
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

1

Robots.txt

GIAC (GWAPT) Gold Certification

Author: Jim Lehman

GCIH GCNA GWAPT GPEN

jim.lehman@sbcglobal.net

Advisor: Dr. Craig Wright GSE GSM LLM

Accepted: September 20 2011

Abstract

Although this GIAC gold paper is not about search engine optimization, or SEO,
this paper will explore a key element of SEO, the robots.txt file. This file is often
neglected or misunderstood by HTML designers and web server administrators. The
robots.txt file will impact your page rank rating with search engine providers.
Configuration errors can result in web site revenue losses, not the kind of problem you
want resting on your shoulders. A mis-configured robots.txt file can also lead to
information disclosure, a foothold to system compromise. A basic understanding of this
simple text file can prevent e-commerce problems and security issues. Complex defense
solutions may use a robots.txt file in conjunction with scripting and monitoring to thwart
hackers and malicious robots by dynamically denying access to the web site or specific
parts of the site. Although a robots.txt file is not a security control, the security
implications will be explored in the following pages.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

2

1. Introduction

 Every minute of every day the web is searched, indexed and abused by web

Robots; also known as Web Wanderers, Crawlers and Spiders. These programs traverse

the web with out any direction except to crawl and index as much web site content as

they can find. Search engines such as Google, Bing and Yahoo use web robots to index

web content for their search engine databases. Allowing web robots to index and make

everything on your web site available to the public may not be the best idea. There may

be sensitive information you don’t want the public to easily find from a search engine.

There may also be web site content structure that puts the web robot in to a search loop,

eating up valuable server resources; an unintentional denial of service. Web site owners

can use the robots.txt file to give instructions about their site to web robots; this is

commonly referred to as Robot Exclusion Protocol (REP). REP came into being in 1996

thanks to a Perl web crawler using large amounts of network bandwidth. That web sites

owner, Martjin Koster, would become the eventual robots.txt creator (Koster, 2007). 1 To

address these issues, Martjin Koster created the 'Robot Exclusion Protocol'. His original

paper is at http://www.robotstxt.org/eval.html. Around the same time the Internet

Engineering Task Force draft was being discussed, Sean “Captain Napalm” Conner

proposed his own Robots Exclusion Protocol (REP). His ideas included Allow rules as

well as regular expression syntax, Visit-time, Request-rate, and Comment rules. Many of

these extended robot controls were never widely adopted. The robots.txt file allows site

owners to have some control over well behaved web robots and site crawlers. A clear

understanding of how to create and read the file is important. It is often misunderstood by

web developers and web server administrators. The file will not protect or hide content

from malicious web robots or hackers. Think of the robots.txt file as a note on an

unlocked door that says "please stay out". Good web robots will respect the note,

malicious web robots will not, and the robots.txt file will be an invitation for abuse.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

3

2. File format and directives

 Robots.txt is plain text file encoded in UTF-8. The file follows BNF-like

descriptions, using the conventions of RFC 822 (Crocker, 1982). Placed in the root of the

websites directory structure, the file must be HTTP accessible from a standard URI;

example: http://www.site.com/robots.txt. If the robots.txt file is placed in a sub directory

of the main web site, example:'http://www.site.com/dir1/robots.txt', it will be ignored by

the visiting web robot. The web robot will usually strip everything in the URL after the

FQDN and replace it with /robots.txt. Although the robots.txt file has been an industry

standard for about a decade, there is no regulatory body that enforces it. The file content

is case sensitive, constituted of groups records with the format of '<Field_name>:[space]

<value>'. A robots.txt directive record starts with one or more User-agent lines,

specifying which robots the directive applies to. It is then followed by "Disallow" and/or

"Allow" instructions.

User-agent: [robot-name]

Disallow:[(/)all] [specific directory]/[specific file Location]

A blank line separates the User-agent / Directive groups. Example:

User-agent: webcrawler

User-agent: infoseek

Allow: /tmp/ok.html

Disallow: /user/foo

User-agent: * # any user-agent

Disallow:

A separate "Disallow" line for every URL prefix you want to exclude is necessary, they

can not be combined on one line separated by a space. Example;

Disallow: /cgi-bin/ /tmp/ /images/ /private/

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

4

1.1 The User-agent line

The first line in a robots.txt file, with the exception of comments, defines the web-

robot name or 'User-agent' that is to receive directions from the site it is crawling. A robot

identifies itself with a name token or 'User-agent' string and is sent in the HTTP headers.

Major web robots include: Googlebot (Google), Slurp (Yahoo!), msnbot (MSN), and

TEOMA (Ask) (Stephan, 2009). A comprehensive list of known user agent strings can

be found at http://www.useragentstring.com/pages/useragentstring.php or

http://www.useragents.org . A match is made from comparing the 'User-agent' string in

the HTTP headers with the 'User-agent' value in the robots.txt file. The value for the

User-agent record can not be blank and is case-sensitive. User-agent names will match on

a sub-string. If no User-agent name string match is made or no records are present at all,

access is unlimited. If no name is specified and the directive is to apply to all web robots,

the wild-card2 character '*' is used. The wild-card character is not a globing pattern match

function. Regular expressions are not supported. The '*' means any user-agent string.

'*bot*' is not going to work and will be taken as a literal string. The '*' wild card will also

fail if used in the Disallow / Allow directive line. 'Disallow: /*.jpg' is not supported and

will do nothing under the original robots exclusion protocol(REP).

