
Testing Traverse the entire site. Ensure “lock” is visible in

browser window for all pages. Ensure all URLs begin
with “https://”

Objective/Subjective Objective

Identifier AA.EN-2
Description Use packet sniffer to confirm clear text data is not

being transmitted.
Reference Rhoades, p.109
Control Objective A further check to ensure all data is being encrypted.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Risk Any data passed in the clear can:
a) reveal application data to unauthorised parties;

and/or
b) be used to mount further system attacks in an

attempt to gain unauthorised system access.
Compliance All pages should be encrypted.
Testing Run packet analyser whilst accessing all site pages.

Examine results, paying particular attention to any
links, etc. which leave the site and/or return.

Objective/Subjective Objective.

2.3.3.2. Logon Process (LP)
Identifier AA.LP-1
Description Examine HTTP to determine whether

userid/password data is passed in cleartext.
Reference Rhoades, p.158

Personal Experience.
Control Objective Determine whether authentication process is

appropriately secured.
Risk The combination of Userid and password is the

primary mechanism of identifying the user and
determining the information they are able to see. If
this is easily compromised then the application is also
easily compromised.

Compliance Logon data is either encrypted (or “masked” in some
way) or passed in the clear. If “masked” then an
objective opinion on the amount of effort required to
reveal the data can be made.

Testing Use a combination of Achilles and a packet sniffer to
analyse client – server conversation during the logon
process.
The packet sniffer is used to determine whether traffic
between client and server is encrypted. Achilles is
used to examine whether user-id and logon data is
encrypted within the HTTP message.

Objective/Subjective Objective.

Identifier AA.LP-2
Description Analysis of failed logon messages
Reference Rhoades, p.167

Personal Experience.
Control Objective Determine whether logon messages reveal excessive

information.
Risk Failed logon messages can give away unnecessary

information to an attacker. For example, if an
“incorrect password” message and an “unknown
username” message are returned to a user, it is
possible to determine whether a valid username has
been guessed. This can assist brute-force attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Compliance Error messages should be identical.
Testing Enter incorrect username. Record results.

Enter correct username with incorrect password.
Record results.
Compare results.

Objective/Subjective Objective

Identifier AA.LP-3
Description Brute force password attack.
Reference Rhoades, p.174
Control Objective Determine susceptibility to password brute forcing.
Risk Given enough time and a valid user name, it may be

possible for an attacker to try all possible password
combinations until the correct one is found.

Compliance Compliance for this test is dependent on company
policy. Ask what the company policy is with regard to
account lockout and reset times and confirm that this
standard is being met.
For the purposes of this audit, XYZ inc. have stated
that permanent lockout should occur after 6 failed
logon attempts.

Testing Ask system administrators about lockout policy.
Ensure that they are happy for you to confirm their
statements (i.e. they can unlock the testing account if
necessary).
Attempt to logon with the same user-id and an invalid
password 6 times. Try using the correct password on
the 7th attempt. This logon attempt should fail.

Objective/Subjective Objective.

2.3.3.3. Application Code (AC)
Identifier AA.AC-1
Description HTML Code review for unnecessary comments
Reference http://www.securityfocus.com/infocus/1704

Rhoades, p.103
Control Objective Ensure comments embedded in HTML code do not

reveal unnecessary information.
Risk Comments could give indications of the way the

application works. This could even include scripts
and other bits of code that have been commented out
and not removed.

Compliance Code should not contain revealing comments.
Testing Capture all HTML passing between client and server

using a tool such as Achilles.
Manually review for comments. Comment lines will
begin with // or <!- .
Meta tags should also be examined. They will
typically look like <meta NAME = xxx

Objective/Subjective Objective.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AC-2
Description Review HTTP traffic for unnecessary information
Reference http://www.securityfocus.com/infocus/1704

Rhoades, p.96
Control Objective Determine whether HTTP conversations between

client and server reveal excessive information about
the application and other software in use.

Risk HTTP typically reveals information such as software
version numbers, methods allowed, etc. This
information can be used to formulate attacks.

Compliance HTTP traffic should not reveal software and operating
system version numbers.

Testing Using the capture from AA.AC-1, review all HTTP
conversations.
Analyse HTTP headers for values such as
Server: xxx.

Objective/Subjective Objective.

Identifier AA.AC-3
Description Hidden Field Manipulation
Reference http://www.securityfocus.com/infocus/1704

Rhoades, p.198
Control Objective Determine susceptibility of any hidden fields to

manipulation.
Risk Hidden fields typically contain data passed between

client and server. Manipulation of this data before it
is passed back to the server could cause the
application state to change, thus revealing
unauthorised data.

