
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

Website Security for Mobile

GIAC (GWAPT) Gold Certification

Author: Alan Ho, hopolun.sans@gmail.com

Advisor: Antonios Atlasis

Accepted: April 12th, 2013

Abstract

Smartphones and Tablets are very popular nowadays; other than playing around
the apps, most of us use the mobile devices to browse web pages. People usually
look for convenient and quick browsing without paying much attention to security
settings like anti-phishing or anti-xss filtering. Thus, special attention must be paid
to the end-user’s web security when they use mobile devices (mainly on iOS and
Android Platforms). For example, how easily phishing can be done in mobile devices;
what is the impact of visiting websites with XSS; what information can be stolen
from victims or to manipulate the sessions; how the crafted URLs can trick the
mobile browsers; and what can be done to secure web browsing in mobile devices.
This paper aims at helping the industry to make secured mobile browsing and
guarding software as well as at increasing awareness of the growing number of
mobile device users for safe browsing.

Website Security For Mobile 2

Alan Ho, hopolun.sans@gmail.com

1. Introduction

Smartphones and Tablets are very popular nowadays, according to the study from

Canalys (2012) in 2011Q4, which shows that global shipment for smartphones has a

growth of more than 62% and growth of around 275% for pads. These mobile devices

are commonly used for Apps and web page browsing. From the statistics in Securelist

based on the data in Kaspersky Security Network, Yury Namestnikov (2012), malicious

URL contributed up to 86% to mobile attacks in 2012 Q2. This implies that the client

browsers at smartphones are always the best entrance of attacks. Another survey from

Kaspersky (2012) shows that 50% of the participants claimed they are incapable of

recognizing a phishing message or a forged web-site. Malicious URLs can reach

smartphones from a lot of sources, for example crafted URLs from HTML Links, SMS,

Whatsapps or even QR Code. According to the aforementioned statistics, a lot of users

are unaware of whether the URLs are safe or not. Possible attacks from URLs can be

traditional OWASP (2013) including A1 Injection, A3 Cross-site Scripting (XSS), A8

Cross-site request forgery (CSRF) and A10 Unvalidated Redirects and Forwards.

Moreover, unvalidated redirects may lead to Malware download and installation. Mobile

browsers are usually able to trigger phone calls from URLs, hence crafted URLs can

trigger phone calls and Skype without user consent. Crafted URLs are able to load codes

to attack a browser vulnerability so as to exploit the mobile devices. The results can be

spam redirect, session hijack, losing private information, extra charge from unwanted

calls and even owning the device completely.

New desktop browsers like Internet Explorer 9+, Firefox 4+ and Chrome are embedded

with anti-phishing and anti-xss modules to filter out the malicious codes from websites.

Mobile browsers should also include such security features to avoid the client side attacks.

Other than browser filters, utilities like monitoring HTTP traffic can be implemented to

avoid malicious requests. Developers should be aware of secured programming for

website development. According to the statistics, Smartphone sales growth, 1Q 2007 -

1Q 2012, The Guardian (2012), the trend of mobile device usage is going up. The trend

Website Security For Mobile 3

Alan Ho, hopolun.sans@gmail.com

can imply website related attacks (both client and server side attacks) on mobile devices

will make more users potential victims.

In this paper, a series of experiments will be demonstrated and analyzed. This will help to

illustrate what can be done to tackle the security issues as well as to shed light on future

research that can make mobile website browsing more secure.

2. Background

There are different types of Operating System (OS) for smartphones. According to the

chart in StatCounter (2012), Android and iOS have dominated more than 50% of the

market share. Therefore these two OS are selected to be examined in this paper. The

study includes potential weaknesses and vulnerabilities when these two platforms are

used for web browsing as well as the corresponding impact.

Fig 2.1 StatCounter (2012), Top 8 Mobile Operating System from Oct 2011 – Oct 2012

Mobile browsers are more prone to website vulnerabilities because malicious messages

come from more sources. The sources are not limited to emails and instant messages but

also come from SMS, social messengers, in-app redirect and even QR Codes. iPhone

Website Security For Mobile 4

Alan Ho, hopolun.sans@gmail.com

Safari have done a good job by providing XSS-Auditor and Anti-Phishing in the browser,

which can filter most of the issues. However, it can still be bypassed. Also, some other

browsers in iPhone or Android do not have such features; XSS still remains a major

problem. XSS-Auditors cannot prevent all vulnerabilities. One of the most common

sources of attack is coming from social networks, such as Whatsapp and Facebook

Messengers. Besides, the text messages with URLs which can trick the victims to visit

“malicious” websites unintentionally for XSS attack or further exploitation. Traditional

cookie storage and web storage are used for storing data in web browsers, for instance

user preferences for the website, some tracking information and authentication token.