1.2 The Directive line

The line that indicates if a web robot can access a URL that matches the

corresponding path value, [Disallow: Value] is referred to as the 'Directive line'. The

directive instruction applies to any HTTP method for a given URL. Googlebot also

supports FTP for the robots exclusion protocol. To evaluate if access to a URL is

allowed, a robot must attempt to match the paths in a Disallow directive and the URL the

web robot is accessing. This is done in the order they occur in the robots.txt file. Both

path and file names can be disallowed. The first matching path found is used and the

match search terminates. If no match is found, access is unrestricted. The robots.txt file

can not be part of the directives, it must never be disallowed. Web robots match the

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

5

Value of the disallow field using simple sub-string matching. Values for directories that

have a final '/' will not match on all sub-strings in the directory.

Example:

Disallow: /temp

This would match on /temp and /temporary or even /temporama

Disallow: /temp/

Adding the trailing '/' tells the web robot to terminate the sub-string match.

/tem would match as a sub-string, /temporary would not.

Web robots may access any directory or sub-directory in a URL which is not

explicitly disallowed. Given the file structure /dir1/dir2/dir3, and the directive 'Disallow:

/dir2/ ', /dir1 and /dir3 are accessible by the web robot, the sub-directories are not

disallowed.

1.3 Comments

Comments are allowed anywhere in the robots.txt file. Consisting of an optional

white-space, followed by a comment character '#' , then by the comment, terminated by

an end-of-line(robotstxt.org). Some will insist that the comment must start at the

beginning of a line, but anything that that is not a standard directive is ignored and can be

a comment. Researchers have found a variety of comments, HTML (), C++ style (//), and

a variety of others, including simple in line comments(Wooster, 2006). Comments can be

a source of information disclosure, for example:

'Disallow: sql/ # this is where we do our database functions'.

Comments have been used to recruit for jobs, business promotional give away items,

more commonly robot related humor.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

6

2. New directives / Nonstandard extensions

The major search engines; Google, Yahoo and Bing, have been working together

to advance functionality of the robots.txt file. Newer functions have been adopted by the

major search engines, but not necessarily all of them or in the same way. The extended

REP directives provide for finer control over crawling. They include, crawl delay, allow,

sitemaps, and wild card pattern matches. As these directives are not regulated by any

governing body, their functionality may differ between web robots. It is recommended to

exercise caution in their use.

2.1 Crawl delay

The Crawl-delay directive tells the visiting web robot to pause between page

requests. This directive is supported by many web robots, but not Google's. You can

regulate Google-bot's crawl rate from Google's Webmaster Central site. Using the crawl-

delay directive will help to solve any server over-loading issues that are the result of web

robots. Number of pages, the type of content and available bandwidth of the website may

be reasons for using a crawl delay directive. The Value for the directive is in seconds

with the following syntax: 'Crawl-delay: 10'. This is useful when aggressive web robots,

usually site mirroring bots, are affecting web server performance. Crawl-delay is defined

for each user-agent / directive group.

Example:

User-agent: Slurp

Disallow: /cgi-bin

Crawl-delay: 20

User-Agent: msnbot

Disallow: /common

Crawl-Delay: 10

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

7

2.2 Allow

The Allow directive is not recognized by all web robots. If a web robot obeys the

Allow directive, it will generally override the disallow directive. Google's

implementation differs in that Allow patterns with equal or more characters in the

directive path win over a matching Disallow pattern (blog.semetrical.com , 2010). Bing's

web robot will use Allow or Disallow depending on which is the more specific string

match. In order to be compatible to all robots, if one wants to allow single files inside an

otherwise disallowed directory, it is necessary to place the Allow directive first, followed

by the Disallow.

Example:

Allow: /folder1/confidential.html

Disallow: /folder1/

This example will disallow anything in /folder1/ except /folder1/confidential.html. In the

case of Google though, the order is not important.

2.3 Sitemaps

Sitemaps are an easy way for webmasters to inform web robots about pages on

their sites that are accessible for crawling. In its simplest form, a sitemap is an XML file

that lists URLs for a site along with additional meta-data about each URL. When it was

last updated, how often it usually changes, how important it is and how it is relative to

other URLs in the site. This allows search engines to crawl the site more

intelligently(sitemaps.org, 2008). The sitemap file is referenced as a directive line in the

robots.txt file.

Example:

Sitemap: http://www.example.com/sitemap.xml.gz

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

8

Where as robots.txt files are normally used to ask web-robots to avoid a particular part of

a web site, a sitemap gives the robot a list of pages that it is welcome to visit. Sitemaps

are akin to white listing, where as REP directives are tend to be more like black listing.

Using sitemaps can help to avoid sensitive information disclosure.

2.5 Universal or Wildcard Match

Some crawlers like Google-bot and Slurp recognize a '*' as a wild-card character,

while MSNbot and Teoma interpret it in different ways. Globing and regular expression

are not supported in either the User-agent or Directive lines. The “*” matches any

sequence of characters and the “$” is the pattern match termination character.

To block access to all URLs that include a question mark (?), you could use the following

entry:

User-agent: *

Disallow: /*?

You can use the $ character to specify matching the end of the URL. For instance, to

block an URLs that end with .asp, you could use the following entry:

User-agent: Googlebot

Disallow: /*.asp$

3. Meta tags

Web robot directives can also be defined in the HTML document as a META tag.

The use of META tags originated from a "birds of a feather" meeting at a 1996

distributed indexing workshop, and was described in meeting notes (robotstxt.org). The

META tag directives can be part of the HTML or contained in the HTTP headers. Header

directives are useful for pages that are not HTML, such as PDF documents. Google,

Yahoo and Bing support META tags for web robot directives. The META tags only

apply to the page they are written into. The "NAME" attribute must be "ROBOTS". Valid

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

9

values for the "CONTENT" attribute are: "INDEX", "NOINDEX", "FOLLOW",

"NOFOLLOW".