Compliance Compliance can be difficult to determine and is
somewhat based on the auditors experience. Some
items are obvious (e.g. cost=$x.xx), however it may
be time consuming to exhaustively test more cryptic
hidden fields. The best an auditor can do is to utilise
all available resources and use their experience to
devise suitable tests. The auditor can then make a
judgement based on the results of those tests.

Testing Examine all data captured in previous steps for
hidden fields.
Analyse data passed in hidden fields. If encoded,
attempt to decode the data (e.g. Base 64 encoding
could be in use). Change the data and submit back
to server. Record results.
Repeat the last two steps trying different changes.
Record results each time.
Make particular note of the content of any error
messages generated.

Objective/Subjective Objective.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AC-4
Description Input field manipulation
Reference http://www.securityfocus.com/infocus/1704

Rhoades, p.199
http://www.securiteam.com/securityreviews/5DP0N1P
76E.html

Control Objective Test input validation routines
Risk Values supplied to the application which are not

correctly validated could be used for attacks such as
buffer overflow exploits and stealth command
insertion.

Compliance See comments for AA.AC-3
Testing Examine all input fields. Try the following:

• Change field length and submit long strings.
• Submit null strings.
• Submit control characters.
• Submit code snippets such as

<script>alert(“hello)</script> (This can be used
to check for cross-site scripting vulnerabilities).

• Anything else the auditor can think of.
Record results. Make particular note of any
unexpected application behaviour and/or error
messages generated.

Objective/Subjective Objective

Identifier AA.AC-5
Description Cookie Checks
Reference Rhoades, p.138
Control Objective Determine whether cookies reveal excessive

information and/or can be used as an attack vehicle
Risk Cookies storing session information may allow

session hijacking. Session hijacking enables an
attacker to impersonate a valid system user.

Compliance See comments for AA.AC-3
Testing View cookie in the browser (preferably IE).

The domain should be reasonably restrictive.
The cookie should be set to “secure”.
The cookie should expire at the end of the session.

Also check whether cookies are the only method of
session tracking. To do this, copy a GET or POST
request from a current application session using
Achilles. Start Achilles on a different machine and
send the copied data to the web server. If session
hijacking is possible, you will get valid data returned
to the browser on the second machine.

Objective/Subjective Objective.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AC-6
Description Examine caching properties.
Reference Rhoades, p.125
Control Objective Determine what anti-caching techniques are being

used.
Risk Sensitive information could be cached on the client

machine. This could be captured by an attacker by
various means, such as:
Sniffing whilst session is in progress.
Obtaining files from cache after session is completed.

Compliance Caching is somewhat beyond the control of the
application, however it is possible to determine
whether generally accepted practices are being
employed.

Testing View HTML for every page using Achilles.
Check for the page expiry date. This should be set to
a time in the past.
Check whether pages show the following field:
<meta http-equiv = “pragma” content = “no-
cache”>
This tells proxy servers to avoid caching the page
(Note, however that this field can be overridden by
proxy server settings).

Objective/Subjective Objective

2.3.4. Application Behaviour (AB)
Identifier AA.AB-1
Description Cross Site Scripting checks
Reference Rhoades, p.191

http://www.securityfocus.com/infocus/1704
http://www.cert.org/advisories/CA-2000-02.html
http://www.spidynamics.com/whitepapers/SPIcross-
sitescripting.pdf

Control Objective Data/Application Integrity
Risk Cross-site scripting can be used to run arbitrary code

on other machines. This could be used for activities
such as stealing cookies or other files.

Compliance Cross site scripting checks should fail.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Testing Testing for this vulnerability is a manual process.
Use the following code, which if successful will cause
an alert box to appear on the screen:
<script>alert(“hello”)</script>
Check all input fields, especially any fields which
generate a URL, link to another page or are used for
search input.
Also try inserting this code into URLs that appear to
be running some kind of CGI script.

Rhoades suggests the following approach:
• Find an error that will embed data from URL

into HTML (i.e. display user input)
• Insert sample JavaScript into the URL at the

appropriate place.
Objective/Subjective Objective.

Identifier AA.AB-2
Description SQL Injection checks
Reference http://www.securiteam.com/securityreviews/5DP0N1P

76E.html
http://www.spidynamics.com/whitepapers/Whitepaper
SQLInjection.pdf
http://www.nextgenss.com/papers/advanced_sql_injec
tion.pdf

Control Objective Data/Application Integrity
Risk SQL injection can be used to manipulate the

application database. It may be possible to bypass
application security controls to read, add, modify and
even delete application data

Compliance SQL injection should not be possible.
Testing Testing involves changing the data being sent to the

application in an attempt to manipulate the underlying
database. Rather than go into great detail here, I
suggest that the reader review the references
provided. The SPI Dynamics whitepaper, in
particular, provides a very good lesson in SQL
injection techniques.