Using XSS, such data can be stolen and manipulated easily. Other than XSS, malware

download from malicious or compromised websites will help to exploit the mobile device.

OWASP Top Ten Mobile Risks (2011) provides the overview of the mobile security risks

due to vulnerable mobile applications as well as poorly designed server infrastructure.

Although the OWASP Top 10 Mobile Risks focus on mobile applications, the risk

categories are also applicable to mobile websites because of the similar nature of

accessing remote resources through browsers or apps from the mobiles devices.

Therefore, the paper will focus on the following risks which will happen due to poor

mobile website security:

[M1] Insecure Data Storage

[M2] Weak Server Side Controls

[M3] Insufficient Transport Layer Protection

[M5] Client Side Injection

[M7] Security Decision Via Untrusted Inputs

[M10] Sensitive Information Disclosure

3. Methodology

Individual setup for each examined case was performed to demonstrate the impact of

mobile website vulnerabilities.

[M1] Insecure Data Storage

Website Security For Mobile 5

Alan Ho, hopolun.sans@gmail.com

A testing website was setup with basic authentication. User profile storage functions were

implemented for the website. It showed how the attack could gain the insecurely stored

data.

[M2] Weak Server Side Controls

A testing web server was setup to provide web service for mobile websites to access. It

demonstrated how weak server side controls would result in unintended access of the web

services.

[M3] Insufficient Transport Layer Protection

A testing website required login to process user profile update; however, the traffic was

not protected properly and could be eavesdropped.

[M5] Client Side Injection and [M7] Security Decision Via Untrusted Inputs

URL carrier examples were demonstrated as input sources for the mobile devices. A

testing website with XSS vulnerabilities was setup. It demonstrated when mobile

browsers were hooked with exploitation framework, cookies information, Geolocation,

phone calls and raw JavaScript could be stolen or executed without victims notice.

 [M10] Sensitive Information Disclosure

A testing web server was setup, demonstrating how improper server setting in

programming codes would impact the security.

To launch the attack to mobile websites through the vulnerabilities like client side

injection, crafted URLs from various input sources were simulated, including HTML

Links, SMS, Whatsapps / Facebook Messages, Shortened URLs and QR Codes.

To perform eavesdropping, TCP Dump and Wireshark were used to examine the traffic

between the mobile devices and the web servers.

Before doing the actual attack, proof of concepts tests were performed. First of all it was

important to make sure that XSS can bypass the XSS-Auditor in major iPhone (Safari)

and Android (Opera Mobile) browsers. Secondly, since XSS-Auditor was proven to be

bypassable, BeEF (2012) (short for The Browser Exploitation Framework, a penetration

testing tool that focuses on the web browser), can be hooked to mobile browsers, and

launch further attacks like stealing cookies and malicious URL redirect. Finally several

attack scenarios were performed for impact analysis.

Website Security For Mobile 6

Alan Ho, hopolun.sans@gmail.com

Finally, for our testing purposes, a server was setup to host a website which was

vulnerable to the following issues: Insecure Data Storage, Weak Server Side Controls,

Insufficient Transport Layer Protection, Client Side Injection, Sensitive Information

Disclosure.

3.1. Testing Environment Setup

The complete setup of the testing environment is summarized in the table presented

below:

Virtual Environment VMware® Workstation 8.0.4 build-744019

Virtual Environment Network Setting

Network: vmnet8

Subnet IP: 192.168.67.0

Subnet Mask: 255.255.255.0

Gateway IP: 192.168.67.2

Host Port Type VM IP Address Description

8888 TCP 192.168.67.134:80 VM Testing Host

3000 TCP 192.168.67.128:3000 BeEF

Vulnerable Website (Self

Developed)

Windows Server 2003 Service Pack 2

IIS 6.0,

http://192.168.1.100:8888

Attacker Host BackTrack 5R2

BeEF: http://192.168.1.100:3000

Attacker Control Panel Windows 7 Home Professional, Firefox 4

Victim (Mobile Client) iPhone 4 with iOS6.0.1 with Safari

HTC Sense 3.0 with Android 2.3.5 with Opera Mobile 12.10

Android Phone Emulator running on 4.0

Programming Language Classic ASP, ASP.NET, HTML5, JavaScript, JQuery

Table 3.1 The testing environment setup

The IIS setup is displayed below in Figure 3.1:

Website Security For Mobile 7

Alan Ho, hopolun.sans@gmail.com

Fig 3.1 Internet Information Services (IIS) for demo server

3.2. Proof of Concept

In order to make sure mobile devices are prone to attack from vulnerable websites, the

following cases were tested. Two common web browsers Safari and Opera Mobile 12.10

were selected from iPhone and Android platforms respectively.