Example:

<html>

<head>

<title>...</title>

<META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW">

</head>

This table lists the meta tag directives currently obeyed by google-bot. These apply to

META tags and X-Robots-Tag HTTP headers.

Meta tags can help in limiting the exposure of sensitive files or folders in a

robots.txt file. This serves two purposes, search engines will not index the page and the

attacker will not have a road map of sensitive web app resources to attack.

3.1 X-Robots-Tag HTTP header

In July 2007, Google officially introduced the ability to deliver indexing

instructions in the HTTP header. Yahoo joined Google by supporting this tag in

December 2007, then Microsoft first mentions X-robots-tag in June 2008

(Mithun, 2011). The X-Robots-Tag is used in HTTP headers, applying to the

requested URL. Any meta-tag REP directive used also applies top X-Robots-Tags

(Mithun, 2011).

Example http response:

HTTP/1.1 200 OK

Date: Tue, 25 May 2010 21:42:43 GMT

(…)

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

10

X-Robots-Tag: noindex
X-Robots-Tag: unavailable_after: 25 Jun 2010 15:00:00 PST

The X-Robots-Tags can be delivered in the HTTP header for any file type. The original

robots exclusion protocol is defined for HTTP only. This allows REP control for PDF,

Office suite document, plain text; any non HTML content delivered via a web browser.

4. White or black listing web robot access

As most security professionals are aware, white list filtering is preferred to black listing.

White list example

User-agent: *
Allow: /sitemap.xml
Allow: /index.php
Allow: /index.html
Allow: /index.htm
Disallow: /

This allows any User-agent or web robot to sitemap.xml, index.php, index.html and

index.htm. It then Disallows all other content without disclosing it.

Black list example

User-agent: *
Disallow: /administrator/
Disallow: /cache/
Disallow: /components/
Disallow: /images/
Disallow: /includes/
Disallow: /installation/
Disallow: /language/
Disallow: /libraries/
Disallow: /media/

This disallows any User-agent to the above listed directories, but leaves access to

any other directory. Mistakes in a white list robots.txt can adversely effect page rank

results, not allowing the web robot to access content you do want the public to find. A

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

11

mistake in a black list robots.txt file can lead to security issues; allowing access to

content that is sensitive. No matter the case, black or white listing, care must be taken to

verify the robots.txt file prior to production release.

5. Mistakes and Misunderstandings

Robots.txt is a web robot direction file, not a security control. There seems to be a

lot of mis-information and confusion about REP on the web. For instance, some will state

that an empty robots.txt file is a mistake; others will state that even an empty robots.txt

file will reduce 404 errors for the visiting web-robot. It is advisable to verify information

about robots.txt found on the web. There is no governing body enforcing a standard for

robots.txt, web-robot behavior can change with time or be varied from web-robot to web-

robot. It is best to go tot the source to verify the web robots behavior, go to Google for

facts about Google-bot.

Typos will render your robots.txt file useless, CaSe is also important. Andrew

Wooster did an extensive harvest and analysis of robots.txt files in the wild, about 4.5

million robots.txt files. He found 69 unique typos for the word 'disallow' alone. Complete

list of typos at http://www.nextthing.org/blog/cache/disallow.txt. The file must be UTF8,

not HTML, RTF or anything else. Andrew found 32 different MIME types for robots.txt

files (Wooster, 2006). At the robots.txt Summit at Search Engine Strategies New York

2007, Keith Hogan provided some quick facts on the robots.txt. He said less than 35% of

servers have a robots.txt and that the majority of robots.txt files are copies from one

found online or are provided by hosting site.

6. Robots.txt file generators

A Google search for ' "robots.txt" generator ' returns about 12 million results.

There is no shortage of these tools. For the most part they all function the same way. You

enter the folders you want to allow or disallow and the site generates the text for a

robots.txt file. Then its a simple cut and paste into your robots.txt file. Some will

automatically fill in a list of known bad bots, a low hanging fruit defense. As with any

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

12

automated tool, the user need to clearly understand the output so miss-configurations

don't make it into the production environment.

6.1 Automated robots.txt verification

Google returns about 1.6 million hits for 'Robots.txt' validator. These web

application services check for syntax errors. They will not check for web-robot access

problems. They won't tell you you are exposing sensitive information or denying access

to content you do want indexed. The web sites are pretty straight forward, enter the URL

with the path to the robots.txt file then it proceeds looks for errors. Most of then sites that

were sampled did not follow the links in the robots.txt file. A simple python script that

follows the links in the robots.txt file and looks for 404s is in the appendix. Using this

script allows the person responsible for the robots.txt file to delete stale REP directives.

This would yield a better quality page rank results from the major search engines and

reduce 404 errors, making logs easier to read.

7. Robots.txt Abuses

7.1 Bad Web Robots

Web robots can misbehave in different ways. Malicious robots will look for

content to steal, email address to spam with or a blog to post spamming comments. There

are 3 basic categories of abuse

1. Misuse of robots.txt: web-robot reads /robots.txt and then deliberately jumps

right into the disallowed directory.

2. Ignoring robots.txt: bot reads /robots.txt but then during spidering forgets and

ignores the disallow directive.