Objective/Subjective Objective.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AB-3
Description Error Message Analysis
Reference http://www.securityfocus.com/infocus/1704

Control Objective Determine whether Error Messages reveal excessive
information.

Risk Error messages may reveal excessive information
regarding the application and other software. This
information could then be used to mount further
attacks.

Compliance Error messages should not reveal unnecessary
information.

Testing Record all error messages generated during other
tests. Look for information such as software versions
and source code snippets (stack traces).

Objective/Subjective Objective.

Identifier AA.AB-4
Description URL Manipulation.
Reference http://www.securityfocus.com/infocus/1704

http://www.kb.cert.org/vuls/id/111677

Control Objective System Integrity
Risk URL manipulation is a very common attack which tries

to obtain system information and execute commands
on the application server. A system vulnerable to
such an attack could be easily compromised.

Compliance URL manipulation should not be possible.
Testing Directory traversal is a well known URL manipulation

vulnerability that allows an attacker to access files and
folders anywhere on the server. One way of testing
for this vulnerability is to use a tool such as Socket80,
which can be obtained from:
http://www.astalavista.com/tools/auditing/network/http-
server/
To use it, you simply type in the server name or IP
address and hit the ‘connect’ button. If the server is
vulnerable, Socket80 will allow you to send arbitrary
commands to the machine.

Objective/Subjective Objective.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AB-5
Description HTTP transfer method.
Reference Rhoades, p. 45
Control Objective Determine whether application is revealing excessive

information.
Risk The application should use POST as opposed to GET

to submit sensitive data to the server. The GET
method may leave sensitive information in web server
logs, the users history file and at other sites (via the
HTTP referrer field).

Compliance POST method should be used to transmit sensitive
data to the web server.

Testing Review all client server interaction using Achilles.
Confirm that the method being used is POST.

Objective/Subjective Objective.

2.3.5. Other
Identifier AA.O-1
Description Miscellaneous other tests.
Reference Original contribution.
Control Objective Further verification of previous testing.
Risk It is important to do as much application testing as

possible in the given time frames. Results from
earlier tests may suggest to the Auditor that further
investigation is required.

Compliance This is not really a compliant item, more of a reminder
to Auditors to consider what (if any) further testing
may be warranted.

Testing Review results from previous tests. If unsatisfied with
any results, draw on research and experience to
devise further tests.
Only perform this step if time permits

Objective/Subjective Subjective.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3. Conduct the Audit

3.1. Introduction

The following ten checklist items are presented below:

Reference: Test: Outcome:
FP-1 Port Scan Pass
FP-4 Nessus Scan Fail
FP-6 N-Stealth Scan Pass
AA.LP-2 Examination of Logon Process error messages Fail
AA.AC-1 HTML Code Review Pass
AA.AC-3 Hidden Field Manipulation Fail
AA.AC-2 Examination of HTTP conversations Fail
AA.AC-4 Input Field Manipulation Pass
AA.AC-5 Cookie Analysis Fail
AA.AB-3 Error Message Analysis Fail

3.2. Audit Results

Identifier FP-1
Description Port Scan. Ensure that only the required ports are

visible from the Internet. This helps to confirm that
unnecessary services have been disabled.

Stimulus/Response Yes. Conduct port scan and record results
Results See copy of Nessus Report at Appendix A.
Assessment The only ports visible from the Internet were ports 80

and 443. As the site is using SSL, port 443 was
expected. Port 80 is used to re-direct users to port
443 (if they were to enter “HTTP” instead of “HTTPS”)
– this is also considered acceptable.

Outcome PASS

Identifier FP-4
Description Nessus Scan. Examine system for known

weaknesses.
Stimulus/Response Yes. Scan was conducted, with results recorded at

Appendix A.
Results Nessus was configured to scan for all vulnerabilities

other that Denial of Service (as this was deemed out
of scope by the customer). See results at Appendix A

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Assessment Nessus identified one vulnerability and several
warnings.
The vulnerability related to the version of OpenSSL
being employed. This will be passed to the system
administrator for verification.
Notable warnings include:

• Revelation of web server version information
• Possible exposure of internal IP address

information.
Both these findings can be used during further
testing.
It is worth noting that Nessus also identified the
system as a Wireless Access Point – obviously a
false positive!!

