
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage

GIAC (GWAPT) Gold Certification

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 2

1. Introduction
Ever since the introduction of cookies as the HTTP state management mechanism,

websites store data on the systems of their end users. The original idea behind cookies

was that web applications would now be able to relate HTTP requests to previous

requests. By storing a unique session identifier on both the client (in the form of a small

text file, the “cookie”) and the server, the stateless HTTP protocol suddenly became

stateful. Cookie usage has changed over time and now web applications not only use this

mechanism for session fixation but also to e.g. track users, create web applications with

offline capabilities and speed up the performance of web applications by reducing server

load and limiting the data that must be exchanged between client and server.

Not only cookie-usage itself has changed, also alternate technologies were

introduced to store information on the systems of end users. These new technologies

often make use of alternative ways to store data (e.g. in a local database) and typically

offer much more storage capacity than cookies. It has made client-side data storage a

quite popular part of modern web applications and this in turn lead to a changed risk

landscape.

This paper will detail these risks associated with client-side data storage. It has a

strong focus on the risks from the viewpoint of web applications. Risks that are mostly a

concern to the end users of a web application are not taken into account. Typical risks

that are mostly a concern to end users include privacy issues like the ability to track the

browsing behaviors of users over different websites. Although very interesting, these

kind of issues are out-of-scope for this paper.

Warning

This paper contains code examples with the sole purpose to illustrate the workings of client-side

data storage. These examples are not complete nor do they contain appropriate checks and

validations. Therefore, the examples used should never be used in any production environment.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 3

2. Client-side data storage
Before jumping into the details of client-side data storage risks, this paper will

first define what client-side data storage actually is and which technologies are available

to implement it. It will then give an overview of the risks associated with its use and end

with an outline of the measures website owners should consider in order to avoid the

described risks from happening.

2.1. Client-side data characteristics
All client-side data storage technologies, regardless the implementation, share

some characteristics that must be considered first when defining the risks of it. First of all

it’s important to note that client-side data storage is initiated by the web application and

that the data is mostly user-specific. This means that e.g. caching mechanisms

implemented by the browser, although they do store data on the client, are not treated as

client-side data storage technologies in this paper. With caching, the storage is initiated

by the browser instead of the web application and most of the time it concerns generic

data (e.g. image files) instead of user-specific data.

Of course, every client-side data technology supports the storage of data on the

system of the end user. The maximum storage size differs between the technologies.

Cookies e.g. allow for the storage of 4 kilobytes of data per cookie, with a maximum of

20 cookies per origin (Cristol, 1997). This 80 kilobytes storage-limitation for an origin is

almost negligible when compared to newer technologies like HTML 5 Web SQL

Databases that support 5 megabytes (the equivalent of 1.280 cookies) of storage per

origin by default (Hickson, 2010).

The maximum storage duration can often not be specified. Cookies are an

exception to this rule as it allows for an expiry to be set on the data, so that the cookie

will be automatically discarded by the browser once the data in the cookie has expired.

Unfortunately, most of the other storage technologies discussed in this paper do not

support such an expiry mechanism so that data will remain on the system of the user as

long as the web application, the browser or the user do not delete it.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 4

To prevent web applications from reading each others data, a mechanism known

as the same origin policy applies to all of the storage technologies. By implementing the

same origin policy, browsers check and record the origin of all the data they store based

on the combination of at least the hostname of the web application (e.g.

www.microsoft.com), the port number on which the web application runs (e.g. 80) and

the protocol or scheme through which the data was delivered (typically http or https).

When a web application wants to access some locally stored data, the browser will check

the current origin and the origin of the data and only allow access if these match. Some

storage technologies allow for an even stricter origin specification by also allowing a path

in the origin (e.g. “/secure”).

Different client-side data storage technologies use different storage mechanisms

to store the data in. This can be e.g. a simple clear text based file, an XML formatted file

or a binary database file. These files are created within the profile of the logged-in user so

that (theoretically) only this user has access to this information.

The way locally stored data is used, depends on the specific web application.

Most of the time, the data is used as input by the web application running on the server-

side. Sometimes information stays local and is loaded by client-side scripts (e.g.

Javascript) to create dynamic web pages based on the locally stored data.

2.2. Client-side data storage definition
Based on the characteristics of client-side data storage that were set out in the

previous paragraph, the following definition of client-side data storage will be used

throughout this paper:

Definition

Client-side data storage is the storage of mostly user-specific data on the system of a web user

whereby this storage is initiated by a web application and executed and controlled by the browser

or a browser plug-in.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 5

2.3. Well-known client-side data storage technologies
Web developers have different technologies at their disposal to store information

on the systems of web users. Some of these technologies are supported by default by the

browser, other technologies are only available after the user installs an additional plug-in

in his browser. For the selection of plug-ins for this paper, statistics from StatOwl1 are

used. Of course, only plug-ins that offer storage capabilities are selected. Table 1 lists the

most popular plug-ins according to StatOwl (based on 2010 usage statistics) and an

indication whether or not this plug-in is included in this paper.

Plug-in Support (2010) In this paper?

Adobe Flash 96.43% Yes

Oracle Java 79.33% Yes

Windows Media Player 67.43% No (media player/no offline storage capabilities)

Apple Quicktime 60.63% No (media player/no offline storage capabilities)

Microsoft Silverlight 52.65% Yes

Adobe Shockwave 30.67% No

Google Gears 6.13% Yes

Table 1: browser plug-ins

Table 1 shows that Adobe Flash is by far the most popular browser plug-in today

as nearly every user on the web (more than 96 users on every 100 users), have this plug-

in installed. Next to Adobe Flash, this paper will also discuss Oracle Java, Microsoft

Silverlight and Google Gears.

Of course, browsers also support some storage mechanisms out-of-the-box. A

well-known example of this is the cookie-mechanism supported by every browser. With

the introduction of HTML 5, newer storage mechanisms as Web SQL Databases, Web

Storage and IndexedDB are also implemented in some browsers (Pilgrim, 2011). These

technologies will also be addressed in this paper. Each technology will be described in

view of the client-side data storage characteristics outlined in §2.1.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 6

2.3.1. Cookies
The cookie mechanism was introduced in the 1990s as one of the first (if not the

first) client-side data storage technology to overcome the stateless nature of HTTP and is

described in RFC 2109 entitled ‘HTTP State Management Mechanism’ (Cristol, 1997).

By using two HTTP headers (‘Cookie’ and ‘Set-Cookie’), a website can store a unique

session identifier on the system of the user ‘to create stateful sessions with HTTP

requests and responses’. The ‘Set-Cookie’ response header is sent by the webserver to

the client to initiate storage of information by the browser of the client. The ‘Cookie’

request header is then automatically inserted into requests to the website by the browser,

if matching information for this website is found locally based on the same origin policy.