3.2.1. Bypassing XSS-Auditor

First of all, it is important to make sure the XSS-Auditor in mobile browser can be

bypassed, so that the following XSS attacks can happen in reality. As at 09-04-2013,

iOS6.1.3 Safari XSS-Auditor was still unable to filter of XSS payload if it’s embedded

with the JavaScript inside the variables or objects.

Website Security For Mobile 8

Alan Ho, hopolun.sans@gmail.com

Fig 3.2 XSS Payload in QueryString was embedded in JavaScript Object “var str” and

it was executed when the page was loaded

XSS-Auditor most likely blocked the XSS attempts on HTML, but if the vulnerability

appears as a JavaScript object, it could still be executed. If we input the following URI to

the browser, it would alert the cookie; this showed reflective XSS could be achieved in

iOS6 Safari and Opera Mobile in Android.

http://192.168.1.100:8888/xss1.asp?mypara=a"; alert(document.cookie); var a="a

Fig 3.3 Cookie Alerts when JavaScript payload was executed in Safari and Opera

Mobile

Website Security For Mobile 9

Alan Ho, hopolun.sans@gmail.com

3.2.2. Hooking Browser Exploitation Framework (BeEF) in Mobile Device

When a website is vulnerable to XSS, BeEF JavaScript can be hooked to client browsers.

When iPhone’s Safari visits a malicious page which was hooked by BeEF, in the BeEF

control panel the victim information is displayed with details.

“iPhone; CPU iPhone OS 6_0_1 like Mac OS X) AppleWebKit/536.26 (KHTML, like

Gecko) Version/6.0 Mobile/10A523 Safari/8536.25”

Fig 3.4 iPhone information was captured in BeEF admin panel

Same for Android’s Opera Mobile, when it visits a page which was hooked by BeEF, in

the BeEF control panel, the victim information is displayed with details.

“Opera/9.80 (Android 2.3.5; Linux; Opera Mobi/ADR-1301080958) Presto/2.11.355

Version/12.10”

Website Security For Mobile 10

Alan Ho, hopolun.sans@gmail.com

Fig 3.5 Android information was captured in BeEF admin panel

4. Attack Procedures

4.1. Malicious URLs carriers

4.1.1. HTML Links

Embedding crafted URLs in HTML links is a very common way to trick the victims.

URLs are linking or redirecting to websites with XSS vulnerabilities or malware. The

hyperlink’s text was tempting the victims to click and enjoy free gifts; however it was

linking to a malicious website.

Website Security For Mobile 11

Alan Ho, hopolun.sans@gmail.com

Fig 4.1 Actual URL was actually redirecting to an XSS vulnerable website

4.1.2. Shortened URLs

URLs containing symbols and tags like [<>%’”script/] may imply they can be suspicious

and users may avoid them. URLs can be shortened for convenient sending in messages,

but the shortened URLs can cover the original address and trick the victims to visit the

evil websites.

The sample URL below was shortened by TinyURL and the scripts were hidden, but the

actual link was redirecting to an XSSed website.

Website Security For Mobile 12

Alan Ho, hopolun.sans@gmail.com

Fig 4.2 The URL was shortened; the actual URL was redirecting a malicious website

4.1.3. SMS / Whatsapps / Facebook Messages / Emails

Besides visiting the websites directly, malicious URLs can be carried by texting from

messengers or emails in the smartphones. Clicking the links from the messages will open

the browsers (Safari / Opera or in-app browsers like Facebook Messengers).

The XSS was not filtered and payload was executed. The following examples were using

iPhone’s iMessage, Whatsapp and Facebook apps.

