
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Wireless Penetration Testing and Ethical Hacking (Security 617)"
at http://www.giac.org/registration/gawn

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gawn

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

An Inexpensive Wireless IDS using Kismet and OpenWRT

GAWN Gold Certification

Author: Jason Murray, jmurray@disillusion.ca

Adviser: Rick Wanner

Accepted: April 15, 2009

Jason Murray 1

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

Table of Contents

1Abstract .. 4

2Background .. 6

3Existing Work ... 8

4Architecture ... 9

5Concept of Operations ... 11

6Installation and Configuration ... 12

Choosing the Right Firmware .. 13

Flashing OpenWRT from the Linksys firmware .. 14

Connecting to OpenWRT .. 17

Installing and Configuring kismet_drone ... 19

Installing and Configuring kismet_server .. 22

7Operating .. 27

8Challenges and Issues ... 30

9Future Directions .. 30

10Summary .. 31

Jason Murray 2

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

11References ... 34

12Appendix – Start-up and Configuration Files ... 36

OpenWRT Start-Up and Configuration Files ... 36

OpenBSD Start-Up Commands and Configuration Files 40

Jason Murray 3

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

1 Abstract

Wireless networks are everywhere these days. Enterprises large and small are setting

up 802.11 wireless networks for numerous reasons including employee convenience,

avoiding wiring costs, providing connectivity in warehouses, and courtesy access for guests,

to name a few. In many cases enterprises are allowing critical business applications on the

wireless network. Long gone are the days when wireless networking was just a toy for home

use, or a convenience for customers at Starbucks.

The discipline of network security has as one of its goals the protection of critical

business network traffic. There are a number of preventative methods that can be employed

to ensure that a network is designed well, but attackers will still attempt to exploit weaknesses

to gain access to important business data and systems. A technique that was developed over

25 years ago, intrusion detection, has been useful in monitoring the network for suspicious,

possibly malicious traffic and raising the alarm when it is found. Intrusion detection systems

(IDS), and their related cousins, intrusion prevention systems (IPS), have found wide spread

adoption and use in many enterprise networks, whether small, medium or large.

Traditional IDS/IPS solutions focus on layer 3 and above threats. This implicit trust of

layer 1 and layer 2 is not unwarranted as to gain access to the physical cabling plant and

access a data port you either have to compromise the physical security or be an employee.

However, 802.11 wireless networking is a different proposition. Indeed a wireless network has

all the same threats against it at layer 3 and above, but it is also exposed to a unique set of

threats at layers 1 and 2. This is inherent in the technology as it makes use of the

electromagnetic spectrum in the radio frequency (RF) range as the common medium over

which stations connect to the network. This necessarily exposes layers 1 and 2 to anyone

Jason Murray 4

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

who is within the RF range of the network. Traditional IDS/IPS systems don’t monitor for

these kinds of threats.

Capable IDS/IPS is available for 802.11 specific needs, notably from AirDefense

(recently purchased by Motorola), Cisco, AirMagnet and Aruba, but deployment is prohibitive

for small and medium enterprises for a number of reasons. Cost is one of the main factors.

The investment needed in equipment alone is prohibitive let alone the staffing levels and

training necessary to configure, monitor and respond to raised alarms. Because of this many

small and medium enterprises will opt to forego these systems to the detriment of their

wireless network security.

There exists a low cost option. For a minor investment in equipment, the combination

of Kismet on OpenWRT can provide IDS capability. But is it a viable option for small and

medium enterprises? Will small enterprises have staff with the technical ability to install,

maintain and monitor this solution? Are the reported alarms going to be understood by typical

small company staff?

This paper sets out to explore these questions. The capabilities of both OpenWRT and

Kismet will be discussed. A detailed explanation of how to install OpenWRT on a Linksys

WRT54G, including the installation and configuration of Kismet for use as an IDS will follow. A

number of such configured devices will be deployed in the field to gain operation experience

with them. That experience will allow for a discussion on the suitability and application of the

OpenWRT & Kismet combination for small and medium enterprises. Lastly a look at future

directions will provide some ideas for where the solution’s weaknesses can be improved.

Jason Murray 5

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

2 Background

The Linksys WRT54G is an inexpensive residential network device capable of

operating as a wireless access point (AP) that communicates over both 802.11b and 802.11g.

These devices are popular and have undergone a number of revisions. In January 2006

revision 5 was released, moving the firmware from Linux to VxWorks, and reducing the

memory (both flash and RAM). This reduction in memory made the platform incapable of

running 3rd party firmware. However Linksys has re-released revision 4 under the name

WRT54GL (Wikipedia, 2009). However, lack of commercial availability does not present a

problem because even if a pre-revision 5 can not be found at a local computer store, they are

widely available on eBay, typical selling price is in the $50-$60 range. There are a number of

different revisions of the WRT54G available and OpenWRT works with all the revisions of the

WRT54G prior to revision 5. There are however slight differences in the necessary

configuration needed for each revision and these will be noted where appropriate. The

equipment used by the author is revision 1.1.

The WRT54G ships with a firmware that limits customization. It meets many of the

basic needs for home networks, including acting as a dhcp server, dns forwarding, primitive

firewalling, network address translation (NAT), and wireless configuration without security or

with WEP, WPA and WPA2 (Cisco, 2009). However, there is no way with the standard

firmware for a technologically savvy user to expand the use of the platform beyond what is

provided out of the box.