Cookies are still supported by all browsers and used by a lot of websites. The RFC states

that browsers should limit the number of cookies per unique host or domain name to 20

with a maximum of 4,096 bytes per cookie. This means a website could potentially store

80 KB (20 x 4,096 bytes) of information on the system of a user. A cookie typically looks

like this:

Example 1: cookie example
Set-Cookie: name=value; domain=.domain.com; expires= Sun, 15-Nov-2012

14:50:38 GMT; path=/secure/>

The cookie must include a name and a value to be stored on the client. The other

cookie attributes shown in the example above (domain, expires and path) are optional.

The domain attribute allows the website to specify for which hosts and domains the

cookie is valid. In the example shown above (example 1), the cookie is valid for all

websites configured under the .domain.com domain, which includes www.domain.com,

a.domain.com, b.domain.com, etc. The domain attribute thus plays an important role in

the implementation of the same origin policy for cookies. Browsers enforce some

restrictions to the domain specified. The domain cannot be different from the source

domain that sets the cookie and browsers do not allow setting cookies on just a TLD like

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 7

‘.nl’ or ‘.com’ (Boneh, 2009)2. ‘Expires’ indicates when the information in the cookie

will expire after which the browser should automatically delete the data. The path

attribute allows for further narrowing the origin that is allowed to read and write the data.

Example 2 shows how easy it is to set and retrieve cookie values through

JavaScript. The setCookie() function sets the value of the cookie parameter_name to

something the developer specifies and the getCookie() function simply retrieves the

current cookie string for this site. The cookie set, expires after 36.000.000 * 24

milliseconds, which is equal to 24 hours or 1 day.

Example 2: cookie usage
<script>

 function setCookie (strCookieValue) {

 var today = new Date();

 var expire = new Date();

 expire.setTime(today.getTime() + 3600000 * 24);

 document.cookie = “parameter_name=’” + strCookieValue + “’;

 expires=” + expire.toGMTString();

 }

 function getCookie () {

 return document.cookie();

 }

</script>

2.3.2. IE UserData
From Internet Explorer version 5, Microsoft supports a dynamic HTML

(DHTML) behavior called UserData to store information on a system. According to

Microsoft, dynamic DHTML behaviors are ‘components that encapsulate specific

functionality or behavior on a page’ (Microsoft). Calling the IE UserData behavior,

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 8

results in Internet Explorer storing data in an XML file on the users’ system. Storage is

typically limited to 128 KB per document and 1024 KB per domain3 for regular websites.

Example 3 shows how userData can be used within a web page. The example

shows a function named setIEUserData() that will set the value of the parameter

parameter_name to something specified by the developer.

Example 3: IE userData usage
(…)

<style>.userData {behavior:url(#default#userdata);}</style>

(…)

<form name=”oPersistForm”>

 <input type=”userData” type=”hidden” id=”oPersistInput”>

</form>

(…)

<script>

 function setIEUserData (strUserData) {

 oPersist = oPersistForm.oPersistInput;

 oPersist.load (“oXMLBranch”);

 oPersist.setAttribute (“parameter_name”, strUserData);

 oPersist.save (“oXMLBranch”);

 }

</script>

2.3.3. Adobe Flash
Plug-ins allow for extended functionalities in a browser like video and audio

support and other multimedia applications. Not only do these plug-ins extend the

functionalities of the browser, they also introduce new storage mechanisms on systems.

Adobe Flash, Oracle Java, Microsoft Silverlight and Google Gears are some of the most

popular plug-ins that come with storage capabilities.

Adobe Flash supports the concept of Local Shared Objects (LSO) (Adobe). An

LSO is often referred to as a “Flash cookie” (EPIC, 2005), indicating that sites you visit

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 9

can create small data files on your computer storing all kinds of information, just like

with traditional cookies. By default, Flash allows for the storage of 100 KB of data per

domain. However, websites can obtain more storage space after the user approves this.

The information is stored in binary LSO files that can be identified by the .sol extension

they use.

Flash implements the same-origin policy so that by default only sites that stored

data on a computer can access this data. However, by specifying a cross-domain policy

file (crossdomain.xml), website owners can make the data they store on a computer

also available to other source domains (Adobe, 2010).

It’s not possible to set expiration on data that’s stored in an LSO. This means that

information contained in an LSO will stay on the users’ computer as long as the website

and the end user do not delete it.

A final note about Adobe Flash is that it allows for cross-browser storage. Unlike

other storage mechanisms, Flash data is stored in the general profile of the user and not in

the browser-part of the profile. This means that the Flash plug-ins in all the browsers

installed on the computer, make use of the same Flash store and thus can share data.

Example 4 shows a piece of ActionScript – the language used to create Flash applications

- that’s used to store a price in a LSO.

Example 4: ActionScript LSO usage
var totalprice:SharedObject = SharedObject.getLocal ("totalprice");

if (counter.data.value == undefined) {

 totalprice.data.price = 6;

} else {

 totalprice.data.price = totalprice.data.price + 6;

}

counter.flush();

2.3.4. Oracle Java
Oracle Java (formerly Sun Java) is a popular programming language that not only

supports stand-alone applications on the system of a user but also web applications

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 10

through the users’ web browser. In case a Java application is started through the browser,

this application is called a Java applet.

In theory, the Java Virtual Machine (JVM) – the component responsible for

executing Java bytecode – has access to the system of the user to read or write files or to

create databases. This way, a Java applet can theoretically store information on the

system of a user through a website. However, the default Java system policy enabled on

most systems doesn’t allow an applet access to the local file system. In order for an

applet to read or write information it needs special permissions like FilePermission

(standard I/O) or NetPermission (access to cookie information) (Austin, 2000).

Example 5 shows a piece of Java-code, taken from the Oracle-website4 that will create a

file on the system of the user. This example also illustrates that an exception can occur if

the applet does not have sufficient permission to access the file system.

Example 5: creating a file from Java
Path file = ...;

try {

 file.createFile(); //Create the empty file with default permissions

} catch (FileAlreadyExists x) {

 System.err.format("file named %s already exists%n", file);

} catch (IOException x) {

 //Some other sort of failure, such as permissions.