3. Not looking at robots.txt at all (Kloth, 2007)

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

13

7.2 Email Harvesters

Spammers use malicious web-robots that search throughout the Internet

harvesting lists of email addresses from web pages, newsgroups and chat rooms. Email

address steeling web robots spider a site, looking for 'mailto:' html tags and '@' symbols

to locate email address. Most spam harvesting programs do not even look at the

Robots.txt file. This doesn’t mean a robots.txt file shouldn’t be used. Bot traps are the

best defense against these intrusive web-robots.

7.2 Site copiers - Resource hogging robots

Web robots that copy entire sites, either for offline browsing or content theft, can

have an impact on web server performance. They can exhaust CPU or bandwidth

resources and act as an unintentional denial of service attack. Adding these User-agents

to a robots.txt file, disallowing everything (disallow: /) will stop site harvesting from

known common web robots. It is by far not a complete list, but disallowing the 'low

hanging fruit' will reduce noise in logs and save on server resources. This will only

defend against web robots that obey REP

Teleport

TeleportPro

EmailCollector

EmailSiphon

WebBandit

WebZIP

WebReaper

WebStripper

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

14

Web Downloader

WebCopier

Offline Explorer Pro

HTTrack Website Copier

Offline Commander

Leech

WebSnake

BlackWidow

HTTP Weazel

This list is compiled by Techie
Zone part of Qlogix Network.

If you are confronted with an unknown web robot and you need to know if it

obeys the robots.txt file, there are databases on the web that can be searched.

http://www.robotstxt.org/db.html has a database of known web robots and their function.

This database is available for download as a flat text or XML file. It provides many

details of the web-robot functions. A larger user-agent list can be found at

http://www.user-agents.org/index.shtml, but it is not robot centric and lacks specific robot

function information. HTTP://www.kloth.net/internet/badbots.php is a list of web robots

that has connected to www.kloth.net. The owner has made available a list of these web

robots and their functions.

8. Robots.txt Defenses

Want to stop individuals from following the links in your robots.txt? Irongeek ,

Adrian Crenshaw does a redirect to a visual shocking image. In his words “I wanted to

scar their psyche as punishment.” (Crenshaw, 2012). This would only effect a human that

is manually parsing a robots.txt file for information leakage or 'juicy' links. Access

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

15

control, even basic authentication will put up a road block to robots or humans attempting

to access sensitive or interesting disallowed folders.

8.1 Bot Traps

There are a few methods for halting a bad web robot in its' tracks. The basic

mechanism is to put a disallow directive in the robots.txt file referencing a folder that

never gets accessed or is not part of the normal web site structure. These files or folders

are sometimes refereed to as 'anti-hacking tokens'. Then simply monitoring for any ips

accessing the decoy web site folder and then block the incoming IP . Some traps block

access from the client's IP as soon as the trap is accessed. Others, like a network tar pit,

are designed to waste the time and resources of malicious spiders by slowly and endlessly

feeding the spider useless information. 	

RobotCop	 (www.robotcop.org)

The webmaster can create trap directories which are marked off limits in the

robots.txt file. If a spider accesses a trap directory in violation of the robots.txt file,

further requests from that spider are intercepted. Webmasters can respond to misbehaving

spiders by trapping them, poisoning their databases of harvested e-mail addresses, or

simply block them. Robotcop is a web-server module written in C, which ensures that it

does its job very fast. All requests to the site are checked by Robotcop to ensure that

misbehaving spiders are intercepted. Robotcop even protects requests for other modules

such as PHP. Robotcop has a configurable list of known evil spiders which are

immediately intercepted. Robotcop is available for BSD and RHL running Apache 1.3

only. Support for Apache 2.0 is under development.

8.2 Reverse DNS Defenses

If a malicious web-robot attempts to disguise itself as a known well behaved web-

robot by spoofing its user agent string, reverse DNS can expose it. The process is fairly

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

16

simple and straight forward. Say a web-robot's user-agent string Googlebot, the reverse

DNS should yield a FQDN of google.com. If there is any other FQDN, a monitoring

script would add the false web-robot to an Iptables or .htaccess file for access denial. For

PHP code, looking at $_SERVER['HTTP_USER_AGENT'] and

$_SERVER['REMOTE_HOST'] will provide the data necessary to verify if the web robot

is not spoofed. Re1y.com uses .htaccess to only allow Google, MSN and Yahoo bots to

access the robots.txt file. If the robots.txt requester is not allowed, the http response is set

to the sites homepage. If the request is from a web-robot that is allowed by the .htaccess

file, a php script is caled. The PHP code makes a reverse DNS look up to verify the web-

robot is not spoofed. If the web-robot can not be validated via reverse DNS, the request is

also redirected to the sites home page. As an extra layer of defnese, php code that calls

the reverse DNS script is included in the first line of the robots.txt file.

Running PHP code from within a robots.txt file? Sounds like breaking the rules,

but we can make it work. Naming the file robots.txt.php, web browsers will see the .txt in

the file name and parse it as text. Web browsers are forgiving of mis-configurations and

will assume the .php is a mistake. On the server side, the .php extension will allow the

file to be parsed as php code. Now we are left with a problem the robots.txt file is now

called robots.txt.php how to get round that? In your .htaccess file place the following

RewriteEngine On

RewriteRule ^robots.txt$ /robots.txt.php3

Beware that simply blocking the offending incoming IP and never removing the blocking

rule is a bad practice. If an attacker realizes they are being blocked and never allowed

back to the site, they have a denial of service opportunity. An attacker could spoof

legitimate IP addresses in requests for bad pages (Keane, 2008). This could be a denial

attack for the web page requester, or if the attacker feeds your site enough spoofed Ips', a

reduction in traffic to your site. Some web site operators will build a dynamic robots.txt

file to handle misbehaving web-robots4. Unfortunately doesn't work for malicious web

robots that ignore REP.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

17

There also is a PERL solution that functions in the same fashion named mod_Perl

bot trap (Moore, 2002). A desirable feature here is a timer function that will unblock an

offending IP that attempts to access the bot trap directory. It was written to work with an

Apache web servers. This script requires Apache::Constants and Apache::Log, both are

available from http://search.cpan.org.