Fig 4.3 SMS and Whatsapp, clicking the messages executed the XSS payload

Website Security For Mobile 13

Alan Ho, hopolun.sans@gmail.com

Fig 4.4 Facebook Messenger and in-app browser, clicking the messages executed the

XSS payload

4.1.4. QR Codes

URLs can be converted to be QR Codes, a similar concept as URL shorteners. The

malicious URLs can be hidden and victims simply load the QR Codes in the reader.

Eventually the browser will open the URL and execute the payload. iPhone apps

QRReader was used for demonstration.

Fig 4.5 URL with XSS payload was converted to QR Code

Website Security For Mobile 14

Alan Ho, hopolun.sans@gmail.com

Fig 4.6 QRReader read the URL, opened in the browser and executed the payload.

4.2. Stealing content from Web SQL Database by XSS

Web SQL is SQLite embedded in browser (Chrome and Webkit-based browsers like

Safari). It allows basic t-SQL statement to be executed (select insert / update / delete).

Since the SQL commands are executed as JavaScript, when the website is vulnerable to

XSS, content of database can be stolen.

Adapted from Web SQL Database Demo (2013), an XSS vulnerability was implemented

to the page.

Fig 4.7(a) sample Web SQL was initiated, storing cities information

Fig 4.7(b) XSS vulnerability was injected in the code from QueryString

Website Security For Mobile 15

Alan Ho, hopolun.sans@gmail.com

Fig 4.7(c) XSS Payload was inserted in URL to retrieve the first city name from the table

“city”

Fig 4.8 The city name of the first record was successfully retrieved by XSS.

Although Web SQL Database is less popular than Web Storage which is supported by

more browsers, the concept of stealing client side is the same. As long as the website is

vulnerable to an XSS attack, the client storage can still be retrieved easily, only slightly

syntax update on the payload is required.

http://192.168.1.100:8888/html5webstorage?payload=”;alert(sessionStorage.getItem('m

yKey');var a=”

4.3. Attack from BeEF

In this case a testing server was setup, hosting a demo website with login box for

authentication, while the website contained an XSS vulnerability. iPhone and Android

phones were used as victims. BeEF was hooked to iPhone’s Safari and Android’s Opera

exploiting the XSS vulnerability. For instance, Client Side Injection attacks retrieving

victims’ cookies, getting the Geolocation, making unintended phone calls and undesired

download could be achieved.

Website Security For Mobile 16

Alan Ho, hopolun.sans@gmail.com

Fig 4.9 BeEF script was hooked in the webpage, victims visiting this webpage were

monitored by BeEF admin panel and being attacked.

iPhone and Android victims logged in and they were redirected to a profile page

(http://192.168.1.100:8888/profile.asp). The testing server was hosting login.asp for users

to enter their user name and password. When a user was authenticated, he was redirected

to profile.asp which listed the user information but was hooked with BeEF.

Fig 4.10 Sample Login page loading in Safari and Opera Mobile

Fig 4.11 Two victims, iPhone and Android were hooked in BeEF.

Website Security For Mobile 17

Alan Ho, hopolun.sans@gmail.com

4.3.1. Cookie Theft

When victims were hooked in BeEF, by executing the “Get Cookie” command, the

cookies of the domain were retrieved and logged by BeEF console.

Fig 4.12 Get Cookie feature from BeEF retrieved the cookie information

4.3.2. Disclosure of device Geolocation

When victims enabled Location Service of the browser in the device, by executing the

Geolocation command, BeEF was able to retrieve the location of the device. By using the

latitude and longitude provided, the location could be found in Google Map.

Fig 4.13 Enabled Location Service for Safari

Fig 4.14 Geolocation in BeEF retrieved the Latitude and Longitude. Google map URL

was generated.

Website Security For Mobile 18

Alan Ho, hopolun.sans@gmail.com

Fig 4.15 Rough location was displayed from Google map URL

4.3.3. Making unintended phone calls

By executing the JavaScript of redirecting to prefix “tel://”, the device would popup and

ask the victims if they wanted to make the phone calls. However, the phone number was

controlled by the attacker using BeEF.

Fig 4.16 Executing “tel:” JavaScript for the victim

Website Security For Mobile 19

Alan Ho, hopolun.sans@gmail.com

Fig 4.17 Victim devices were asked to make a phone call

4.3.4. Undesired downloads

By executing the JavaScript redirect, the victim browser would popup a download dialog.

Victims could be tricked and download the malicious file. For example if it’s a malware,

it could further exploit the device, especially Android allowed installation of non-Market

application.