 System.err.format("createFile error: %s%n", x);

}

Permissions for applets are stored in a Java policy file (e.g. C:\Program

Files\Java\jre6\lib\security\java.policy) and can be changed by using

the Java Policy Tool (Oracle, 1995) from Oracle.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 11

2.3.5. Microsoft Silverlight
Silverlight was introduced by Microsoft in 2007. It allows for ‘creating engaging,

interactive applications’ (Microsoft) on the web and is a competitor to Flash. Just as with

Flash, Silverlight allows for the storage of data through these applications. Data is stored

in so-called Isolated Storage (IS) (Microsoft, 2009) which is basically a virtual file

system mapped to a directory on the real file system of the user. It derived from the same

mechanism in Microsoft .NET. Because a website has this virtual file system at its

disposal, it can create, read, write, delete, and enumerate files and directories inside the

virtual file system, just as with a real file system.

Silverlight distinguishes between application stores and site stores. An application

store is mapped to a particular Silverlight application. Access to the application store is

granted based on the application identity, which is basically the full URL of the

Silverlight application (e.g. http://www.example.com/silverlightapp.xap). A site store is

not only accessible to the current Silverlight application, but also to other applications

running in the same site. Silverlight employs the well-known same-origin policy based on

scheme, hostname and port number to control access to site stores. Through the use of

Silverlight policy files (clientaccesspolicy.xml) and even Flash policy files

(crossdomain.xml), developers can influence the access to data and allow certain

other websites to access the data they store on a client (Microsoft, 2010).

Silverlight uses quota to limit the amount of information that can be stored. By

default, websites can store up to 1 MB of data per domain. But just as with Flash, users

can decide to increase the amount of data they allow, if needed.

Example 6, written by Jeremy Likness (Likness, 2009), shows an example of how

it’s possible to write arbitrary data to a file in Isolated Storage.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 12

Example 6: writing to a file from Silverlight
private static void _SaveToDisk(byte() buffer, string fileName)

{

 using (IsolatedStorageFile iso =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (

 IsolatedStorageFileStream stream = new

 IsolatedStorageFileStream(fileName, FileMode.CreateNew,

 iso))

 {

 stream.Write(buffer, 0, buffer.Length);

 }

 }

}

2.3.6. Google Gears
Google introduced Gears in May 2007 to – amongst other reasons – enable offline

web applications (Gears Team, 2010). The idea is that you can still use your favorite web

application, even if you don’t have an internet connection. One of the issues with offline

web applications is that you might need a lot of data on the client system that’s normally

only available online. To support offline storage of data, Gears incorporates client-side

database support based on SQLite (Gears Team). From Javascript, web applications can

store information in a SQLite database on the client, provided the user installed the Gears

plug-in for their browser or makes use of the Google-browser Chrome. Information in the

database can be queriedbased on SQL statements. Example 7 shows how, from

JavaScript, a local Google Gears database can be opened and queried for specific

products.

Web applications can store a lot of information in the Gears enabled client-side

database. An example use of this functionality is built into Gmail, where you have the

option to locally store your e-mails. When enabled, Gmail will automatically synchronize

your online mails with your offline database. This way, users can still read their e-mail,

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 13

even if they don’t have an active internet connection. The amount of information that can

be stored in the Gears database doesn’t seem to be limited by the software.

Google Gears employs an origin model based on the protocol/host/port tuple

(Gears Team). By using so called cross-origin workers it’s possible to ‘make a request to

a cross-origin server, even though the browser usually restricts this’ (Gears Team).

In February 2010, Google announced that they shifted their effort ‘towards

bringing all of the Gears capabilities into web standards like HTML5’. Although Gears

was still supported after then, this support was ‘necessarily constrained in scope’ (Fette,

2010).

Example 7: reading from a Google Gears database
var db_gears = google.gears.factory.create(‘beta.database’);

db_gears.open(‘products’);

var rs = db_gears.execute (“SELECT * FROM books WHERE title like ‘?‘”,

 title_search);

while (rs.isValidRow()) {

 book_title = rs.field(0);

}

rs.close();

2.3.7. HTML 5 Storage Technologies
The latest additions to client-side data storage include new technologies around

HTML 5. HTML 5 is the successor to HTML 4.01 that became a W3C recommendation

in 1999. Although not part of the base HTML 5 standard, three data storage mechanisms

are closely related to it: Web SQL Databases, Web Storage and Indexed Database API.

The Web SQL Database standard (Hickson, 2010) very much follows the storage

mechanism of Google Gears as can be seen from example 8 on the next page. It uses a

client-side database that can be queried through SQL. Information stored in a Web SQL

Database is protected based on the same origin policy and cannot exceed 5 MB. All

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 14

current implementations of Web SQL Databases in browsers are based on SQLite as the

database. Because of this, the specification has reached an impasse and, according to the

standard, ‘the Web Applications Working Group does not intend to maintain it further’

(Hickson, 2010).

Example 8: reading from an HTML 5 Web SQL Database
var db = openDatabase (‘mydb’, ‘1.0’, ‘Web SQL Database’, 2097152);

db.transaction (

 function (tx) {

 tx.executeSql (‘SELECT * FROM books WHERE title like ‘?‘”,

 (title_search));

 function (tx, results) {

 (…)

 }

 }

);

Web Storage is another HTML 5 related standard (Hickson, 2011) and it’s already

implemented by most modern browsers. It allows for the storage of name/value pairs, just

as with traditional cookies. It also allows for the storage of 5 MB of data whereby the

same origin policy is used to protect this data. Web Storage distinguishes between local

storage and session storage. Data stored in session storage is only available to the current

session and the current browser window or browser tab. If you e.g. open the same website

in different browser windows, session information in one window will not be available in

another window. Local storage is available to all the windows opened (all sessions) by

the user. Accessing web storage is very easy as illustrated in the example below where

JavaScript is used to retrieve a stored value (‘session_id’) from local storage.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 15

Example 9: HTML 5 Web Storage
localStorage.getItem(‘session_id’);

The final HTML 5 related storage standard is the Indexed Database API standard,

or IndexedDB in short (Mehta, 2010). Just as with Web SQL Databases, it uses a

database to store its information in. This allows for storage of significant amounts of data.

However, unlike Web SQL Databases, IndexedDB does not use queries (SQL) to access

the database. Instead, it makes use of keys and indexes to store and retrieve key/value

pairs. As it uses databases and key/value pairs, IndexedDB can be seen as a compromise

between Web SQL Databases and Web Storage. Data is protected through the use of the

same origin policy. The specification does not yet outline any limitations on the size of

the information store. Support for this standard by browsers is still very limited.

Example 10: HTML 5 IndexedDB
var db = open(‘books’, ‘Book store’, false);

var index = db.openIndex (‘BookAuthor’);

var matching = index.get(‘fred’);

if (matching) {

 alert (matching.isbn + ‘|’ + matching.name);

}

(example taken from http://www.w3.org/TR/IndexedDB/)

Table 1 (next page) contains an overview of the technologies discussed and the

main characteristics of these technologies.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 16

Technology Implementation Max Size/domain

Cookie Brower supported (all browsers). Mostly cleartext

files with the cookie-value.