OpenWRT is a Linux based embedded platform initially targeted at the Linksys

WRTG54, but now targets many embedded wireless devices including equipment from Asus,

D-Link, NetGear, Soekris, Viewsonic and of course Linksys. Basically any equipment with

Jason Murray 6

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

adequate flash memory and RAM that uses the Infeon ADM5120, TI AR7, Intel IXP4xx series,

or the Broadcom BCN63xx series, can typically run OpenWRT (OpenWRT, 2008). The

functionality may be limited in some instances, depending on the equipment in the device.

Support for these other hardware platforms implies that the approach taken in this

paper could be applied to other equipment, even that supporting other 802.11 modes such as

802.11a and 802.11n. This is not explored in this paper. Operation over 802.11b and 802.11g

was seen as sufficient to prove whether the concept was sound or not.

While OpenWRT is a “stripped down” version of Linux, in the sense that it does not

provide a complete desktop experience, it still provides much of the functionality expected

from a modern Linux distribution. Space on embedded devices is a very real constraint,

because of this OpenWRT uses BusyBox as the shell environment. BusyBox embeds many

of the common command line tools so a distribution does not have to provide individual

executables. This cuts down on the space requirements needed allowing OpenWRT to

provide a near complete Linux experience on devices with limited space (Anderson, 2008).

For software that is not included as part of the standard OpenWRT image, OpenWRT

also supports ipkg. Ipkg is a packaging system similar in nature to other better known

solutions such as Red Hat’s .rpm and Debian’s .deb. A distributed package repository is

available for ipkg packages. This is how Kismet, as well as some other supporting software,

will be installed on the WRT54G.

Kismet is an open source 802.11 wireless network analyzer (Kershaw, 2008). It makes

use of the underlying supported hardware to allow an analyst to discover information about

the surrounding networks. Kismet is extremely configurable. It can be configured to hop all

channels and to take a survey of the entire wireless environment, it can be configured to hop

Jason Murray 7

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

a select number of channels to discover the range of a network of interest, or it can be

configured to stay on one channel in order to collect traffic in a dedicated fashion. Kismet is

completely passive in its operation unlike other tools such as NetStumbler or inSSIDer.

Kismet’s architecture is distributed. It has a server component and a client component that

can be operated on different machines. There is also a drone component that can be used as

a remote listening device sending traffic back to a central server. It is available for Linux, Mac

OS X, and Windows. OpenWRT supports kismet on the WRT54G platform.

3 Existing Work

The best known work for getting Kismet up and running on OpenWRT is written by

Renderman (Renderman, 2005). This work is somewhat dated, as can be inferred by the

versions of OpenWRT and Kismet referenced, but the concepts still apply. Some small

modifications to his instructions were needed. There are other guides similar to Renderman’s

(Nugroho, 2005) (Intoverflow, 2008) but they all refer to his and do not make any substantial

additions to the concepts.

Because OpenWRT can be installed on other hardware there are some pages that

provide instructions on how to get kismet operating as a drone on that hardware. One page in

particular describes how to do this with the Ubiquiti NanoStation 2 (Intoverflow, 2008). It

provides very complete instructions including how to compile and package OpenWRT rather

than relying on the provided installation packages.

In 2005 there was an effort to combine Kismet’s ability to capture packets with the

Snort IDS. This was the now defunct Snort Wireless project (Lockhart, 2005). The pages for

Snort Wireless are still available; however the last post is from 2005 so it can be presumed

Jason Murray 8

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

the project is dead. Follow-up did not indicate that the work from this project was rolled into

the Snort project. Attempt to contact the author of the Snort Wireless project was

unsuccessful.

4 Architecture

Figure 1 - OpenWRT Kismet IDS Architecture provides an overview of the solution

architecture.

Figure 1 - OpenWRT Kismet IDS Architecture

The envisioned use is to provide a monitoring capability to small and medium

enterprises that can not afford the wireless IDS offerings such as those from AirDefense and

AirMagnet. The architecture will look much the same as those solutions, however. A network

environment has some legitimate access points (AP) that are being used by wireless users.

Jason Murray 9

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

Commercial solutions can either make use of existing “live” APs that handle user traffic by

essentially stealing air time from legitimate clients, or you can deploy dedicated IDS sensors.

In our solution there are some Kismet drone sensors placed throughout the environment. This

increases the number of APs that ultimately need to be deployed, but the tradeoff is a

dedicated IDS capability. It should be noted that the number of drones needed will be much

less than the number of active APs because the drones are only listening to traffic and require

much less power to do so.

The Kismet drone(s) are connected to the Kismet server and send wireless traffic over

the network to the server. Using drones spread throughout the company’s location, all

reporting back to one centralized server allows for good IDS coverage of the network and

surrounding area, without having to monitor numerous individual devices.

The administrator uses the Kismet client to connect to the Kismet server to monitor the

information captured from the Kismet drones in the field. This interactive use provides the

typical Kismet user experience; allowing viewing of observed networks, the details of those

networks, traffic captured from those networks, etc. It also provides for a centralized window

of any alerts that Kismet detects. Due to limitations in the WRT54G hardware the normal

ability to control channel locking and hopping is not available. Channel hopping is controlled

locally on the Kismet drones.