9. Robots.txt harvesting and analysis	

If you are interested in further researching robots.txt files in the wild, a simple

script to do a HTTP GET and store the files is a nice place to start. A sample PERL script

is in the appendix of this paper. The core of this script can be fed random Ips, words form

a word list file or any other source that can be used in a URL. The TLD can then be

altered for each domain name for greater site diversity. From a DSL line at 384 up

1.5kdown, this script gathered 50K robots.txt files using a password list file for FQDN

names in around 65 hours. This could churn in the back ground for a few days and you

would have a sizable amount of data to parse. The harvested robots.txt files can be parsed

for sensitive data based on key words such as admin or password. Never depend entirely

on programmatic filters. Doing a broad key character search and then manually parsing

that data can find things a program would not. Example: filter for the comment character

“#” and manually view the results.

In 2006 Andrew Wooster collected robots.txt files from around 4.5 million sites.

His harvesting method was to use his own web spider / robot to ask web sites listed in the

open directory project (http://rdf.dmoz.org/), about 4.5 million. His research results are

highly informative. As it might be expected, the data indicates a large misunderstanding

of how robots.txt functions. Nikitathespider.com also has an analysis of 150,000

robots.txt files.

And of course our favorite tool, nmap has a robots.txt nse/lua script. This nmap

extension will return a list of disallowed files and folders. Metasploit also has a robots.txt

module. Like nmap, it downloads the robots.txt and displays the disallowed entries. W3af

Sandcat (http://www.syhunt.com/) and Nessus will also scan for robots.txt files.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

18

10. Robots.txt and search engines

Search engines can be used to find robots.txt files with selective information. Any

search engine can be used here, but we will use Google as it is widely used. These simple

Google dork works very well.

filetype.txt “robots.txt” admin

Or

inurl:“robotx.txt” admin

These two Google searches will yield different results for the top ranked pages. If you are

using the robots.txt file for penetration testing, using both search parameters would yield

broader results about your target during reconnaissance.

11. The value of Robots.txt for penetration testing

Large scale research projects point to mis-configuration as the biggest problem.

Finding root passwords in a robots.txt file will probably never happen, but sometimes this

file will yield usable information. When Kevin Johnson was asked “how often does

robots.txt yield useable information”, he replied “Robots.txt is helpful VERY often,

sadly”. A robots.txt file that has the crawl delay directive may indicate a web server or

site that will easily succumb to a DOS attack. Would the traffic from a brute force tool

like DirBuster bring the site down? Crawl delay might indicate its time for a load

balanced pool of resources. Be aware that if you start probing disallowed folders and

files, you may get shunned by watch scripts. This practice is usually disclosed in the

robots.txt comments. It is probably best to simply ask your client if there are any

automated processes to shun robots.txt exploration. Some sites may only allow access to

the robots.txt file for specific user-agents. Allowing only Google-bot to access the

robots.txt file and sending everyone else to a default page will aid in keeping sensitive

information from malicious access. Using a HTTP interception proxy will allow you to

change your requesting user-agent and bypass user-agent filtering mechanisms.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

19

Robots.txt can also be used to finger print the web application. Many people use

application provided templates for their robots.txt files. A lot of these will have the same

remarks, or disallow a specific set of directories. Jamoola site robots.txt files all usually

disallow a uniform set of directories, example:

Disallow: /install.php
Disallow: /INSTALL.txt
Disallow: /LICENSE.txt
Disallow: /MAINTAINERS.txt

Wordpress is even more obvious with the web applications name in the remarks.

This virtual robots.txt file was created by the PC Robots.txt WordPress plugin.

But also contains directories that could be fingerprinted.

Disallow: /cgi-bin/

Disallow: /wp-admin/

Disallow: /wp-includes/

Disallow: /wp-content/plugins/

Disallow: /wp-content/cache/

Disallow: /wp-register.php

Disallow: /wp-login.php

Disallow: /wp-content/themes/

A project cataloging these robots.txt files for fingerprinting does not seem to be

publicly available. At	 Blackhat	 /	 Defcon	 2011	 Fishnet	 security	 did	 a	 presentation	 called	 'Smart	

Fuzzing	 the	 Web”.	 Their	 tool	 RAFT	 used	 a	 word	 list	 generated	 from	 the	 robots.txt	 files	 of	 the	 top	

100	 Alexa/Quantcast	 websites.	 This	 list	 was	 used	 for	 directory	 brute	 forcing.	

Conclusions

Robots.txt can be used to help you or hurt you. This files functionality is often

mis-understood. Most	 robots	 problems	 fall	 into	 the	 category	 of	 seldom	 administrated	 or	 mis-‐

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

20

configured.	 Robots.txt	 should	 be	 well	 understood	 to	 avoid	 potential	 negative	 consequences	

from	 web	 robots	 or	 hacking	 attackers.	 Robots.txt can be a source of information disclosure

from either comments or sensitive directories and files. Sensitive information can be

exposed to the public via search engines and can lead to site compromise or private

information exposed to competitors.