Outcome FAIL

Identifier FP-6
Description N-Stealth Scan. Examine system for known

weaknesses.
Stimulus/Response Yes. Scan was conducted, with results recorded at

Appendix A.
Results N-Stealth was configured to scan for all vulnerabilities

within its database.
Assessment N-Stealth did not identify any vulnerabilities.
Outcome PASS

Identifier AA.LP-2
Description Examination of Failed Logon Messages.
Stimulus/Response Yes.
Results Testing was conducted as follows:

• Enter incorrect user id. Applicable HTML
snippet from Achilles logs:

<P>Authentication Failed (Unknown
UserName)

• Enter correct user id with incorrect password.
Applicable HTML snippet from Achilles logs:

<P>Authentication Failed (Incorrect
Password)

Assessment As can be seen from the above code snippets, the
two tests produced different error messages. This
means that it is possible for an attacker to determine
when a correct user id has been identified.

Outcome FAIL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AC-1
Description HTML code review.
Stimulus/Response No.
Results Visit all site pages and record results in Achilles.

Review HTML code for comments. Also note hidden
fields for later testing.
Being both very large and difficult to sanitise, the
Achilles transcript has not been included in this
report.

Assessment There are very few comments in the code. There is
no legacy code or comments revealing application
behaviour.

Outcome PASS

Identifier AA.AC-3
Description Hidden field manipulation.
Stimulus/Response Yes
Results During the code review, it was noted that a hidden

field titled HIDDEN_FIELD was passed between
client and server on almost every page. The data in
this field was not clear-text, however testing revealed
that it was base64 encoded and contained lists of
numbers separated by commas. This looked like
session data being passed. Further analysis
revealed that the same number was always in the first
field, suggesting a possible session identifier. This
field was selected as a candidate for manipulation.
Achilles was used to insert various values
(appropriately encoded). Passing a NULL value
produced the error message at Appendix A. This
error message did not appear to be handled by the
application correctly (i.e. it was generated by the
application server and contained stack trace
information).

An example string from HIDDEN_FIELD (taken from
Achilles log)

<input type="hidden" name="__HIDDEN_FIELD"
value="dDwxNzEyODI1NzU7Oz4=" />

This value can be decoded (using a base64 decoding
tool such as that available at
http://www.securitystats.com/tools/base64.asp) to:
t<171282575;;>
When the string was changed to t<;;>, the error
message at Appendix A was produced.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Assessment The audit timeframe did not permit extensive testing
of the HIDDEN_FIELD field. The fact that un-handled
errors could be produced suggests that further
exploitation may be possible.
The information revealed by the error message itself
is discussed during a later test.

Outcome FAIL

Identifier AA.AC-2
Description HTTP examination
Stimulus/Response No.
Results HTTP session traffic was examined using Achilles.

The following information was revealed.

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; .NET CLR 1.1.4322)

Assessment Excessive system information is revealed during
HTTP sessions. Unless this header data has been
deliberately changed, it is simple for an attacker to
identify the operating system and application
software. Tools are available (e.g. URLscan) to hide
this information, making an attacker’s task more
difficult.

Outcome FAIL

Identifier AA.AC-4
Description Input field testing
Stimulus/Response Yes.
Results All input fields were checked for incorrect data,

including:
• Long strings/numbers;
• Control characters;
• NULL values; and
• Command insertion (such as cross-site

scripting)
The application handled the supplied data
appropriately in all cases. For example, when the
following was entered into an input field:

<input name="1:txtTFN" type="text"
value="<script>alert("hello")</script>"

The following error was produced:

H1>Enter report criteria</H1>
<P><div id="1_ValidationSummary1" style="color:Red;">
!ERROR Please enter a valid Number.

Assessment The application does not appear to be susceptible to
input field manipulation

Outcome PASS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AC-5
Description Cookie Analysis
Stimulus/Response Yes
Results Cookies used by the application were examined. A copy

of the cookie data is provided below.
It was noted that the “secure” flag in the cookie is set to
“no”. This allows the browser to transmit the cookie in
clear-text, increasing the chance of it being captured by
an attacker. (Rhoades, p.139).

During cookie analysis, the following test was carried out
(1) Copy a GET request from a current Achilles session,
which included Cookie data. (2) Initiate an Achilles
connection from another machine and paste in the GET
request. (3) Analyse results.
This test succeeded. In other words, if a valid session
cookie can be obtained, session hijacking was possible.

Assessment The primary defence mechanism preventing an attacker
from gaining a session cookie is the use of SSL. This is
not a complete solution, however, as it only provides
end-to-end protection. It may still be possible to obtain a
cookie directly from the client machine. In addition, the
cookie should be set to “secure” to ensure that it is
transmitted over SSL.