Interactive use is not envisioned to be the normal use. The Kismet server can be run

as a daemon and the alerting sent to the system logging services. Multilog, a component of

the daemontools developed by Daniel J. Bernstein was chosen for its ease of use and

familiarity on the part of the author. Multilog is used to capture all “ALERT” messages from

the daemonized Kismet server process. Swatch (The Simple WATCHer of Logfiles) is the

Jason Murray 10

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

used to further reduce and refine the logging that is captured allowing for meaningful alerting

to be triggered for events of interest.

The end result is that the Administrator can be notified of any wireless events of

interest (DoS, rogue APs, etc.) via email or SMS without needing to monitor an interactive

Kismet client.

5 Concept of Operations

There are two primary threats that we are concerned with. The first being attacks from

an actively malicious user; these could be a denial of service attack, active attempts to

amplify traffic (arp replay) or break encryption (chop-chop). The second threat is that of rogue

APs. These could be misconfigured APs connected to the company network, non-approved

APs connected to the network by employees or attackers, or malicious APs not connected to

the company network attempting to entice clients to associate preferentially with them.

The typical detection scenario proceeds as follows. An attacker or rogue AP will

generate traffic over the air that the nearest Kismet drones will receive. It is possible that

multiple drones will receive the malicious traffic. It is also possible that a drone will not detect

the malicious traffic at all due to not monitoring the appropriate channel during the time of

attack. This is because Kismet (and other commercial IDSs) hops from channel to channel

listening for interesting traffic. While it is possible to listen to all channels concurrently this

would require a device with one radio for each channel, this is cost prohibitive and no solution

taking this approach is available commercially or otherwise. The hope is that as the drone

hops channels it will eventually observe the malicious traffic. However it is possible that a

stealthy (and lucky) attacker could guess the channel hopping pattern and completely avoid

Jason Murray 11

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

being detected. This is not considered a likely possibility. The Kismet server will collect the

traffic from the connected drones and detect the potential attack. An alert will be triggered and

the administrator will be notified, whether via interactive console or automated monitoring.

The alerts that Kismet generates for the different attack are covered elsewhere in this

document.

This solution, unlike some commercial offerings, does not provide any active response

to attacks or containment of rogue APs. The administrator will still have to track down the

attacker or rogue AP and deal with the situation manually. While it is possible to add this

capability to OpenWRT this was not undertaken for this paper.

6 Installation and Configuration

The documentation available on the OpenWRT site and elsewhere on the internet

about performing installation and configuration of the WRT54G (and other hardware) with

OpenWRT and Kismet is often out of date and consequently inaccurate. Additionally the

documentation on the OpenWRT site covers both the previous (White Russian) and current

(Kamikaze) release occasionally without any way to tell which version is being discussed.

This section is an attempt to remedy that for the WRT54G rev 1.1 hardware when installing

OpenWRT Kamikaze.

Procure a WRT54G (or other hardware supported by the OpenWRT project). It will

likely be running the default Linksys firmware. It is possible that it might be running the DD-

WRT 3rd party firmware.

Jason Murray 12

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

Choosing the Right Firmware

In order to change the firmware on the WRT54G (or other hardware) it is necessary to

download the appropriate firmware from the OpenWRT site. Determining which firmware to

download requires checking with the Table of Hardware (OpenWRT, 2008) and determining

which device and revision you have. Find the manufacturer and click through to the

manufacturer page. On the manufacturer page (OpenWRT, 2008) find the specific product

and click through to the details page in the very right hand column of the table, labeled

“Status”. (If you click on the product name in the left most column this will take you to the

product’s webpage and the manufacturer’s site, not where you want to go.) In our case we

have a Linksys WRT54G rev 1.1 (OpenWRT, 2008). The OpenWRT details page provides

extensive information about the hardware including which OpenWRT release is supported,

hardware specifications, how to set up serial port and JTAG connections, etc. What we are

concerned with is discovering which vendor manufactured the wireless chip. Somewhere on

the information page there will be a list of hardware specifications including the CPU

architecture, vendor, speed, and the wireless chipset used. In our case the chip in use is the

Broadcom BCM43xx. If you can not find the information on the OpenWRT website, Wikipedia

often has the relevant information (Wikipedia, 2009)

With this piece of information you can then you can go to the download section of the

OpenWRT website. This is accessed from the “Downloads” link on the front page of the

OpenWRT website (OpenWRT, 2008). Choose the latest version, 8.09 as of this writing, and

then select the version that matches the wireless chipset used by your hardware; in our case

brcm-2.4. In this directory there will be a number of files available for download. One will be

a .trx and the rest .bin. The .trx file is the firmware in “raw” format exactly as it will be written

to flash. The various .bin files are simply the .trx file with a small header added to mark them

Jason Murray 13

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

as valid upgrades for a given vendor. E.g. openwrt-brcm47xx-squashfs.trx is the raw firmware

image file, and openwrt-wrt54g-squashfs.bin has a header added to allow the built-in Linksys

firmware to recognize it as a valid upgrade. The OpenWRT site recommends using the .bin

files only when the .trx file does not work (OpenWRT, 2008). It was found that in order to

upload the .trx file to the WRT54G the extension of the firmware needed to be changed

from .trx to .bin or the Linksys firmware would not allow it to be uploaded.