20 cookies per origin,

4.096 per cookie (80 KB

in total per origin)5

IE UserData Browser supported (Internet Explorer only).

Information is stored in XML-files.

640 KB (�‘Restricted�’) �–

10.240 KB (�‘Intranet�’)

Adobe Flash Browser plug-in. Information is stored in binary

Local Shared Object files (.sol files).

100 KB

Oracle Java Browser plug-in. Storage functionality is disabled

by policy by default.

Unlimited

Microsoft

Silverlight

Browser plug-in. Information is stored in �‘Isolated

Storage�’ which is a virtual file system mapped to

the users�’ system.

1 MB

Google Gears Browser plug-in. Storage in client-side database

based on SQLite. Access to the database through

queries (SQL).

Unlimited

Web SQL

Databases

Browser supported (selected browsers only).

Storage in client-side database. All current

implementations are based on SQLite. Access to

the database through queries (SQL).

5 MB

Web Storage Default (selected browsers only). Use of

name/value pairs to store and retrieve

information.

5 MB

Indexed

Database API

Browser supported (selected browsers only).

Records (key + value) are stored in a database

and accessed through keys and indexes.

Undefined

Table 2: storage technologies

Browsers do not support all of the technologies described in table 2. Table 3 lists

the most popular browsers and indicates the technologies supported by these browsers.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 17

Please note that the overview is based on browsers running on Microsoft Windows XP

SP3.

Technology Apple
Safari 5.0.1

Google
Chrome

5.0

Microsoft
IE 8.0/9.0

Mozilla
Firefox

3.6.16/4.0

Opera
10.60

Cookie Yes Yes Yes Yes Yes

IE UserData No No Yes No No

Adobe Flash Yes Yes Yes Yes Yes

Oracle Java Yes Yes Yes Yes Yes

Microsoft Silverlight Yes Yes Yes Yes Yes

Google Gears Yes Yes Yes Yes No

Web SQL Databases Yes Yes No No Yes

Web Storage Yes Yes Yes Yes Yes

Indexed Database API No No No No / Yes No

Table 3: storage technology support by browsers (Yes = supported)

3. Client-side data storage risks
The use of client-side data storage by a web application, introduces risks. This

chapter describes the risks associated with client-side data storage. Each risk is illustrated

with an example of how this risk can be abused by miscreants.

3.1. Client-side Cross-Site Scripting (csXSS)
Cross-Site Scripting (XSS) is a very prevalent vulnerability in modern web

applications. According to the Open Web Application Security Project (OWASP), XSS is

‘a type of injection problem, in which malicious scripts are injected into the otherwise

benign and trusted web sites’ (KirstenS, 2010). This means that an attacker can execute

scripts within the context of the website under attack. Different types of XSS exist, but

they all have the same net result: they allow for the execution of malicious JavaScript in

the browser of the user. You could argue that this is nothing special, as every website you

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 18

visit is able to execute scripts on your PC. However, with XSS, the script is executed

within the context of the website attacked, which means the attacker can gain access to

resources (e.g. information) which are normally not accessible.

The traditional form of XSS is reflected XSS whereby the malicious script is sent

to the web server by the user and this script is then reflected back to the user. The reason

the user is sending this malicious script is because this user was offered a malicious link

on which he clicked (e.g. a malicious link in an e-mail) or was redirected to (e.g. via a

malicious or infected website). Even more powerful than reflected XSS is stored XSS.

With stored XSS, an attacker succeeds in injecting a malicious script in a store used by

the website. This can be a database, a file or any other storage mechanism on the server.

If this store is used to display information to the user, the malicious injected script will be

presented to each and every user visiting the website.

Reflected XSS and stored XSS depend on functionalities on the server: the server

must reflect or store malicious scripts. There’s another form of XSS that stays completely

local and makes use of client-side storage capabilities: client-side XSS or csXSS in short

(Sutton, 2009). The idea is that an attacker injects a malicious script in a local store on

the client. Every time the webpage uses this locally stored information, the client will

attack itself with the XSS payload. Figure 1 illustrates the different types of XSS

described in this paper.

Figure 1: different types of XSS

Assume a website stores a list of all search terms the user searched for in a local

Web SQL Database. Each time the user enters a search query, the website will call the

csXSS Stored XSSReflective XSS

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 19

addToHistory() function to save the query locally and will then execute the search on

the server. The addToHistory() function is displayed in example 11.

Example 11: save search term in local database
<script>

 function addToHistory (strSearchTerm) {

 if (window.openDatabase) {

 var db = openDatabase (“searchterms”, “1.0”, “Web SQL Database”,

 2 * 1024 * 1024);

 db.transaction (

 function (tx) {

 tx.executeSql (“INSERT INTO search_terms (term) VALUES (?);”,

 (strTerm));

 }

);

 }

 }

</script>

The example shows that search terms are stored in a table named search_terms

and the column name is term. Queries are sent to the webserver through a specific

queryparameter named term. If a user searches for the term ‘mysearch’ then the resulting

URL with the query will be ‘/search.pl?term=mysearch’. A miscreant finds out

that this website is vulnerable for csXSS. To exploit this, the attacker tries to convince

the user to open the URL
/search.pl?term=%3Cscript+src%3D%E2%80%9Dhttp%3A%2F%2Fwww.attacke

r.com%2Fattack.js%E2%80%9D%3E%3C%2Fscript%3E’. Although the query may

look quite cryptic, it’s just a URL-encoded version of the string ‘<script

src=”http://www.attacker.com/attack.js”></script>’. Now, when the user

opens the specific link, the scripts will automatically be saved as a search term to the

local database. As soon as the user now opens his search history, he will be automatically

offered the malicious script which will result in his search history being exposed to the

attacker.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 20

3.2. Client-side SQL injection (csSQLi)
SQL injection is defined as the act of attacking databases by injecting SQL

commands ‘into data-plane input in order to effect the execution of predefined SQL

commands’ (Nsrav, 2010). This means that SQL injection changes the syntax of the SQL

statement in order to influence the effect of the original statement. Historically, SQL

injection was only possible on databases running on the server-side of web applications.

The reason for this is that databases were only placed on the server and controlled

through server-side queries. The introduction of database-support on clients (Google

Gears and HTML 5 Web SQL Databases), also introduces the possibility of SQL

injection on the client-side: client-side SQL injection or csSQLi in short (Trivero, 2008).