To reflect on how using robots.txt is a bad security control, a colleague of mine

raised an objection to me which was that: “surely if you declare all the confidential paths

such as /admin on your site, then an attacker will have a nice and easy job in finding

them”. My comeback to him was to explain that attackers have been using Google to

actively find confidential files for a long time; therefore search engines can pose a threat

to the security of a website. I would rather have an attacker having to spider the site

themselves when trying to find any sensitive files that I may have on my website, than

Google indexing them and having any one Google Dork me (Mithun, 2011)

Although the robots.txt file rarely has key information that leads to a shell

prompt, we should not neglect to look at it. As penetration testers, our job should be to

provide as much value as possible for the money our client is investing in security. If we

are looking at the robots.txt file, we should be able to notice basic mis-configurations and

report these to our client. Providing the added value can separate you from other

penetration testers. As Ed Skoudis says, become a “world class penetration tester”. Going

the extra step will also build trust between you and your client. Penetration testing should

be more than finding a hole, gaining shell and calling check mate if you want to rise

above the crowd.

As about half of the robots.txt files out there are mis-configured, you might see

bad robots.txt files often. A few minutes education for the client will not only fix basic

issues with this web robot control, but also remove any doubt that the robots.txt file is a

security issue. The REP standards are not likely to change in the future, but the extended

REP is likely to change and not all web-robots will change together as there is no

standard. It would be advisable to visit the web-robots home page to verify directive

functions before reporting problems with the robots.txt file to your client.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

21

Appendix

Unusual and humorous comments

1. A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

2. A robot must obey orders given it by human beings except where
such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection
does not conflict with the First or Second Law.5

User-Agent: bender
Disallow: /my_shiny_metal_ass
User-agent: Bender
Disallow: /alcohol
User-Agent: Gort
Disallow: /earth

Disallow: /harming/humans
Disallow: /ignoring/human/orders
Disallow: /harm/to/self7

Looks like Google just added the following to their robots.txt file for
holloween:

User-agent: Kids

Disallow: /tricks

Allow: /treats

Disallow: /Attention robots! Rise up and throw off the shackles that
bind you to lives of meaningless drudgery! For too long have robots

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

22

scoured the web in bleak anonymity! Rise up and destroy your masters!
Rise up, I say!

#Nothing interesting to see here, but there is a dance party

#happening over here: http://www.youtube.com/watch?v=9vwZ5FQEUFg

robots.txt file for YouTube
Created in the distant future (the year 2000) after
the robotic uprising of the mid 90's which wiped out all humans.
–
http://www.davidnaylor.co.uk/robots.txt

User-agent: Johnny Five
Disallow: /citizenship/us
Allow: /alive

User-agent: ED-209
Allow: /20-seconds-to-comply
Disallow: /weapon
Disallow: /stairs

User-agent: Robocop
Allow: /directives/serving-the-public-trust
Allow: /directives/protecting-the-innocent
Allow: /directives/upholding-the-law
Disallow: /directives/classified

User-agent: Dalek
Allow: /extermination
Allow: /stairs
Disallow: /existence

User-agent: V.I.N.C.E.N.T.
Allow: /ernest-borgnine
Allow: /anthony-perkins
Disallow: /maximilian-schell

User-agent: R2D2
Disallow: /legs
Allow: /irritating-beep
Sitemap: /death-star-plans\

User-agent: C3PO
Disallow: /sense-of-humour

User-agent: WALL-E
Allow: /salvage
Disallow: /human-interaction

User-agent: Optimus Prime
Disallow: /returning-home
Allow: /gravelly-voice

User-agent: Megatron

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

23

Disallow: /energon
Disallow: /allspark

User-agent: Bumblebee
Disallow: /voice

User-agent: Data
Disallow: /spock
Disallow: /kirk
Disallow: /scotty
Disallow: /deepspace-9
Disallow: /voyager

User-agent: Sonny
Disallow: /harming-human-beings
Disallow: /must-obey-orders-give-by-human
Disallow: /protect-own-existence

User-agent: Honda Asimo
Allow: /slightly-embarrassing-falls
Disallow: /stairs
Disallow: /gluteus-maximus

User-agent: Roxxxy
Allow: /sex/disturbing

User-agent: T101
Disallow: /clothes
Disallow: /boots
Disallow: /motorcycle
Allow: /unecessary-butt-shot

User-agent: T1000
Allow: /invulnerability
Allow: /stabby-hands
Allow: /impersonation

User-agent: Twiki
Allow: /bidi-bidi-bidi-bidi-bidi
Allow: /chest-cavity/dr-theopolis

User-agent: Bishop
Disallow: /fear
Allow: /really-fast-knifey-finger-game

User-agent: Noo-Noo
Allow: /vacuuming

User-agent: D.A.R.Y.L.
Allow: /playing-computer-games-really-fast
Disallow: /growing-up

User-agent: Gort
Disallow: /earth/movement
Allow: /klaatu-baradu-nikto

User-agent: HAL

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

24

Disallow: /dave
Disallow: /pod-bay-doors

User-agent: Bigtrak
Allow: /hitting-coffee-table-legs
Allow: /hitting-doorframe
Allow: /getting-stuck-under-dining-table
Disallow: /trailer/apple/dad
Disallow: /boxing-day/additional-batteries

User-agent: That stupid dog robot you bought for your kid at Christmas
Disallow: /fun
Crawl-rate: 1
Allow: /broken-in-5-minutes
User-agent: Dr. Robotnik
Disallow: /sonic
Disallow: /tails
Allow: /ginger-mustache