Fig 4.18 Executing JavaScript to ask for downloading in victim devices

Fig 4.19 Android device allowed installation from unknown sources

Website Security For Mobile 20

Alan Ho, hopolun.sans@gmail.com

4.4. Accessing Insecure Web services

In this test, sample ASP.NET web service “Service.asmx/GetProfile” was setup at

http://192.168.1.100:8888/TestWeb service/Service.asmx?op=GetProfile, which greeted

the user according to “userid” provided.

Fig 4.20 Sample ASP.NET web service, greeting the user according to “userid”

When the mobile browser visited the page, it would execute JavaScript to return the

correct response according to the “userid”. However the web service did not have

protection on the parameters. Attackers could simply change the “userid” to any values

which allowed them to access different resources.

Fig 4.21 Making Ajax call by JQuery, submitting “userid=1” to web service and get

Admin response

Website Security For Mobile 21

Alan Ho, hopolun.sans@gmail.com

Fig 4.22 Suppose ordinary users could not change the userid, but after examining the

client source code, attackers could modify the userid and get the response as Guest or

Admin

4.5. Eavesdropping Mobile Website Traffic

In this case, the testing website provided a login function; users entered the username and

password to access the profile page. However, the page was hosted as “http” but not

“https”, and hence, the traffic was sent in plaintext.

Fig 4.23 Sample mobile website required user to login, and profile page was displayed

after authentication.

Website Security For Mobile 22

Alan Ho, hopolun.sans@gmail.com

Fig 4.24 Tcpdump installed in the Android Emulator, it captured all the network traffic

from the Emulator.

Fig 4.25 The plaintext traffic was viewed by Wireshark, username and password were

captured easily.

5. Impact Analysis

The impact analysis focuses on the consequences of the mobile devices being attacked

due to insecure websites.

5.1. Impact from malicious URL carriers

The disguised trusted sources are in fact malicious inputs that lead to OWASP M7

security decision via untrusted inputs and so victims visited the malicious URLs

eventually. Besides, typing URLs directly in the mobile browsers, URLs can be carried

by various sources. For example Hyperlinks in webpages, through SMS, Whatsapp,

Facebook messenger, emails, URL shorteners and QR Codes. Since the URLs are

obfuscated or sent from their trusted source like family and friends, victims are not aware

of the actual malicious URLs they are visiting or being redirected to. Consequently,

victims are visiting vulnerable websites which allow further attacks to be carried out.

Website Security For Mobile 23

Alan Ho, hopolun.sans@gmail.com

5.2. Impact from Web SQL / Web Storage

M1 refers to insecure storage of mobile application in OWASP Mobile Top 10. However,

it is also applicable to mobile websites because data is also stored in client side. Client

side storage can store less important data like user preference to highly sensitive data like

authentication tokens and transaction cache. Web SQL Database is SQLite in the

browsers, which is used as storing client side data. For mobile website, no matter is Web

Storage or Web SQL DB, as long as the website is vulnerable to client injection like XSS,

the stored data can still be stolen by attackers.

5.3. Impact from BeEF

When BeEF is hooked in browsers of the mobile devices, those devices become zombies

immediately from the BeEF administrator console. All the basic device information

including browser version, OS type, plugin information, are unveiled in the admin panel.

This allows the attacker to plan the further exploitation according to the device

information. From OWASP M4’s vulnerability of client injection, BeEF can achieve

M1’s leakage of data from losing local storage. M7’s security decision via untrusted input

is performed successfully because BeEF could generate different of inputs to the victims

like phone calls and URL redirect. M10 sensitive information disclosure is achieved as

BeEF admin console could capture the device details as well as Geolocation of the device.

Any JavaScript code can be executed on the victims, therefore any local storage including

theft of cookies and web storage of the hooked domain are disclosed to the attacker.

Authentication Token in the cookie can be replayed for access attempt and sensitive

information stored is taken.

If the Geolocation feature is enabled in the mobile browsers, BeEF is able to retrieve the

latitude and longitude of the devices, and generating a Google Map link for the rough

location of the device. The location of the victims is monitored in the admin console. The

attacker can plan further attack for example by social engineering. He can disguise as a

local inspector who can point out the location of the victim, tricking him to provide

further personal information, etc. Moreover, the attacker can control the victims to launch

Website Security For Mobile 24

Alan Ho, hopolun.sans@gmail.com

localized distributed denial of service (by sending HTTP requests to target from BeEF)

according to the victims’ Geolocation.