Flashing OpenWRT from the Linksys firmware

Connect your WRT54G to power and to the wired network. Then connect to the

configuration interface with your web browser. The default URL is https://192.168.1.1 with a

default blank username and a password of admin. If you are using a device that is not set to

factory defaults enter the correct username and password to log in. You will be presented with

a self-signed certificate warning. You will have to accept this and allow the connection to

proceed. In Firefox (the author’s preferred browser) you do this by adding a security

exception. This exception can be temporarily allowed for only this session, as the new

firmware will replace the certificate presented to the browser. Other browsers will have similar

methods to accept the self-signed certificate and continue loading the page.

Figure 2 - Self Signed Certificate Warning

Jason Murray 14

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

You will be presented with the following web page once you accept the self-signed

certificate warning.

Figure 3 - Linksys Setup Page

From this page it will be necessary to navigate to the firmware upgrade page by

clicking on the Administration tab (top right) then the Upgrade Firmware tab. This should

present the following page.

Jason Murray 15

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

Figure 4 - Linksys Firmware Upgrade Page

Select the Browse button and select the firmware file previously downloaded.

Jason Murray 16

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

Figure 5 - Linksys Firmware Upload Progress Monitor

Once the firmware is uploaded and flashed the WRT54G will reboot into OpenWRT.

Connecting to OpenWRT

A freshly installed OpenWRT device will be listening for a login via telnet at the default

IP address of 192.168.1.1. There will be no password set at this point (OpenWRT, 2008).

Change the password with the passwd command. This will also disable telnet and enable ssh

access to the device.

telnet 192.168.1.1

Jason Murray 17

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.
 === IMPORTANT ============================
 Use 'passwd' to set your login password
 this will disable telnet and enable SSH
 --

BusyBox v1.00 (2006.03.24-09:16+0000) Built-in shell (ash)
Enter 'help' for a list of built-in commands.

 _______ ________ __
 | |.-----.-----.-----.| | | |.----.| |_
 | - || _ | -__| || | | || _|| _|
 |_______|| __|_____|__|__||________||__| |____|
 |__| W I R E L E S S F R E E D O M
 WHITE RUSSIAN -------------------------------------
 * 2 oz Vodka Mix the Vodka and Kahlua together
 * 1 oz Kahlua over ice, then float the cream or
 * 1/2oz cream milk on the top.

root@OpenWrt:~# passwd
Changing password for root
Enter the new password (minimum of 5, maximum of 8 characters)
Please use a combination of upper and lower case letters and numbers.
Enter new password:
Re-enter new password:
Password changed.
root@OpenWrt:~#

Once the password is set we can proceed to configure the network interfaces

appropriately (OpenWRT, 2008). In our case we simply want to assign an IP address to the

LAN interface as well as a default gateway and dns server. This configuration is stored in the

/etc/config/network file. In the config interface lan section set option ipaddr, option

netmask, option gateway and option dns appropriately.

root@kismet-drone1:~# cat /etc/config/network
VLAN configuration
config switch eth0
 option vlan0 "1 2 3 4 5*"
 option vlan1 "0 5"

Loopback configuration

Jason Murray 18

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

config interface loopback
 option ifname "lo"
 option proto static
 option ipaddr 127.0.0.1
 option netmask 255.0.0.0

LAN configuration
config interface lan
 option type bridge
 option ifname "eth0.0"
 option proto static
 option ipaddr 192.168.1.7
 option netmask 255.255.255.0
 option gateway 192.168.1.2
 option dns 192.168.1.2

WAN configuration
config interface wan
 option ifname "eth0.1"
 option proto static

Restart the networking services with the following command: /etc/init.d/network

restart. This will disconnect you from the WRT54G. You will have to reconnect this time

using ssh. Make sure to use the –l option to specify the local user to login in as.

$ssh -l root 192.168.1.7
root@192.168.1.7's password:

BusyBox v1.4.2 (2007-09-29 09:01:24 CEST) Built-in shell (ash)
Enter 'help' for a list of built-in commands.

 _______ ________ __
 | |.-----.-----.-----.| | | |.----.| |_
 | - || _ | -__| || | | || _|| _|
 |_______|| __|_____|__|__||________||__| |____|
 |__| W I R E L E S S F R E E D O M
 KAMIKAZE (7.09) -----------------------------------
 * 10 oz Vodka Shake well with ice and strain
 * 10 oz Triple sec mixture into 10 shot glasses.
 * 10 oz lime juice Salute!

root@kismet-drone1:~#

Installing and Configuring kismet_drone

Now that we have a working network configuration we can install the kismet_drone

Jason Murray 19

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

package (as well as some supporting software). We will be using the publicly available ipkg

repository. First we should update the repository files so we are sure to fetch and install the

latest version of Kismet and wl (Renderman, 2005).

ipkg update

ipkg install kismet_drone wl

wl is a command line tool for managing the radio interface of the WRT54G it can make

some tasks easier to perform than using ifconfig/iwconfig directly.

Kismet_drone will install its configuration files in /etc/kismet. We will make some

modifications to /etc/kismet/kismet_drone for our setup. This includes allowing the Kismet

server to connect to the drone, and which radio source kismet_drone should use. (Kershaw,

2008)

The IP address of the Kismet server must be permitted to connect. 192.168.1.2 is our

kismet_server.