Outcome FAIL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AB-3
Description Error message analysis
Stimulus/Response Yes
Results All errors produced during application testing were

analysed for content. An example is provided at
Appendix A (the error generated during the
manipulation of hidden fields).

Assessment Some of the error messages revealed excessive
information. The example provided reveals stack
information, including source code snippets, as well
as software version information. Parameter details
are also revealed. An attacker generating a sufficient
number of this type of error message may be able to
build a good enough picture of the source code to
enable development of more detailed attack
strategies.

Outcome FAIL

3.3. Residual Risk

As stated during the initial risk evaluation, in order to evaluate the residual risk
it is necessary to:

• Review the threats;
• Identify any mitigating factors which have been identified during the

audit;
• Revise the likelihood of a successful attack; and
• Assess the residual risk.

The table below presents this assessment. The risk rating tables presented
earlier will be used to assess likelihood and risk.

Nature of Threat Mitigating Factors Revised
Likelihood

Revised
Risk
Rating

Valid user can
obtain access to
system data which
they should not be
able to view.

Test results indicated that this
was not possible
(AA.AC-1)
(AA.AC-4)

Negligible Negligible

Attacker can gain
unauthorised
access to system
data.

Testing revealed that it is
possible to hijack a user
session and it may also be
possible to manipulate hidden
fields to access data.
These factors have resulted
in the revised likelihood
being increased.

Medium High

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Application data is
intercepted in
transit.

Use of 128-bit SSL certificates
makes decryption difficult

Negligible Negligible

Denial of service
attack

Nil – this item was out of
scope

No change Very Low

Equipment failure Nil – this item was out of
scope

No change Very Low

Corruption of data Testing was not able to
identify any issues.
(AA.AC-4)

Very Low Low

Unauthorised
access and
tampering with data

No mitigating factors.
(FP-4)
(FP-6)
(AA.AC-1)
(AA.AC-2)

No change High

Hacking of web
page

Testing wan unable to identify
any relevant vulnerabilities

Very Low Low

Theft of equipment Nil – this item was out of
scope

No
Change

Medium

Based on the above table, the residual risk to the application is assessed as
HIGH. This compares with the initial assessment, which was also HIGH. The
primary reason for this is that several audit tests relating to the ability to gain
unauthorised access to data failed. This caused the initial likelihood
assessment to be RAISED. Reduction of this likelihood measurement will
result in the overall level of risk being reduced.

3.4. Is The System Auditable?

I believe the system is auditable. It is possible to devise a checklist containing
a number of security tests and measure the system against those tests. The
majority of these tests were objective, meaning that they are repeatable and
the results reproducible. This allows you to develop a baseline which says
that the system has been tested against X, Y and Z. Of course, this is
different to saying that the system is completely secure. The application
being audited is visible to the Internet, a hostile environment, some of whose
population are constantly developing new threats and exploits.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4. Audit Report

4.1. Executive Summary

XYZ inc. requested an audit of their .NET web-based application during June
2003. The purpose of this audit was to determine the degree to which the
application is vulnerable to attack from the Internet.

The audit revealed that the application is well structured and stable.
However, a number of vulnerabilities were found that had the potential to
affect both end-users and information residing on the server. The most
significant vulnerability involved the ability to hijack a current user session,
thereby impersonating that user (note, however, that there are mitigation
strategies in place to reduce the likelihood of this vulnerability being
successfully exploited).

This report presents the audit findings, discusses the risks identified and
recommends some mitigation strategies designed to reduce the overall level
of residual risk.

4.2. Audit Findings

The auditor undertook the following ten tests. Of these ten tests, six received
a FAIL rating, with the remainder being rated as PASS. The outcome of these
audit tests is presented in the following below.

4.2.1. Failed Tests

Identifier EN-1
Objective Test for known weaknesses using automated

vulnerability scanning tools
Outcome FAIL
Results A product called Nessus was used to scan the

application and the hosting environment for known
vulnerabilities. Several vulnerabilities were identified,
one of which may allow an attacker to execute their
own code on the web server.

The results of this assessment are included at
Appendix A.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.LP-2
Description Determine whether failed logon messages reveal

excessive levels of information
Outcome FAIL
Results This test involved three steps:

• Entering an incorrect user id, which resulted in
an error message stating “Unknown User ID”.

• Entering a correct user id with an incorrect
password, which resulted in an error message
stating “Incorrect Password”.

• Comparing the two results.

As can be seen, the two results were different. The
nature of the two messages means that an attacker is
able to determine whether they have identified a valid
user id. This information can be used for password
guessing attacks.