For making unintended calls, the attacker can trick the victims to make costly

international phone calls. By using the Geolocation detected plus a malicious phone call,

the attacker can create a scenario by providing the victim’s information like current

location and device information. The scenario could make the victims believe they are

receiving a call from trusted personnel. Eventually the attacker can get the personal data,

privacy and sensitive information like bank account passwords.

Because Android allows users to install apps from unknown sources, unlike iPhone’s

restriction of only allowing apps from AppStore, this makes Android devices more prone

to malicious download and malware installation. BeEF is able to pop up and ask users to

download software and users will potentially download malware. If the users install the

malware, private information like contacts, phones will be stolen and they can also

become botnet that controlled by attackers to launch further attacks like DDOS.

5.4. Impact from insecure web service

OWASP M2 refers to weak service side control. Websevice communicates between

websites / apps with web servers. Since the web services are hosted on web servers, they

can be exposed to the public. According to the attack demonstration, without transport

layer protection (e.g. Secure Sockets Layer, SSL) and server side authentication for

legitimate service consumers, the attackers can study the details of web services by

checking the services details like parameters to be used, any potential web server

information leakage and the authentication token in the communication. If the traffic is

not encrypted, the content can be captured and tampered, to achieve man-in-the-middle

attack.

5.5. Impact from plaintext web traffic

OWASP M3 is insufficient transport layer protection. Without any encryption of

transmitted data, the traffic is sent as plaintext. The attack demonstration showed no

matter it is form submission or web service consumption between the client device and

web server, if it is not transmitted over secure channel, the content could be captured and

Website Security For Mobile 25

Alan Ho, hopolun.sans@gmail.com

analyzed easily by TCPDump and Wireshark. Demonstration only showed the traffic

capture by TCPDump locally. Wifi and telecom carrier network can sniff the traffic for

sensitive data if the web channel is not encrypted. Imagine money transfer is done from a

bank website which does not have secured channel, all the content over the network can

be captured as plaintext, and hence the login password and transfer details can be sniffed,

tampered and replayed.

6. Recommendations

The attack pinpoints to mobile device due to mobile website vulnerabilities caused

different levels of impact. The impact can be from losing sensitive information like

website preference to complete owning of the mobile device because of drive-by-

download and malware installation. Three major areas are recommended to reduce the

chances of being attacked, including what can be in the mobile browsers, what can be

done by normal mobile device users and what can be done by website developers.

Furthermore, future research can be done to cope with the new technologies relating

mobile website security.

6.1. Safe guard in mobile browsers

Mobile device native and custom browsers like Safari and Opera Mobile, as well as in-

app browsers, provide attack surfaces for Injection, XSS and sensitive information

disclosure payload to execute. Although Safari and Opera Mobile has XSS-Auditor, it

does not filter out all of the XSS attacks, therefore supplementary validation is

recommended.

Unlike desktop browsers, custom security plugins and extensions are not available in

mobile browsers yet. One of the alternatives is to run the custom safety measure on

Bookmarklet. Bookmarklet is JavaScript codes saved as bookmarks in the browser. The

sample XSS validator bookmarklet contains 3 components:

- JavaScript Loader adapted from The Anatomy of a JavaScript Bookmarklet (2009);

- Sample Client side XSS validator, xss_validator.js;

- Sample Server side XSS validator, xss_validator.aspx;

Website Security For Mobile 26

Alan Ho, hopolun.sans@gmail.com

The steps to create Bookmarklet XSS filter are described below:

Fig 6.1 JavaScript Loader saved as Bookmarklet, it further loads xss_validator.js

Fig 6.2 Sample xss_validator.js contains a simple regular expression. It checks the input

consists of any potential XSS payload like (script, .js, <>, ‘ and “) and alert if it is safe.

Fig 6.3 Bookmarklet is saved as bookmark in the Browser.

Website Security For Mobile 27

Alan Ho, hopolun.sans@gmail.com

Fig 6.4 By entering http://192.168.1.100:8888/?para=123 in the input box,

the validator checks and alert the URL is safe

Fig 6.5 By entering http://192.168.1.100:8888/?para=<script>alert(123)</script> in the

input box, the validator checks and alert the URL may contain XSS payload

Website Security For Mobile 28

Alan Ho, hopolun.sans@gmail.com

Fig 6.6 Modifying xss_validator.js to make AJAX call, requesting xss_validator.aspx to

process server side filtering and redirect to the target URL

Fig 6.7 xss_validator.aspx takes URL from QueryString, and performs Server.UrlEncode

so as to remove script tags.