People allowed to connect, comma seperated IP addresses or network/mask
blocks. Netmasks can be expressed as dotted quad (/255.255.255.0) or as
numbers (/24)
allowedhosts=127.0.0.1,192.168.1.2

The correct source for rev 1.1 hardware is prism0 not eth1 or eth2 as indicated in the

supplied kismet_drone.conf file and the Renderman documentation. (Renderman, 2005)

(Harry66, 2008)

To enable multiple sources, specify a source line for each and then use the
enablesources line to enable them. For example:
source=prism2,wlan0,prism
source=cisco,wl0,cisco
#source=wrt54g,eth1,wireless
For v1 hardware uncomment this:
source=wrt54g,prism0,wireless

However there is a catch with the wireless source. It is not available immediately after

Jason Murray 20

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

boot. Some extra work has to be done to force it to become available. This may seem

excessive to force the prism0 source to be available but after testing it was determined that

this represents the minimal number of commands needed. If hardware other than the Linksys

WRT54G is used, it is likely that some experimentation will need to be done to discover what

the wireless source is and if any special commands are needed to bring it online.

ifconfig wl0 up
iwconfig wl0 mode Monitor channel 1 txpower 5mW
ifconfig wl0 down
ifconfig wl0 up
iwconfig wl0 mode Monitor channel 1 txpower 5mW

With a valid and functioning wireless source we can start kismet_drone:

/usr/bin/kismet_drone -f /etc/kismet/kismet_drone.conf

Normally kismet will handle the channel hopping necessary for a wireless IDS to view

the traffic on all channels. In the case of the chipset on the WRT54G kismet cannot do this

(Renderman, 2005). So instead a script must be used to force the wireless radio to change

channel on a periodic basis. Aside from having to reimplement one of kismet’s features, there

is one further shortcoming of this approach. Kismet by default will change channels five times

a second, using a script we have to dwell on a channel for one second as the shell’s sleep

command’s shortest interval is one second. The script is run once per minute from cron. The

channel hopping script will move to a new channel each second visiting all channels in 11

seconds. It will do this 5 times in 55 seconds leaving 5 seconds for 5 more hops. Channels 1,

6, and 11 are hopped to again in these 5 seconds. While it is possible to develop a more

sophisticated and balanced hopping algorithm it was felt that given most APs are using one of

those channels by default this was a good compromise between simplicity and channel

coverage. The full script is:

root@kismet-drone1:/etc/init.d# cat /usr/bin/freqhop.sh
#!/bin/sh /etc/rc.common

Jason Murray 21

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

Copyright 2009 Jason Murray

for i in 1 2 3 4 5 ; do
 wl channel 1 ; sleep 1
 wl channel 6 ; sleep 1
 wl channel 11 ; sleep 1
 wl channel 2 ; sleep 1
 wl channel 7 ; sleep 1
 wl channel 3 ; sleep 1
 wl channel 8 ; sleep 1
 wl channel 4 ; sleep 1
 wl channel 9 ; sleep 1
 wl channel 5 ; sleep 1
 wl channel 10 ; sleep 1
done
this will get us to 55 seconds
so 5 more hops to get us to a minute
unfortunately we stay on some channels more frequently

wl channel 1 ; sleep 1
wl channel 6 ; sleep 1
wl channel 11 ; sleep 1
wl channel 6 ; sleep 1
wl channel 11 ; sleep 1

As mentioned this is run from cron once per minute.

root@kismet-drone1:/etc/init.d# crontab -l

* * * * * /usr/bin/freqhop.sh

Installing and Configuring kismet_server

As discussed in Section 4 – Architecture the kismet_drones send their traffic to a

centralized Kismet Server. Kismet_server is supplied as part of the Kismet package and is

available for common versions of Linux, *BSD, Mac OS X, and even Windows. It is left as an

exercise for the reader to determine the correct installation commands for their preferred

server platform. The Author uses OpenBSD and Kismet is available as a pre-built package.

To fetch and install Kismet on OpenBSD issue the following command:

pkg_add kismet

Jason Murray 22

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

Using kismet_server with kismet_drones requires the use of a “kismet_drone” source in

the configuration file rather than a more typical wireless driver source (Kershaw, 2008). The

configuration files for Kismet on OpenBSD are in /etc/kismet. Kismet.conf is the file that

contains the configuration of the sources. Edit the kismet.conf file and find the source

section. Set the source line similar to the following:

Sources are defined as:
source=sourcetype,interface,name[,initialchannel]
Source types and required drivers are listed in the README under the
CAPTURE SOURCES section.
The initial channel is optional, if hopping is not enabled it can be used
to set the channel the interface listens on.
YOU MUST CHANGE THIS TO BE THE SOURCE YOU WANT TO USE
OpenBSD examples:
a/b: source=radiotap_bsd_ab,ath0,radiotap_bsd_ab
b: source=radiotap_bsd_b,ipw0,radiotap_bsd_b
b (wi(4)) source=prism2_openbsd,wi0,prism2_openbsd
source=kismet_drone,192.168.1.7:3501,drone1
source=kismet_drone,192.168.1.8:3501,drone2

Replace 192.168.1.7 and 192.168.1.8 with the IP addresses of your kismet_drones.

You are not limited to two drones, you can have as many as you’d like, just be sure to place

each drone source on a separate line. Ensure that the kismet_drones are online and allowing

connections from our server or the server will not start up because it cannot connect to all its

sources.