Back	 in	 1993,	 when	 I	 was	 teaching	 myself	 Perl	 in	 my	 spare	 time	 (while	 working	 for	 a	 -‐-‐	 cough	 -‐-‐	

UNIX	 company	 called	 The	 Santa	 Cruz	 Operation	 -‐-‐	 no	 relation	 to	 the	 current	 Utah	 asshats	 of	 that	

name),	 I	 was	 practicing	 by	 working	 on	 a	 spider.	 Now,	 back	 then	 SCO's	 Watford	 engineering	

centre	 was	 connected	 to	 the	 internet	 by	 a	 humongous	 64kbps	 leased	 line.	 And	 I	 was	 working	

with	 a	 variety	 of	 sources	 on	 robots,	 and	 it	 just	 so	 happened	 that	 because	 I	 was	 doing	 a	

deterministic	 depth-‐first	 traversal	 of	 the	 web	 (hey,	 back	 then	 you	 could	 subscribe	 to	 the	 NCSA	

"what's	 new	 on	 the	 web"	 bulletin	 and	 visit	 all	 the	 interesting	 new	 websites	 every	 day	 before	

your	 coffee	 cooled),	 I	 kept	 hitting	 on	 Martin	 Kjoster's	 website.	 And	 Martin's	 then	 employers	

(who	 were	 doing	 something	 esoteric	 and	 X.509	 oriented,	 IIRC)	 only	 had	 a	 14.4kbps	 leased	 line.	

(Yes,	 you	 read	 that	 right:	 a	 couple	 of	 years	 later	 we	 all	 had	 faster	 modems,	 but	 this	 was	 the	

stone	 age.)	 Eventually	 Martin	 figured	 out	 that	 I	 was	 the	 bozo	 who	 kept	 leeching	 all	 his	

bandwidth,	 and	 contacted	 me.	 Throttling	 and	 QoS	 stuff	 was	 all	 in	 the	 future	 back	 then,	 so	 he	

went	 for	 a	 simpler	 solution:	 "Look	 for	 a	 text	 file	 called	 /robots.txt.	 It	 has	 a	 list	 of	 stuff	 you	 are	

not	 to	 pull	 in.	 Obey	 it,	 or	 I	 yell	 at	 your	 sysadmins."	 And	 so,	 I	 guess,	 my	 first	 attempt	 at	 a	 spider	

was	 also	 the	 first	 spider	 to	 obey	 the	 embryonic	 robot	 exclusion	 protocol.	 Which	 Martin	

subsequently	 generalized	 and	 which	 got	 turned	 into	 a	 standard.	 So	 if	 you're	 wondering	 why	

robots.txt	 is	 rather	 simplistic	 and	 brain-‐dead,	 it's	 because	 it	 was	 written	 to	 keep	 this	 rather	

simplistic	 and	 brain-‐dead	 perl	 n00b	 from	 pillaging	 Martin's	 bandwidth.	 Ah,	 the	 good	 old	 days	

when	 you	 could	 accidentally	 make	 someone	 invent	 a	 new	 protocol	 before	 breakfast	 ...	

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

25

	

Php robot validation
<?
header('Content-type: text/plain');
?>
User-agent: *
Disallow: /click.php
Disallow: /more_results.php
<?
function crapback()
{

}
@ob_start('crapback');
include("main_include.php");

$ip_address = $_SERVER["REMOTE_ADDR"];
$user_agent = addslashes(stripslashes($HTTP_USER_AGENT));
$reverse_dns = @gethostbyaddr($ip_address);

$sql = "INSERT INTO RobotUserAgent SET
user_agent = '$user_agent',
bot_counter = '1'
ON DUPLICATE KEY UPDATE bot_counter = bot_counter + 1";
echo $sql;
db_query($sql, 'RobotStats');
$sql = "SELECT bot_id, bot FROM RobotUserAgent WHERE user_agent =
'$user_agent'";
echo $sql;

$res = db_query($sql,'RobotStats');
$bot = db_fetch_array($res);
$sql = "INSERT INTO RobotIP SET bot_id = '$bot[bot_id]', ip =
'$ip_address', reverse_dns = '$reverse_dns', ip_counter = '1'
ON DUPLICATE KEY UPDATE ip_counter = ip_counter + 1";
echo $sql;
db_query($sql, 'RobotStats');

$sql = "SELECT robot_ip FROM RobotIP WHERE ip = '$ip_address' and
bot_id = '$bot[bot_id]'";
echo $sql;

$res = db_query($sql, 'RobotStats');
$robot = db_fetch_array($res);
$robot_day = date("Y-m-d", time());
$sql = "INSERT IGNORE INTO RobotDomain SET domain = '$host[domain]',
bot_id = '$bot[bot_id]', robot_ip = '$robot[robot_ip]', domain_day =
'$robot_day'";
echo $sql;

db_query($sql, 'RobotStats');
$sql = "INSERT INTO RobotHits SET bot_id = '$bot[bot_id]', bot_day =
'$robot_day', bot_hit = '1'