Website Security For Mobile 29

Alan Ho, hopolun.sans@gmail.com

Fig 6.8 By entering http://192.168.1.100:8888/?para=<script>alert(123)</script> in the

input box, the payload is filtered and user is redirected to the target URL

The above xss_validator.js and xss_validator.aspx are only proof-of-concept code

snippets to demonstrate one of the ways to create some custom validators in mobile

browsers. Further research and development is needed to improve the parameters

validation, filtering and webpage content sanitization. If mobile apps can capture network

traffic or detect browser activities, they can also check if the traffic contains any potential

web attack and provide corresponding protection like filtering or malicious website

fingerprint.

6.2. Safe mobile device usage

6.2.1. Untrusted source of URLs

User awareness plays an important role in mobile security. Mobile devices seem to be

prone to web attacks, but if normal users pay more attention to suspicious sources, the

risks can be reduced. Many of the attackers come from URLs which are carried by

various sources like websites, instant messages, QR Codes etc… Whenever emails are

received, usuall email providers (gmail, outlook, etc.) have already filtered potential

malicious emails. As long as users do not intentionally open the URLs in the spammed

emails, they will be protected by the email service providers.

Website Security For Mobile 30

Alan Ho, hopolun.sans@gmail.com

Fig 6.9 Emails are filtered and moved to junk / spam folders in Outlook

However, if the messages are coming from trusted sources like friends, users will be

unaware of the danger of opening the URLs. Or tempting messages that lure users to get

gifts or messages causing fear like urging users to reset passwords, users will open the

URLs without hesitation. Users can only be more sensitive to incoming messages with

URLs by thinking again if it is logical for the senders to send such messages.

Fig 6.10 Messages that lure victims to visit the links

Website Security For Mobile 31

Alan Ho, hopolun.sans@gmail.com

6.2.2. Suspicious calls

Suspicious phone calls can be initiated by attackers from website vulnerabilities. Unlike

random spam calls, the attackers possess more information gathered from the mobile

devices. The attackers seem to launch successful fraud more easily. As long as users stay

alert and skeptical to the requests from the callers, especially when the callers ask for the

private and sensitive information like bank credit card details, internet credentials and

money transfer etc. Never be rush to make any instant decisions. By doing so, the risk of

being attacked by suspicious calls can be greatly reduced.

6.2.3. Untrusted apps

iPhone and Android users can download mobile apps from AppStore and GooglePlay.

Non-jail-broken iPhones provide a more secured environment since apps can only be

installed from AppStore. Although there are alternatives to install apps without AppStore,

it is not common for general users. Android provides flexible environment for users to

install any apps, which increases the chance of malware installation as they come from

untrusted source. If the “Unknown sources” is unchecked, non-Market application

installation will be blocked. This helps to filter out some of the malware even though the

download is driven by website vulnerability. Installing apps from trusted sources

(AppStore and GooglePlayer) can generally increase the security of the mobile devices.

Fig 6.11 By unchecking “Unknown sources”, installation will be blocked if the

application is not obtained from Android Market

Website Security For Mobile 32

Alan Ho, hopolun.sans@gmail.com

6.2.4. Defense apps

Other than custom web browser protection mentioned above and awareness of mobile

users, in order to provide full scope of defense, security applications can be installed.

Similar to desktop anti-virus, anti-malware and internet security protection software,

there are numerous defense apps in the market to protect the mobile devices from web

attack, data loss and malware. McAfee Mobile Security for Google Android (2013) can

provide site-advisor when a potential malicious website is visited. Besides, installing full-

scale mobile security application, individual secure applications like QR Code snapper

can also be installed. Norton Snap QR Code Reader (2013) can be used to facilitate safe

capture of QR Codes like blocking malicious websites.

Fig 6.12 McAfee and Norton provide mobile security applications

6.3. Secure mobile website development

Website vulnerabilities are manipulated for launching attacks to servers and clients. It is

important for website developers to follow secured development life cycle so as to

increase the security of the websites. With reference to Microsoft Security Development

Lifecycle (2012), assurance processes have to be taken to ensure the product is built in a

secure way and reduce cost of revenue lost due to vulnerabilities. To build a secure

website especially for mobile devices, developers should follow the guidelines provided

Website Security For Mobile 33

Alan Ho, hopolun.sans@gmail.com

from OWASP Top 10 for web application and OWASP Top 10 for mobile. By referring

to the Top 10 items for web application and mobile, developers can identify the potential

attack vectors and techniques to avoid the vulnerabilities. A secure website will provide

no chance for attacker to plant any potential attacks for the mobile users.