Before we can start kismet_server we have to make sure that multilog is installed.

Multilog is a component of Daniel J. Bernstien’s daemon tools. Daemontools are not available

as a package for OpenBSD, but may be for your preferred server OS. If they are not,

daemontools is relatively easy to compile and install from source. (Bernstein, 2009)

Start kismet_server with the following command:

/usr/local/bin/kismet_server 2>&1 | multilog -* +ALERT*

/var/log/kismet/alerts &

Jason Murray 23

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

This will start only the kismet_server component and redirect both stdout and stderr to

multilog. Multilog, given the options above, will only capture lines starting with ALERT and put

them in the current file in the /var/log/kismet/alerts directory. Ensure that

/var/log/kismet/alerts exists before starting the server. After a while the log files will grow

large enough for multilog to rotate them. A sample directory listing is:

ls -l /var/log/kismet/alerts/
total 1908
-rwxr--r-- 1 root _kismet 98052 Feb 18 07:19 @40000000499bfce50dc64c6c.s
-rwxr--r-- 1 root _kismet 98000 Feb 19 01:33 @40000000499cfd4d11e9af8c.s
-rwxr--r-- 1 root _kismet 98105 Feb 19 16:52 @40000000499dd4bc2a918f64.s
-rwxr--r-- 1 root _kismet 98049 Feb 20 00:36 @40000000499e417428f71d2c.s
-rwxr--r-- 1 root _kismet 98048 Feb 20 10:39 @40000000499eced40688cc54.s
-rwxr--r-- 1 root _kismet 98079 Feb 20 20:28 @40000000499f58d90245f66c.s
-rwxr--r-- 1 root _kismet 98022 Feb 21 07:38 @40000000499ff5b917601ba4.s
-rwxr--r-- 1 root _kismet 98066 Feb 21 16:10 @4000000049a06de5071c751c.s
-rwxr--r-- 1 root _kismet 98066 Feb 21 23:23 @4000000049a0d32e3b2d392c.s
-rw-r--r-- 1 root _kismet 92019 Feb 22 10:05 current
-rw------- 1 root _kismet 0 Feb 5 09:04 lock
-rw-r--r-- 1 root _kismet 0 Feb 5 09:12 state

Below is a sample of content from current file.

head /var/log/kismet/alerts/current

ALERT Sat Feb 21 23:24:39 2009 Suspicious client 00:21:5C:2E:72:9D - probing
networks but never participating.

ALERT Sat Feb 21 23:24:57 2009 Suspicious client 00:1B:11:C1:65:5D - probing
networks but never participating.

ALERT Sat Feb 21 23:25:01 2009 Suspicious client 00:1F:3C:A2:DD:4A - probing
networks but never participating.

ALERT Sat Feb 21 23:25:09 2009 Suspicious client 00:14:A5:DA:DC:F2 - probing
networks but never participating.

ALERT Sat Feb 21 23:26:01 2009 Suspicious client 00:11:F5:15:FF:C6 - probing
networks but never participating.

ALERT Sat Feb 21 23:26:13 2009 Suspicious client 00:13:E8:48:BE:1B - probing
networks but never participating.

ALERT Sat Feb 21 23:26:50 2009 Suspicious client 00:21:5C:2E:72:9D - probing
networks but never participating.

ALERT Sat Feb 21 23:26:53 2009 Suspicious client 00:1B:11:C1:65:5D - probing
networks but never participating.

The “probing networks but never participating” ALERT is a common one and not very

Jason Murray 24

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

useful, this will be discussed further in section 7 Operating.

At this point the system is capturing all the issues that Kismet ALERTS on. This

information can be found in the Kismet Readme file (Kershaw, 2008). This logging information

can be fed to any of a number of log monitoring tools or security information management

tools. We will use Swatch: The Simpler WATCHer as our log monitoring tool (SWATCH,

2007). Swatch has a long history in the computer security field. Swatch is highly configurable

both in what it can watch for and in how it can notify administrators when something is

noticed. Various thresholds can bet set so that a notification will only be sent if a certain log

message is seen X times in Y minutes. These thresholds are highly configurable and can be

set to monitor a substring in a given log message. This way we can watch for a particular

client or AP causing an ALERT rather than having to watch all ALERTs of a particular type.

The high granularity of what to watch for is major benefit of using SWATCH. SWATCH also

allows for a number of options in how notification can be sent. The log message can be

echoed to the screen, sent to users if they are logged in to the machine, emailed to numerous

people, and sent to another command for further processing (SWATCH, 2008).

Swatch is available as a package on most Linux and *BSD variants, including

OpenBSD. It can be installed with the following command:

pkg_add swatch

The configuation file is for swatch is ~/.swatchrc (~ representing the user’s home

directory) and is specific to the user invoking the swatch command rather than a system-wide

configuration. This allows multiple users of a system to customize how they want SWATCH to

behave. In our situation we will only be using one instance of SWATCH to watch the Kismet

ALERT logs and notify the administrator of any interesting events. (Kershaw, 2008)

Jason Murray 25

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

(SWATCH, 2008)

An excerpt from the .swatchrc used is show below:

watchfor /Suspicious client ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:
[0-9A-F]{2}:[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=5,seconds=13200
 mail "nobody@example.com",subject="Suspicious Client"

watchfor /Out-of-sequence BSS timestamp on ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]
{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=1,seconds=300
 mail "nobody@example.com",subject="Potential AP Spoof"

This will watch for the “Suspicious client” ALERT and track threshold information based

on the “suspicious” client MAC address. An email will be sent once for each “suspicious”

client that is noticed 5 times in each 3 hours and 20 minute window. The threshold resets

after this time and if the “suspicious” client is notice 5 more times another email is sent. It will

also watch for “out of sequence BSS timestamps” tracking threshold counts based on the

BSS MAC address. An alert will sent for each detected potential spoof if one out of sequence

message is detected in a 5 minute window. The full .swatchrc contains configuration for all

ALERT messages of interest and is included in the Appendix. The threshold counts and times

are the main avenue for configuration.