To interact with a local database, websites make use of Javascript-calls. To select

a list of records from an HTML 5 Web SQL Database, the developer should issue a

Javascript-call like below:

t.executeSql('SELECT description FROM actions WHERE id=2')

Just as with traditional server-side scripting languages, it’s possible to process

user input in a query in two different ways: via dynamic strings or via placeholders. The

use of placeholders is preferred as it prevents users from changing the syntax of the query

through malicious input. Placeholders can be recognized by the question mark in the

query, e.g.:

t.executeSql('SELECT description FROM actions WHERE id=?', (id))

In the example above, the query is static and only the ID that’s searched for can

be influenced by the user. Sometimes, developers choose to use queries based on

dynamic strings instead of placeholders, which can lead to security problems, e.g:

t.executeSql('SELECT description FROM actions WHERE id=’ + id)

By manipulating the ID in the example above, the end user (or an attacker) can

change the syntax of the query. The consequences of this manipulation by an attacker

depend on the application logic behind the query and the type of query used. However,

most of the time, the usefulness of csSQLi is quite limited for an attacker as it does not

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 21

allow for the retrieval of information. Altering a query will result in different results

echoed back to the user, but not the attacker.

A popular mechanism that’s often used in conjunction with SQL injection is a

mechanism called stacked queries. A stacked query allows an attacker to execute his own

query, fully irrespective of the original query the application executes. Stacked queries

are added to an original query through the use of a semicolon. Below is an example of a

stacked query that can be injected because of incomplete user input checking:

SELECT description FROM actions WHERE id=2; INSERT INTO another_table

(value1) VALUES (‘injected_value’);--

SQL injection with stacked queries can be very powerful, as it allows the attacker

to execute arbitrary SQL-commands on the database. However, tests on the browsers

examined in this paper, reveal that stacked queries are not accepted by these browsers.

Tests were performed on both Google Gears and HTML 5 Web SQL Databases.

3.3. Client-side data corruption
As data is stored on the client, the web application has no control over what the

owner of the system does with this data. By opening a storage file, the user can change

and corrupt the original data. In the case of cookies, changing the information can be as

easy as opening a clear text file located in the users’ profile and changing the contents.

Sometimes the user might need to install an additional tool before he can change the

information on his system. An example of this is the installation of an SQLite client to

change the information that’s stored in a HTML 5 Web SQL Database or a Flash-tool to

open and change LocalSharedObject files.

The impact of users changing their data will vary among web applications. It all

depends on the use of the data within the application logic. Following are two examples

that illustrate the possible impact of this.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 22

Client-side data corruption example 1

A website allows users to place and watch online videos. Once the browser of the user loaded

the video, the user can change the volume of the audio. The preferred volume is then saved into

a Flash LocalSharedObject-file. Every time a user opens a new video, the preferred volume is

now read from the local Flash-store.

Client-side data corruption example 2

An organization opens a portal through which customers can get information about the products

the organization sells. Customers can also place an order for these products. In order to create a

session, the web application stores a unique session identifier in a cookie, along with an

indication whether or not this user has administrative privileges on the website (�‘admin=yes�’ or

�‘admin=no�’).

The examples outlined above illustrate that client-side data corruption will not

form a problem with the video-website. Worst case scenario is that the audio-volume

cannot be read and is then changed back to the default. Data corruption is a much bigger

problem in the second example. If a regular user alters his cookie by replacing

‘admin=no’ with ‘admin=yes’ in his local cookie-file, he will now have

administrative access to some of the functions in the portal. It should be stressed that

controlling access to administrative function in this way is bad practice anyhow because

it can be easily controlled by the user.

3.4. Client-side data leakage
Because a web application has little control over the data stored on a PC, it cannot

guarantee the confidentiality of the data. Of course, technical issues like XSS and SQL

injection can put client-side data in danger, and allow attackers to retrieve this

information. This leakage of data can be problematic in case the data stored is of a

sensitive nature or when this data you can be used to get access to sensitive information

(replay attack).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 23

The cause of client-side data leakage is not limited to XSS, SQL injection or some

other vulnerability in the web application. Leakage can also take place when an attacker

has access to the file system of the user. This can be the case when the computer of the

user is infected with some piece of malware or when the user logs in to a web application

from a shared computer (e.g. internet kiosk).

A complicating factor with client-side data leakage is that often it isn’t possible to

automatically delete client-side data after a certain amount of time. An exception to this

rule is the expiration time that can be set on cookies. By specifying an expiration time on

cookies, the browser will automatically invalidate or delete the data after the information

has expired. With other mechanisms it’s not possible to define such an expiration time so

that information will theoretically stay on the computer of the user forever.

3.5. Same origin policy bypass
The same origin policy is an extremely important concept when it comes to

protecting client-side data. Bypassing this policy can have serious consequences. Assume

a web application enables a user to administer information about customers. Because the

web application has offline capabilities, this information is not only stored on the server

but also on the client. If an attacker succeeds in bypassing the same origin policy for this

web application, the attacker now has access to the information about all the customers of

this organization.

So how can an attacker bypass the same origin policy? First of all, all variations

of XSS allow attackers to bypass the same origin policy because this type of vulnerability

enables the execution of scripts within the context of the attacked domain.

Unfortunately, vulnerabilities in the web application are not the only causes of

same origin policy problems. Vulnerabilities in web browsers can result in browsers not

enforcing the same origin policy properly. Table 4 (see next page) shows an overview of

same origin policy bypass vulnerabilities in browsers discovered in 2010, based on the

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 24

information in the National Vulnerability Database (NVD)6. If an attacker succeeds in

exploiting such a vulnerability in a browser, he can have appropriated the client-side data.

CVE-ID Description

CVE-2010-3934 The browser in Research In Motion (RIM) BlackBerry Device Software (�…)

does not properly restrict cross-domain execution of JavaScript.

CVE-2010-3259 WebKit (�…) does not properly restrict read access to images derived from

CANVAS elements, which allows remote attackers to bypass the Same

Origin Policy.

CVE-2010-3178 Mozilla Firefox 3.5.x (�…) and 3.6.x (�…) do not properly handle certain modal

calls made by javascript: URLs in circumstances related to opening an new

window.

CVE-2010-2763 The XPCSafeJSObjectWrapper (�…) in Mozilla Firefox (�…) does not properly

restrict scripted functions.

CVE-2010-2296 The implementation of unspecified DOM methods in Google Chrome (�…)

allows remote attackers to bypass the Same Origin Policy.

CVE-2010-1663 The Google URL Parsing Library (�…) allows remote attackers to bypass the

Same Origin Policy via unspecified vectors.

CVE-2010-1213 The ImportScripts Web Worker method (�…) does not verify that content is

valid JavaScript code.

CVE-2010-1206 The startDocumentLoad function (�…) in Mozilla Firefox (�…) does not properly

implement the Same Origin Policy.