Identifier AA.AC-3
Objective Determine whether any hidden fields embedded

within application code can be manipulated to exploit
the system.

Outcome FAIL
Results During a review of the application code, it was noted

that a hidden field titled HIDDEN_FIELD was passed
between client and server on almost every page. The
data in this field could be easily decoded, revealing
information being passed to the application database.

As an example, the data below was captured from a
web page:

<input type="hidden" name="__HIDDEN_FIELD"
value="dDwxNzEyODI1NzU7Oz4=" />

This value decodes to:
t<171282575;;>

Bogus information inserted into this field (to replace
the ‘171282575’) caused the application to crash with
an error that was not appropriately handled by the
application. A copy of this error message is attached
at Appendix A

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AC-2
Objective Determine whether traffic passing between client and

server revealed information that could be used to
mount further attacks.

Outcome FAIL
Results HTTP session traffic was examined. Software

version information was being passed to the client.

Identifier AA.AC-5
Description Determine whether application Cookies can be used to

exploit the application
Outcome FAIL
Results Cookies used by the application were examined. Whilst

all data within the cookie was encoded, by capturing a
valid cookie it was possible to impersonate another user.

Also note that the “secure” flag in the cookie it set to
“no”. This allows the browser to transmit the cookie in
clear-text, increasing the chance of it being captured by
an attacker. (Rhoades, p.139).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identifier AA.AB-3
Objective Determine whether system Error messages reveal

excessive levels of information.
Outcome FAIL
Results All errors produced during application testing were

analysed for content. An example is provided at
Appendix A (the error generated during the
manipulation of hidden fields). Some error messages
reveal information that could be used to mount further
attacks.

4.2.2. Passed Tests

Identifier FP-1
Objective Port Scan. Ensure that all unnecessary services

have been disabled.
Outcome PASS
Results See copy of Nessus Report at Appendix A. Only

ports 80 and 443 were visible from the Internet.

Identifier EN-3
Objective N-Stealth Scan. Scan application for known

weaknesses.
Outcome PASS
Results A copy of the N-Stealth report is attached at Appendix

A. N-Stealth did not identify any vulnerabilities.

Identifier AA.AC-1
Objective Review all application code visible to the end user.
Outcome PASS
Results The HTML contents of all pages were examined. No

security-related issues were identified.

Identifier AA.AC-4
Objective Determine whether data input fields are subjected to

appropriate validation routines
Outcome PASS
Results All input fields were checked for incorrect data,

including:
• Long strings/numbers;
• Control characters;
• NULL values; and
• Command insertion (such as cross-site

scripting)
The application handled the supplied data
appropriately in all cases. For example, when the
following was entered into an input field:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

<input name="1:txtTFN" type="text"
value="<script>alert("hello")</script>"

The following error was produced:

H1>Enter report criteria</H1>
<P><div id="1_ValidationSummary1" style="color:Red;">
!ERROR Please enter a valid Number.

4.3. Risks Identified

The audit tests that received a FAIL rating revealed the following risks to the
application and XYZ Inc.:

• A version of OpenSSL in use that may allow an attacker to gain control
of the system. If this vulnerability was successfully exploited an
attacker would be able to access application data. It may also be
possible to use the exploited server as a stepping-stone to mount
further attacks against other XYZ systems.

• Many components of the application reveal excessive levels of
information. The easier it is for an attacker to identify a system, the
easier it is for them to formulate an attack plan. Making an attacker’s
job more difficult may discourage them enough so that they will look for
an easier target.

• It is possible to hijack a current session. This allows an attacker to
bypass all authentication mechanisms and gain unauthorised access to
application data. It should be noted that the risk of this attack being
successfully executed is reduced to a certain extent by the use of SSL.
This is not a complete solution, however, as it only provides end-to-end
protection. It may still be possible to obtain a cookie directly from the
client machine. In addition, the cookie is not set as “secure”. This
means that it is possible to transmit the cookie in the clear (i.e. the use
of SSL is not mandatory).

• It may be possible to manipulate hidden fields within the application to
reveal application data. (Note that time restrictions prevented auditors
from exhaustively testing this risk.)

4.4. Recommendations

The following recommended measures would enhance the security of the
application and environment:

• Ensure that all software is patched to the latest levels. Also confirm
that appropriate processes and procedures are in place to track and
apply software patches.

• Implement a single error message for unsuccessful logon attempts,
such as “The username/password combination you entered was
incorrect. Please try again.”

• Consider applying further encryption controls to sensitive data being
passed between client and server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Review data passed in HIDDEN_FIELD field. Consider whether bogus
data entered in this field could cause the application to malfunction.