Execute SWATCH from command line with the following:

swatch --config-file /root/.swatchrc --tail-file

/var/log/kismet/alerts/current

Provide the full path to the .swatchrc file to the –config-file option, and the actual log

file to watch to the –tail-file option.

At this point we have a fully installed, configured, and functioning wireless IDS system.

However it is not configured to start on reboot of any of the devices. To do this many of the

Jason Murray 26

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

commands listed above will have to be included in the startup scripts of the WRT54G devices

and the Kismet Server platform. Details of the various scripts needed are provided in the

Appendix.

7 Operating

The author deployed the system described above in his residence and operated it over

the course of a few months. The particular system consisted of one kismet_drone and a

kismet_server running on an OpenBSD 4.3 server. The kismet_drone was monitoring two

802.11 networks, one the author’s home wireless network and the other a network used for

detection of various attacks or otherwise used to force Kismet to issue specific ALERTs.

There are very few wireless networks near the author’s house so the amount of

“natural” traffic to test with was minimal. Nevertheless it was instructive to observe what

ALERTs the “background” traffic would generate. The overwhelming majority of ALERTs were

for “suspicious” clients probing but never participating. It is not immediately obvious how

these probes represent a security issue. It is possible that a company with strict wireless

policy might want to know which devices in their environment are probing for wireless

networks so this function can be disabled. Alternatively this might be a way for a company to

identify misconfigured workstations that should be associated with the company wireless

network but are probing for other networks instead. A sample of this alert is below:

ALERT Mon Mar 23 12:45:56 2009 Suspicious client 00:1A:73:02:6D:99 - probing
networks but never participating.

The IDS system has been configured so that only one ALERT of this type per day per

client MAC is being sent to the administrator. This still generated an excessive amount of

Jason Murray 27

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

alerts. Given the questionable value of this ALERT it is likely that this ALERT will be ignored

during day to day operation. It is recommended that this alert be ignored unless a company

needs to monitor if it has probing clients.

Other ALERTs that were occurring in the course of normal operation included:

ALERT Mon Mar 23 03:35:45 2009 Suspicious traffic on 00:19:D2:85:76:A3. Data
traffic within 10 seconds of disassociate.

ALERT Sun Mar 22 19:36:56 2009 Beacon on 00:13:10:A0:68:FE (d-wifi) for
channel 6, network previously detected on channel 5

ALERT Sun Mar 22 22:12:55 2009 Out-of-sequence BSS timestamp on
00:1A:70:FC:C3:4E - got 1920b, expected 177214 - this could indicate AP
spoofing

The first indicates a potential denial of service condition. Under normal operation a

client will not initiate traffic in a relatively short time frame after a disassociation. This is most

likely to occur if the client is being forcibly disassociated under an attack scenario. This can

allow the attacker to impersonate a valid client in network that is a wireless hotspot or

otherwise operating without encryption. This mode of operation is increasing unlikely in

today’s wireless environments but is still possible in an environment with resource

constrained equipment that can not be easily upgraded.

The second indicates that an AP previously seen on one channel has moved to

another. This could be deliberate on the part of the network administrators, in which case the

ALERT would be expected and could be disregarded. This ALERT could appear legitimately

in a few scenarios. One is if a rogue AP is deployed and the attacker attempts to impersonate

the MAC address of a legitimate AP. This is not a typical deployment scenario for a rogue AP.

Another legitimate appearance of this ALERT could be if an attacker gains access to a

legitimate AP and modifies the configuration to change the transmitting channel. Modern

enterprise 802.11 equipment has the ability to change channel automatically when it detects

Jason Murray 28

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

too much noise on its currently configured channel. This behaviour would trigger this alert as

well, but the type of equipment that supports this type of feature comes from the major

enterprise vendors such as Aruba and Cisco, and supports embedded IDS functionality. A

company that can afford a system that has automatic RF management capability is not likely

to be monitoring their wireless environment with the system proposed in this paper.

The third ALERT can indicate AP spoofing. The comments about the channel change

ALERT apply to this one as well. While detecting a spoofed AP is of value it is not a typically

observed attack scenario in today’s wireless environments.

In order to more completely test the system’s capabilities various past and current

attacks were executed. The following attacks were run against both the author’s home

network and a demonstration network used specifically for attacking purposes.

• NetStumbler and inSSIDer

• Traffic injection to crack WEP with Aircrack-ng

• Chop-chop

• Brute force password guessing

In each case Kismet did not issue an alert.