CVE-2010-0494 Cross-domain vulnerability in Microsoft Internet Explorer (�…) allows user-

assisted remote attackers to bypass the Same Origin Policy.

CVE-2010-0488 Microsoft Internet Explorer (�…) does not properly handle unspecified

�“encoding strings�”.

CVE-2010-0170 Mozilla Firefox (�…) does not offer plugins the expected window.location

protection mechanism.

CVE-2010-0162 Mozilla Firefox (�…) does not properly support the application/octet-stream

content type as a protection mechanism against web scfript in certain

circumstances.

Table 4: Same Origin Policy bypassing vulnerabilities

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 25

Same origin policy problems can also arise when a web application does not

properly define the origin. The cookie mechanism e.g. allows a developer to set the origin

through the ‘domain’ attribute of a cookie. Assume that the developer of

mysite.domain.com uses a cookie to store information on the PCs of its users, whereby

the cookie specifies that the domain is .domain.com. This can become a problem when

the ownership of different (virtual) hosts under the domain.com domain is diffused. An

attacker who sets up a website under evil.domain.com will in this case have access to the

cookie information set by mysite.domain.com. This is typically a problem on websites

like blogs and social media sites where every user has its own virtual host name (e.g.

security.wordpress.com) under the same primary domain.

A similar problem exists on shared servers, where several users share web space

on the same host. The web pages of these users typically have URL’s like

http://www.domain.com/~username/. As described in §2.1, traditional cookies allow for a

path to be set so that the validity of a cookie can be constrained based on a path. If e.g.

the path is defined as /~user1, then this cookie can only be read by the owner of the

/~user1 branch of the website. HTML 5 storage technologies do not support such a

mechanism which means that the origin cannot be narrowed down based on paths on the

web server. If a developer uses HTML 5 storage technologies on a shared server, then

this information can be read and changed by all the other users that own web space on the

same shared server (Trivero, 2008).

Another way to bypass the same origin policy is by poisoning the DNS cache of a

DNS server. If an attacker succeeds in injecting his own DNS records for a specific

hostname, then the attacker can redirect every visitor of this website (who makes use of

the vulnerable DNS server) to his own site. Because in this case the attacker mimics the

website, he is able to execute random scripts within the context of the website attacked.

This allows for unrestricted access to locally stored information for this website.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 26

4. Client-side data storage measures
To lower the risk exploitation of client-side data storage vulnerabilities,

developers are advised to implement preventive measures. Based on the risks of the

previous chapter, this chapter describes these measures.

4.1. Do not trust locally stored data
Because your web application has no control over the integrity of the data on the

client, you should never trust locally stored data. Users should not be able to influence

the application logic of the web application through locally stored data. Some examples

of unwanted application behavior due to corrupted data were already illustrated in §3.3.

4.2. Consider the use of encryption
Encryption is a mechanism that’s often used to achieve confidentiality of data. If a

web application stores information locally, it can employ encryption to prevent others

and malware from reading the cleartext representation of this data. The way the developer

implements encryption for locally stored data is essential. If e.g. the key to decrypt the

data is passed through JavaScript, the encryption is of no use. Therefore, locally

encrypted data must be sent to the server first, after which the server decrypts this

information based on a key that’s only available to the server.

Mind that the use of encryption will not protect your data against every attack. If

the server decrypts this information and echoes the cleartext information back to the

browser, attackers can still gain access to this information by the use of XSS.

If you decide to encrypt data on the client, it’s advisable to make use of a standard

mechanism supported by the programming language you’re using. This way you make

sure you use a solid and proven solution and it also saves you from a lot of work. An

example of this is mcrypt which allows for encryption through PHP7.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 27

4.3. Consider the use of digital signatures
One advice that was already described in §4.1 is to not trust locally stored data. If

your web application really needs to store information locally and you want to check the

integrity of the data, you could make use of digital signatures. Just as with encryption,

it’s advisable to make use of a standard mechanism available instead of implementing

your own one.

4.4. Prevent (cs)XSS
XSS allows an attacker to access information in local storage through malicious

JavaScript. The impact of a traditional XSS vulnerability in a web application can be

quite high, depending on the type of information stored on the PC of the end-user. If e..g.

you have a web application that stores copies of e-mails locally, a XSS vulnerability in

your web application will potentially allow an attacker to read all of these e-mails.

Developers must be aware that, in these cases, attackers can do a lot more than just

opening a harmless alert box on the users’ PC.

XSS occurs when the web server doesn’t sufficiently sanitize or encode the data

that it receives or retrieves and echoes this data back to the user. The problem of XSS can

be solved by introducing proper output encoding mechanisms in server-side scripts.

However, the use of client-side data storage makes it possible that data used in the output,

is never seen and sanitized by the server. This can happen when information is stored

locally and retrieved by a client-side script as illustrated in §3.1. To prevent csXSS, the

developer must introduce output encoding mechanisms on the client-side in the form of

JavaScript-functions.

OWASP offers the Enterprise Security API (ESAPI)8 that – among a lot of other

functions - has built-in functions to encode output within different programming

languages to prevent XSS. ESAPI libraries are currently available for Java, Microsoft

.NET, PHP, ColdFusion, Python and JavaScript.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 28

What the ESAPI basically does in this case is encoding unsafe characters in the

output. So e.g. the less-than-sign (‘<’) is HTML-encoded as ‘<’. This way, it’s very

hard for an attacker to inject tags in the output of the web application (and thus execute

malicious JavaScript). Developers must use the functions offered by the ESAPI or

otherwise encode output to prevent (cs)XSS.

4.5. Use parameterized queries
If you use a client-side database in your web application in combination with an

SQL interface (Google Gears or HTML 5 Web SQL Database), you should use

parameterized queries instead of dynamic strings.

Parameterized queries make use of placeholders whereby the browser will replace

the placeholder with a dynamic value at runtime. An example use of parameterized

queries was already illustrated in §3.2:

t.executeSql('SELECT description FROM actions WHERE id=?', (id))

4.6. Specify the data-origin as narrow as possible
If you specify the origin of the data too loose, the information you store on the PC

could possibly be read by other web applications. The rule of thumb is to specify the

origin as narrow as possible. So, if you use cookies in your web application, and the URL

is http://secure.thisismywebsite.com, then specify the origin as

secure.thisismywebsite.com and not thisismywebsite.com. In the latter case, cookies can

also be read by www.thisismywebsite.com, other.mywebsite.com and etcetera. Obviously

this is especially a problem on shared domains. Cookies also allow a path-variable to be

set to further narrow down the origin.