• Remove IIS version information from all dynamic linked libraries
(DLLs).

• Remove .NET version information.
• Set session cookie to “secure”.

4.4.1. Implementation Costs

The following section provides indicative levels of effort that would be required
to implement the report recommendations.

1. Ensure that all software is patched to latest levels. ESTIMATED
EFFORT: Approximately one man-day.

2. Implement single logon error message. ESTIMATED EFFORT:
Two man-days.

3. Further encryption controls to sensitive data. Without undertaking a
source code review, it is difficult to estimate the level of effort
required to make this change. It could range from a few days to a
number of weeks.

4. Review data passed in HIDDEN_FIELD. As with the previous item,
it is difficult to estimate the required level of effort. This should be
referred to the application developers for further analysis.

5. Remove software version information. This can be achieved using
a tool called URLScan. ESTIMATED EFFORT: Three man-days.

6. Change to cookie parameters. ESTIMATED EFFORT:
Approximately one man-day.

4.4.2. Compensating Controls

It was not possible to provide a reasonable level of remediation effort for two
the report recommendations. There is one mitigating control in place that
reduces the level of exposure created by the weaknesses identified. This is
the use of 128-bit SSL encryption to protect all session traffic. This level of
encryption makes it difficult for an attacker to capture session cookies (which
are used to hijack current sessions). Note, however that end-to-end
encryption does not prevent a cookie from being obtained from a users
machine. This means that session hijacking may still be possible.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5. APPENDIX A

5.1. Nessus Report

Below is a copy of the report produced by Nessus.

Nessus Scan Report

This report gives details on hosts that were tested and issues that were found. Please follow the recommended
steps and procedures to eradicate these threats.

Scan Details

Hosts which where alive and responding during test
1

Number of security holes found
1

Number of security warnings found
3

Host List

Host(s)
Possible Issue

192.168.1.100
Security hole(s) found

[return to top]

Analysis of Host

Address of Host
Port/Service
Issue regarding Port

192.168.1.100
http (80/tcp)
Security warning(s) found

192.168.1.100
https (443/tcp)
Security hole found

192.168.1.100
general/tcp
Security warning(s) found

192.168.1.100

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

general/udp
Security notes found

Security Issues and Fixes: 192.168.1.100

Type
Port
Issue and Fix

Warning
http (80/tcp)

It seems that your web server rejects requests
from Nessus. It is probably protected by a reverse proxy.

Risk factor : None

Solution : change your configuration
if your tests to be accurate
Nessus ID : 11238

Informational
http (80/tcp)
A web server is running on this port
Nessus ID : 10330

Informational
http (80/tcp)
The remote web server type is :

Microsoft-IIS/5.0

Solution : You can use urlscan to change reported server for IIS.
Nessus ID : 10107

Vulnerability
https (443/tcp)

The remote host seems to be using a version of OpenSSL which is
older than 0.9.6e or 0.9.7-beta3

This version is vulnerable to a buffer overflow which,
may allow an attacker to obtain a shell on this host.

*** Note that since safe checks are enabled, this check
*** might be fooled by non-openssl implementations and
*** produce a false positive.
*** In doubt, re-execute the scan without the safe checks

Solution : Upgrade to version 0.9.6e (0.9.7beta3) or newer
Risk factor : High
CVE : CAN-2002-0656, CAN-2002-0655, CAN-2002-0657, CAN-2002-0659, CVE-2001-111
BID : 5363
Nessus ID : 11060

Warning
https (443/tcp)

Asking the main page, a Content-Location header was added to the response.
By default, in Internet Information Server (IIS) 4.0,
the Content-Location references the IP address of the server
rather than the Fully Qualified Domain Name (FQDN) or Hostname.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This header may expose internal IP addresses that are usually hidden or masked
behind a Network Address Translation (NAT) Firewall or proxy server.

Solution: See http://support.microsoft.com/support/kb/articles/Q218/1/80.ASP

Risk factor : Low
CVE : CAN-2000-0649
BID : 1499
Nessus ID : 10759

Informational
https (443/tcp)
A TLSv1 server answered on this port

Nessus ID : 10330

Informational
https (443/tcp)
A web server is running on this port through SSL
Nessus ID : 10330

Informational
https (443/tcp)
Here is the SSLv3 server certificate:
Certificate:
Data:
Version: 1 (0x0)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: REMOVED
Validity
Not Before: Jun 3 04:39:10 2003 GMT
Not After : Jul 3 04:39:10 2003 GMT
Subject: REMOVED
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):
REMOVED
Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption
REMOVED

Nessus ID : 10863

Informational
https (443/tcp)
This TLSv1 server does not accept SSLv2 connections.
This TLSv1 server also accepts SSLv3 connections.