6.4. Further Research

More and more new technologies appear nowadays especially for mobile development.

No matter building mobile websites or applications, further security research has to be

done.

HTML5 can now be run on most of the mobile browsers and it offers extra features like

local storage for the users. This implies there are more attack surfaces which can possibly

provide loophole for browser exploitation. Third party API like web services of

application class builder for mobile apps and website development may increase another

attack surfaces if they are not well tested. XSS-Auditor in iPhone and Android browsers

should be tested and revised whenever there are new versions. Mobile malwares and web

trojans can manipulate website vulnerabilities to launch further exploit to the mobile

devices.

7. Conclusions

While the growth of using mobile devices will keep increasing, more and more users will

browse websites using mobile devices. Series of experiments were performed to simulate

the attacks of mobile websites. At first, malicious URLs carriers worked as sources of

attacks. Then, through client side injection, BeEF acted as the admin console to launch

further exploitation. After demonstration, impacts from different types of attacks were

discussed. Mobile websites which are prone to attacks could lead to different levels of

loss. The consequences include loss of private data or even completely compromised

devices due to drive-by-download malwares. To tackle the mobile website security issues,

plugins and defense applications can be installed to the mobile devices to increase

protection from web attacks. Normal users can be more alert when using mobile devices.

Developers should follow SDLC to build secure mobile websites. Further research on

Website Security For Mobile 34

Alan Ho, hopolun.sans@gmail.com

new technologies is necessary to cope with the corresponding potential vulnerabilities.

HTML5, new third party API, defense plugins as well as malware are areas that

researchers should be focusing on. Although attacks towards mobile websites is

becoming more common, with proper countermeasures and continuous research, the

mobile website security will be improved eventually and users will enjoy safe web

browsing in mobile devices.

Website Security For Mobile 35

Alan Ho, hopolun.sans@gmail.com

8. References

BeEF (2012). What is BeEF?. Retrieved from http://beefproject.com/.

Canalys (2012). Smart phones overtake client PCs in 2011. Retrieved from

http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011.

Kaspersky (2012). Number of the week: 50% of users cannot recognize a phishing

message. Retrieved from

http://www.kaspersky.com/about/news/virus/2012/Number_of_the_week_50_of_users_c

annot_recognize_phishing_message.

McAfee Mobile Security for Google Android (2013), Retrieved from

https://www.mcafeemobilesecurity.com/products/android.aspx

Microsoft Secure Development Lifecycle (2012), What is the Security Development

Lifecycle ? Retrieved from http://www.microsoft.com/security/sdl/default.aspx

Norton Snap QR Code Reader (2013), Retrieved from

https://itunes.apple.com/us/app/norton-snap-qr-code-reader/id471928808?mt=8

OWASP (2013). OWASP Top 10 2013. Retrieved from

https://www.owasp.org/index.php/Top_10_2013-T10.

OWASP Mobile Security Project - Top Ten Mobile Risks (2011). Retrieved from

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-

_Top_Ten_Mobile_Risks

StatCounter (2012). StatCounter Global Stats, [Graphical illustration of the Top 8 Mobile

Operating Systems from Oct 2011 to Oct 2012]. Retrieved from

http://gs.statcounter.com/#mobile_os-ww-monthly-201110-201210-bar.

The Anatomy of a JavaScript Bookmarklet (2009). Retrieved from

http://juixe.com/techknow/index.php/2009/05/11/the-anatomy-of-a-JavaScript-

bookmarklet/

The Guardian (2012). Smartphone sales growth, 1Q 2007 - 1Q 2012, by platform.

Website Security For Mobile 36

Alan Ho, hopolun.sans@gmail.com

Source: Gartner. Retrieved from

http://www.guardian.co.uk/technology/2012/may/16/android-smartphone-market-50-

percent

Web SQL Database Demo (2013). Retrieved from http://project.mahemoff.com/sql.html

Yury Namestnikov (2012). IT Threat Evolution: Q2 2012: Malicious programs on the

Internet (attacks via the web). Retrieved from

http://www.securelist.com/en/analysis/204792239/IT_Threat_Evolution_Q2_2012#9.