Newer storage mechanisms as HTML 5 Web Storage only use the tradition tuple

(scheme/host/port) to determine the origin. This means you should never use this kind of

storage mechanism on shared servers where multiple users share web space within the

same scheme/host/port tuple. This is often the case on servers where multiple users can

create their own homepage on the some host (e.g. http://www.domain.com/~user).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 29

4.7. Limit the lifetime of client-side data
Except for cookies, the data storage mechanisms described in this paper do not

support automatic deletion of data. This will result in the data being available on the

system for a potentially long time. To prevent this from happening, web applications

should delete data right after it’s no longer needed. How this is done, depends on the

mechanism used. Example 12 illustrates some of the (JavaScript-)actions that can be

taken by a web application to remove data.

Example 12: delete information from local stores

 Cookies:
document.cookie = “sessionid=”; // there’s no ‘delete-cookie’-function

 Web Storage:
clear(); // removes all items

removeItem(“key”); //removes a single item

 Indexed Database:

removeObjectStore(“store”); // removes the complete store

remove(“key”); // removes a single item

removeIndex(“index”); // removes a single index

It should be noted that unfortunately not all mechanisms support a clear()- or

destroy()-like function to clear all data in the repository or destroy the complete

repository. With cookies e.g. you can not delete the cookie, but you must reset to value of

the variable to nothing (NULL).

4.8. Test and assess
As with every web application, it’s important to test your code on security

vulnerabilities. As part of a penetration test, the pentester should first determine if the

web application makes use of client-side data storage. This can be determined by

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 30

monitoring the files created locally, checking JavaScript code and reverse engineering

binary files (Flash, Java and Silverlight). Once it is determined that client-side data

storage is used, the pentester must find out how information is stored and what kind of

information is stored. The next step is to check how vulnerable the web application is for

the risks described in chapter 3 of this paper.

To determine if the web application is vulnerable for csXSS, the pentester must

find out if information is stored and retrieved locally without proper input filtering or

output encoding. If a flaw is found in this process, the pentester should try to inject

malicious JavaScript in the local data storage and, once this succeeds, develop Proof-of-

Concept for that. Often, this is done through a CSRF-attack via a malicious website.

Client-side SQL injection (csSQLi) is only possible if the web application makes

use of a storage mechanism that has an SQL interface (typically Web SQL Databases or

Google Gears). It’s quite easy to determine if the web application is vulnerable for

csSQLi by evaluating the SQL calls made from JavaScript. If the calls make use of

parameterized queries, then the web application is probably not vulnerable. Else, it is.

As stated earlier in this paper, data corruption is possible with every web

application that uses local data storage because the user has full control over the

information on his/her computer. The pentester must determine whether or not he can

influence the web application logic by changing the information manually. Different tools

exist to change this information, depending on the type of mechanism used. If e.g. one of

the newer HTML 5 storage mechanisms is used, the pentester must probably install an

SQLite client to manually change the information in the database. The pentester must

evaluate the effects of changing the data and try out different variations. The effects

really depend on the way the web application uses this information. It can lead to the

bypassing of certain restrictions on the web application or enable the user to inject SQL

statements if the information is used directly by the web application to make calls to a

server-side database.

Just as with data corruption, data leakage is always a possibility with client-side

data as information is stored on the PC of the user an can be opened by malware on the

system of the user or another user on the same system. The pentester must evaluate if the

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 31

information stored locally is of a sensitive nature and, if so, if this information is properly

protected by encryption mechanisms. He must also check if the information can be used

to e.g. login to the web application from another computer.

Finally the pentester must test if it is possible to bypass the same origin policy.

The first step is to determine the parameters used by the web application to define the

origin. If the origin is specified too loose, the pentester must find out if it’s possible to

create a malicious website within this origin. If the web application runs on a shared

server, it might be possible to create a subsite on this server through which the pentester

can get access to information stored by the web application. The web application must be

scanned for XSS vulnerabilities because these vulnerabilities will probably allow the

attacker to execute malicious JavaScript code in the context of the web application

evaluated.

Table 5 summarizes the tests penetration testers should execute in order to

evaluate the security of client-side storage mechanisms used by the web application.

Risks Actions

csXSS Find out if information stored locally is echoed back to the user.

 If so, check if the output is properly encoded.

 If no proper encoding is done, try to inject scripts in the local

database.

 Create a scenario where e.g. CSRF is used to automatically

inject the malicious code through a malicious website.

csSQLi Determine if the web application makes use of an SQL-based

local storage mechanism (Web SQL Database or Gears).

 Find out how queries are created: via dynamic strings or

parameterized queries.

 Experiment with different inputs if the web application uses

dynamic strings.

Data corruption Find out how information in local storage is used by the web

application.

 Find out if digital signatures are used to protect the integrity of

data. If so, evaluate the strength of the signature mechanism.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 32

Risks Actions

 Manually edit the information stored by the web application:

 Change name/value pairs (cookies)

 Change information in an LSO by loading .sol-files in a

SOL editor (Flash)

 Change information in a database by loading a database in

a local SQLite-client (Web SQL, Web Storage, IndexedDB,

Gears)

 Change information in XML-files (Silverlight, UserData)

 Evaluate the effects of data corruption on the web application

logic. Can you bypass restrictions? Can you SQL-inject

statements on the server-side database? Et cetera.

Data leakage Evaluate the type of information that�’s stored locally.

 Find out if the web application contains a XSS of csXSS-

vulnerability through which it�’s possible to execute malicious

JavaScript within the context of the web application.

 If confidential information is stored locally without encryption,

warn the web application owner of the risks.

 If information is encrypted, evaluate the strength of the

encryption mechanism. Can it be broken?

 Can the information stored be used for replay attacks?

Same origin policy bypass Evaluate the origin set by the web application:

 Domain and path variables (cookies)

 Cross-domain policy (Flash and Silverlight)

 Client access policy (Silverlight)

 Cross-origin workers (Gears)

 Find out if you can create a malicious website within the origin

specified (e.g. malicious.domain.com if origin is .domain.com

or a subsite on a shared server).

 Find out if the web application contains XSS vulnerabilities that

will access to the information.

Table 5: Pentesting client-side data storage

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 33

5. Conclusion
There exist a lot of mechanisms to store information from a web application on a

PC of an end-user. Some of these mechanisms are supported out-of-the-box by browsers,

others must be enabled through the installation of browser plug-ins. Irrespective the

technical implementation, the use of all of these storage mechanisms share some risks

that must be addressed by the web application developer.

Most of the risks are not new and exist ever since the introduction of cookies in

the 1990s. But some recent developments have changed the risk landscape. The fact that

some applications store and retrieve data locally – without the need of server intervention

– makes it possible to circumvent server-side filters and encoders. This introduces

traditional server-side vulnerabilities to the browser (XSS csXSS, SQLi csSQLi).