Nessus ID : 10863

Informational
https (443/tcp)
The remote web server type is :

Microsoft-IIS/5.0

Solution : You can use urlscan to change reported server for IIS.
Nessus ID : 10107

Informational
https (443/tcp)
The address in Content-Location is: 1.20.55.55
CVE : CAN-2000-0649
BID : 1499
Nessus ID : 10759

Warning
general/tcp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The remote host is a Wireless Access Point.
You should ensure that the proper physical and logical controls exist
around the AP.

Risk factor : Medium/Low
Nessus ID : 11026

Informational
general/tcp
HTTP NIDS evasion functions are enabled.
You may get some false negative results
Nessus ID : 10890

Informational
general/tcp
Remote OS guess : D-Link DI-713P Wireless Gateway (2.57 build 3a)

CVE : CAN-1999-0454
Nessus ID : 11268

Informational
general/udp
For your information, here is the traceroute to 192.168.1.100 :
192.168.52.2
192.168.1.100

Nessus ID : 10287

This file was generated by Nessus, the open-sourced security scanner.

5.2. N-Stealth Report

The following report was produced by N-Stealth during the conduct of this
audit.

N-Stealth Report
N-Stealth report for xyz.com (192.168.1.100)
Date: 11/06/2003 9:43:45 PM

Scan Rule: Normal

192.168.1.100
Host name: xyz.com
Port: 80
Server: Unknown Server

No bugs were detected.

N-Stealth 3.7 (Build 67)

5.3. Error Page from HIDDEN_FIELD manipulation

The following error was produced during manipulation of the HIDDEN_FIELD
hidden field.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Request could not be completed
HTTP Status : 500 Internal Server Error

Server Error in '/SessionProxy' Application.

Value cannot be null. Parameter name: String

Description: An unhandled exception occurred during the execution of the
current web request. Please review the stack trace for more information about
the error and where it originated in the code.

Exception Details: System.ArgumentNullException: Value cannot be null.
Parameter name: String

Source Error:

An unhandled exception was generated during the execution of the
current web request. Information regarding the origin and location of
the exception can be identified using the exception stack trace
below.

Stack Trace:

[ArgumentNullException: Value cannot be null.
Parameter name: String]
 System.Number.ParseInt32(String s, NumberStyles style, NumberFormatInfo
info) +0
 System.Web.UI.Page.LoadPageViewState() +89
 System.Web.UI.Page.ProcessRequestMain() +421

Version Information: Microsoft .NET Framework Version:1.0.3705.288;
ASP.NET Version:1.0.3705.352

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

6. References

Anley, Chris, “Advanced SQL Injection in SQL Server Applications”, 2002,
http://www.nextgenss.com/papers/advanced_sql_injection.pdf

Australia Defence Signals Directorate, “Handbook 3 – Risk Management”,
Australian Communications – Electronic Security Instruction 33 (ACSI 33), 20
December 2000, http://www.dsd.gov.au/infosec/acsi33/HB3.html

CERT Co-ordination Centre, “CERT Advisory CA-2000-02 Malicious HTML
Tags Embedded in Client Web Requests”, last revised 3 February 2000,
http://www.cert.org/advisories/CA-2000-02.html

CERT Co-ordination Centre, “Vulnerability Note VU#111677 – Microsoft IIS
4.0/5.0 vulnerable to directory traversal via extended Unicode in url (MS00-
078), revision 22, last updated 18 September 2001
http://www.kb.cert.org/vuls/id/111677

Foundstone Strategic Security, “Security in the Microsoft .NET Framework –
An analysis by Foundstone, Inc. and CORE Security Technologies:, 2003.
http://www.foundstone.com

Melbourne, Jody and Jorm, David, “Penetration Testing for Web Applications”,
16 June 2003. http://www.securityfocus.com/infocus/1704

Melbourne, Jody and Jorm, David, “Penetration Testing for Web Applications
(Part Two)”, 3 July 2003. http://www.securityfocus.com/infocus/1709

Rhoades, David, “Auditing Web Servers and Applications” version 1.4, from
SANS Audit Track – day 3. 2002.

SPI Dynamics, “Cross-Site Scripting – Are your applications vulnerable?”,
http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf
(accessed June 2003)

SPI Dynamics, “SQL Injection – Are your web applications vulnerable?”,
http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf
(accessed June 2003)

Standards Australia, HB 231:2000 – Information Security Risk Management
Guidelines, Sydney: Standards Australia International, 2000.