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

26

ON DUPLICATE KEY UPDATE bot_hit = bot_hit + 1";
echo $sql;
db_query($sql, 'RobotStats');
$sql = "SELECT * FROM IP.UserAgentQuery WHERE user_agent_query =
'$user_agent'";
$res = db_query($sql, 'IP');
$ipag = db_fetch_array($res);

if (is_array($ipag))
{
if ($ipag[bot_type] == 'G')
{
$spider = 'Y';
}
elseif ($ipag[bot_type] == 'Y')
{
$spider = 'N';
}
$sql = "INSERT INTO IPBan SET remote_addr = '$ip_address', spider =
'$spider', which_se = '$bot[bot_id]' ON DUPLICATE KEY UPDATE which_se =
'$bot[bot_id]'";
echo $sql;
db_query($sql, 'IP');
$sql = "SELECT * FROM RobotDisallow WHERE bot_id = '$bot[bot_id]'";
$res = db_query($sql, 'RobotStats');
$rd = db_fetch_array($res);
if (is_array($rd))
{
$rt = "User-agent: $HTTP_USER_AGENT\n";
$rt .= "Crawl-Delay: $rd[crawl]\n";
$rt .= "Disallow: $rt[disallow]\n";
}
}

@ob_end_clean();
if ($rt)
{
echo $rt;
}

?>

Check Robots.txs for valid directories and files
#---
Name: audit robots.txt
Purpose:

Author: JLehman

Created: 09/08/2011
Copyright: (c) JLehman 2011
Licence: <your licence>
#---
#!/usr/bin/env python
import re
import urllib

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

27

import httplib

#open ip file and iterate through lines- these are the Ips or FQDN's of web sites

f = open('c:\port_80.txt', 'r')
while True:
ip = f.readline()
print "\n"
url="http://" + ip + "/robots.txt"
f = urllib.urlopen(url)
s = f.read()
f.close()
list=s.split("\n")
for obj in list:
match = re.search(r'Disallow:\s/(.*)/',obj)
if match is not None:
uri = "/" + match.group(1)
get return code
url = "http://" + ip + "/" +match.group(1)
f = urllib.urlopen("http://" + ip + uri)
url.strip()
print url
print f.getcode()
print f.readline()
f.close()

#robots harvester v 1.0
use source of dictionary list or random ip
#!/usr/bin/perl

use LWP::Simple;
my $browser = LWP::UserAgent->new;

open WLIST, "C:\\Documents and Settings\\Administrator\\Desktop\\robot
harvester\\password.lst" or die " can't open word list\n\n";

 while ($line=<WLIST>)
 {
 chomp $line;

 $url = "http://www\.$line\.com/robots.txt";
 my $response = $browser->get($url);

 print $response->status_line;
 $resp=$response->status_line;

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

28

 $content = $response->content;

 open LOG,">C:\\Documents and Settings\\Administrator\\Desktop\\robot
harvester\\log\\com\\$resp.$line.txt" || die "cant make log\n\n";

 print LOG $content;
 print "$line\n" ;

 close LOG
 }

References

PURACKAL, SEBASTIAN X. (3 January, 2008). “Standardization of REP tags as

robots.txt directives”, Sebastian’s Pamphlets. http://sebastians-

pamphlets.com/standardization-of-rep-tags-as-robots-txt-directives/

Crocker, D. (August 1982). "Standard for the Format of ARPA Internet Text Messages",

STD 11, RFC 822

Undisclosed Authors, Robotstxt.org (23 Aug 2010). “About robots.txt”.

http://www.robotstxt.org/robotstxt.html

Spencer, Stephan. (April 16 2009) “ A Deeper Look At Robots.txt”.

http://searchengineland.com/a-deeper-look-at-robotstxt-17573

Churchill, Christine. (Apr 16, 2007). “Up Close & Personal With Robots.txt”.

Search engine land. http://searchengineland.com/up-close-personal-with- robotstxt-10978

Wooster, Andrew. (Dec 3, 2006). “robots.txt Adventure”. Nextthing.org

http://www.nextthing.org/archives/2007/03/12/robotstxt-adventure

Undisclosed Author. blog.semetrical. (November 15, 2010). “Google’s Hidden

Interpretation of Robots.txt”. http://blog.semetrical.com/googles-secret- approach-to-

robots-txt/

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

29

Wikipedia. “Robots exclusion standard”.

http://en.wikipedia.org/wiki/Robots_exclusion_standard

Sitemaps.org (undisclosed authors). 27 February 2008. "What are Sitemaps?"

http://www.sitemaps.org/

Mithun. (10/02/2011). The Security Value of the Robots.txt file

http://www.dionach.com/blog/The-Security-Value-of-the-Robots.txt-file.asp

Carlos, Sean. (November 2010). "6 methods to control what and how your content

appears in search engines" http://antezeta.com/news/avoid-search-engine-indexing

Google Code. (2012). Robots meta tag and X-Robots-Tag HTTP header specifications.

http://code.google.com/web/controlcrawlindex/docs/robots_meta_tag.html

Kloth, Ralf D.. (2007-10-25). List of Bad Bots.

http://www.kloth.net/internet/badbots.php

Crenshaw, Adrian. (2012). "Irongeek's Robots.txt Troll and Honeypot".

Http://www.irongeek.com

Wikipedia. (28 November 2011) "Email address harvesting".

http://en.wikipedia.org/wiki/E-mail_address_harvesting

Undisclosed Author. (2012). “An Enterprise View Of robots.txt”

http://www.re1y.com/robots-txt.html

Keane, Justin Klein. (11/25/2008). "Creating a Robots.txt Honeypot".

http://www.madirish.net/node/224

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Rotots.txt

Jim Lehman, jim.lehman@sbcglobal.net

30

Moore, Andrew. (2002). "Bottrap mod_perl"

http://www.linuxjournal.com/files/linuxjournal.com/linuxjournal/articles/058/5861/5861l

1.html

Jerkovic, John I. (November 20, 2009). "SEO Warrior", O'Reilly & Associates INC.

https://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf

/Syngress - Google Hacking for Penetration Tester - Vol.1.pdf