The use of client-side filters and encoders is required to battle these threats. Although

client-side SQL injection may sound like a serious vulnerability, the effect of this is

pretty limited. And next to that, all storage mechanisms that are theoretically vulnerable

for csSQLi are no longer actively supported.

The growing amount of information also makes this information more interesting

for miscreants. Traditionally information stored on a PC by a web application was mostly

restricted to some identifiers like session ID’s. With the introduction of offline web

applications, the PC could now also contain complete databases with customer

information or personal information like e-mails. This makes client-side data an

interesting target for miscreants and increases the damage of XSS-vulnerabilities in the

web application that serve as a vehicle to get access to this information.

Finally the absence of data expiration mechanisms in modern client-side data

solutions results in data left behind on PC’s. It’s essential that web applications not only

create and change information in local data stores but also pay attention to the active

removal of data once it’s not needed any longer.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 34

6. References

Adobe. "What are local shared objects?." Adobe. Adobe, n.d. Web. 19 Apr 2011.

<http://www.adobe.com/products/flashplayer/articles/lso/>.

Adobe. "Adobe Cross Domain Policy File Specification." Adobe, 21 January 2010. Web.

19 Apr 2011.

<http://learn.adobe.com/wiki/download/attachments/64389123/CrossDomain_Pol

icyFile_Specification.pdf?version=1>.

Austin, Calvin, and Monica Pawlan. Advanced Programming for the Java 2 Platform. 1st

ed. Addison Wesley Longman, 2010. 400. Print.

Boneh, Dan. "Cookie Same Origin Policy." Stanford University, 30 January 2009. Web.

19 Apr 2011. <http://crypto.stanford.edu/cs142/lectures/10-cookie-security.pdf>.

EPIC. "Local Shared Objects -- "Flash Cookies"." EPIC - Electronic Privacy Information

Center. Electronic Privacy Information Center, 21 July 2005. Web. 19 Apr 2011.

<http://epic.org/privacy/cookies/flash.html>.

Fette, Ian. "Hello HTML 5." Gears API Blog. Google, 19 February 2010. Web. 19 Apr

2011. <http://gearsblog.blogspot.com/2010/02/hello-html5.html>.

Gears Team, . "Database API - Gears API - Google Code." Google Code. Google, n.d.

Web. 19 Apr 2011. <http://code.google.com/apis/gears/api_database.html>.

Gears Team. "Gears and Security - Gears API - Google Code." Google Code. Google,

n.d. Web. 19 Apr 2011.

< http://code.google.com/intl/pl/apis/gears/security.html>.

Gears Team, . "Gears FAQ - Gears API - Google Code." Google Code. Google, n.d.

Web. 19 Apr 2011. <https://code.google.com/apis/gears/gears_faq.html>.

Gears Team. "GearsHistory - Timeline of major events." Google Code. Google, 4

February 2010. Web. 19 Apr 2011.

<https://code.google.com/p/gears/wiki/GearsHistory>.

Hickson, Ian. "Web Storage." W3C, 8 February 2011. Web. 19 Apr 2011.

< http://www.w3.org/TR/2011/WD-webstorage-20110208/>.

Hickson, Ian. "Web SQL Database." W3C, 18 November 2010. Web. 19 Apr 2011.

<http://www.w3.org/TR/2010/NOTE-webdatabase-20101118/>.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 35

‘KirstenS’,’Jmanico’, Williams, Jeff, ‘Wichers’, ‘Roman’, and Weidman, Adar. "Cross-

site Scripting (XSS)" Open Web Application Security Project (OWASP), 20

October 2010. Web. 19 Apr 2011. < https://www.owasp.org/index.php/Cross-

site_Scripting_%28XSS%29>.

Kristol, D., and L. Montulli. "RFC 2109: HTTP State Management Mechanism." IETF,

February 1997. Web. 19 Apr 2011. <http://www.ietf.org/rfc/rfc2109.txt>.

Likness, Jeremy. "Saving Bitmaps to Isolated Storage in Silverlight 3." Code Project, 31

July 2009. Web. 18 Apr 2011.

<http://www.codeproject.com/Articles/38636/Saving-Bitmaps-to-Isolated-

Storage-in-Silverlight-.aspx>.

Mehta, Nikunj, Jonas Sicking, Eliot Graff, and Andrei Popescu. "Indexed Database API."

W3C, 19 August 2010. Web. 19 Apr 2011. <http://www.w3.org/TR/2010/WD-

IndexedDB-20100819/>.

Microsoft. "DHTML Behaviors." Microsoft, n.d. Web. 19 Apr 2011.

<http://msdn.microsoft.com/en-us/library/ms531078%28v=vs.85%29.aspx>.

Microsoft. " Isolated Storage (Silverlight QuickStart)." The Official Microsoft Silverlight

Site. Microsoft, 5 March 2009. Web. 19 Apr 2011.

<http://www.silverlight.net/learn/quickstarts/isolatedstorage/>.

Microsoft. "Making a Service Available Across Domain Boundaries." MSDN. Microsoft,

May 2010. Web. 19 Apr 2011. <http://msdn.microsoft.com/en-

us/library/cc197955%28v=vs.95%29.aspx>.

Microsoft. "Silverlight Overview." The Official Microsoft Silverlight Site. Microsoft, n.d.

Web. 19 Apr 2011. <http://www.silverlight.net/getstarted/overview.aspx>.

‘Nsrav’,’Wichers’, ‘KirstenS’, ‘Suei8423’, Bergman, Neil and Siman, Maty. "SQL

Injection" Open Web Application Security Project (OWASP), 1 March 2010.

Web. 19 Apr 2011. <https://www.owasp.org/index.php/SQL_Injection>.

Oracle. "Policy Tool - Policy File Creation and Management Tool." Oracle. Oracle,

1995. Web. 19 Apr 2011.

<http://download.oracle.com/javase/1.3/docs/tooldocs/win32/policytool.html>.

Pilgrim, Mark. "Local Storage - Dive Into HTML5." N.p., n.d. Web. 19 Apr 2011.

<http://diveintohtml5.org/storage.html>.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

The Risks of Client-Side Data Storage 36

Sutton, Michael. "A wolf in sheep's clothing." ZScaler Research, 19 February 2009. Web.

18 Apr 2011.

<http://zscaler.com/presentations/A%20Wolf%20in%20Sheep%27s%20Clothing.

pdf>.

Trivero, Alberto. "Abusing HTML 5 Structured Client-side Storage." SecDiscover, 20

July 2008. Web. 18 Apr 2011. <http://packetstorm.orion-

hosting.co.uk/papers/general/html5whitepaper.pdf>.