Kismet does have an ALERT that can be issued against NetStumbler but only for

versions 3.22, 3.23, and 3.30 (Kershaw, 2008). The latest version of Netstumbler, which is

still quite old, is 0.4.0. (NetStumbler, 2007) Another newer Netstumbler-like tool called

inSSIDer (MetaGeek, 2009) was tested as well and it did not generate any ALERTs either.

The traffic based attacks were not expected to generate any ALERTs but were tested

in the interest of thoroughness. Kismet does not list any of these attacks as something that it

Jason Murray 29

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

will detect.

8 Challenges and Issues

The main issues have to do with the lack of customizability and extensibility of the

solution. Some components of the solution allow for excellent customizability of what to watch

for, how to apply thresholds, who will be notified and how, etc. But the main part of an IDS

that needs to be easily customizable and extensible are the attacks that will be caught. The

attacks that it will notice, and hence the ALERTs that it will report to an administrator, are hard

coded in the Kismet software source. In addition there are attacks that are not detected by the

system since Kismet has not been extended to watch for these attacks. There was hope that

Kismet’s “newcore” might rectify these issues. But “newcore” is a refactoring of the existing

Kismet code only, (Kershaw, 2008) it does not include any enhancement to the IDS

functionality. The same ALERTs are watched for in “newcore” as in the old code base.

A further challenge with the system as it is currently implemented is that it will only

detect attacks against 802.11b and g networks. No detection is provided for a or n networks.

This is only a practical limitation though as there is nothing in the design concept preventing

the choice of hardware that covers all 4 types of 802.11 networks: a, b, g and n.

9 Future Directions

As its core component this system relies heavily on the features and capabilities of

Kismet. As mentioned in Section 8 Challenges and Issues this presents challenges in

adapting to new attacks. In order to remedy this Kismet would need to be modified to allow it

to be easily adapted to watch for additional attack types. This would allow for the addition of

new and novel attacks to be incorporated as they were encountered in the field. These

Jason Murray 30

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

modifications could be as simple as a set of patches to the existing source code modifying it

to monitor and ALERT on new attacks. Or it could be as extensive as needing rearchitecting

of core components of the Kismet software.

As Kismet is not likely to be rearchitected or patched for these enhancements anytime

soon alternatives should be sought out. There may be a possibility to use the kismet_drone’s

ability to redirect captured packets. These captured packets, once collected by the

kismet_server they could be handed off to an external IDS system, perhaps SNORT, for more

complete inspection.

Beyond simply detecting attacks, the system could be expanded to also perform

prevention and containment. For example in the event of a rogue AP being detected over the

air, a wired side network scan could be started to confirm if it also exists on the company’s

network. If so then spoofed disassociate packets could be sent to affected clients and the

rogue AP to effectively contain the damage until the AP can be physically located and

removed.

10 Summary

The need for an inexpensive capable wireless IDS system cannot be overstated. Not

all companies can afford, nor wish to purchase, the expensive, yet capable, IDS systems from

enterprise network providers such as Cisco, AirDefense (Motorola), AirMagnet and Aruba. Yet

these same companies can purchase and deploy inexpensive wireless networks using

consumer grade hardware. The need exists to provide these same companies the capability

to monitor their wireless networks for attacks.

In this paper we discussed the use of the Linksys 54GL router, OpenWRT, and Kismet

Jason Murray 31

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

as just such an inexpensive wireless IDS system. OpenWRT is an open source 3rd party

firmware for the Linksys 54GL (and other devices) that provides for extensive customization

and enhancement of the router above and beyond the firmware it ships with. OpenWRT

permits for the installation of Kismet on the Linksys 54GL. Kismet has a distributed

architecture that can be used to deploy passive drones throughout a wireless network

coverage area. They all connect back to a central server that can provide centralized packet

capture, monitoring and logging of alerts. Additional software on the server turns this into a

fully functioning, if rudimentary, IDS system for 802.11 wireless networks.

Installation is relatively straightforward but due to inadequate and fragmented

documentation requires quite a bit of research and background knowledge. Section 6

Installation and Configuration is an attempt to remedy this by pulling the various pieces

together in one location.

Operation of the system has shown this solution does perform as intended, as a

distributed IDS that will monitor a wireless LAN for attacks against it. But unfortunately due to

a number of factors the alerts generated cause the solution to be of less value than was

hoped for. Furthermore the majority of alerts are for older denial of service attacks and the

system cannot be updated easily to monitor for newer attacks.

In 1 Abstract this paper poses three questions. Is this system a viable option for small

and medium enterprises? From a cost and availability perspective this system is certainly

viable, however the information to be gained from the system makes it less useful than was

originally hoped for.

Will such enterprises have staff with the necessary skills to install, configure and

operate the solution? The installation is not trivial and a fair bit of knowledge will be needed to

Jason Murray 32

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

get the system operational. This includes at a minimum intermediate level knowledge of

Linux, and wireless networking. A junior system administrator or network engineer would most

likely struggle to get this system operational. The technical skills required to deploy and

operate this solution is reasonably high.

Are the reported alarms going to be understood by these staff? The ALERTs issued

from Kismet require a fairly deep understanding of wireless networking and in particular

wireless network security. Fortunately these ALERTs can be filtered through Swatch in order

to provide more context and explanation before forwarding them on to the ultimate recipient of

the ALERT messages. On the other hand the value of an IDS/IPS system is really only

realized by technical staff that possess good technical skills. An enterprise with weak

technical staff, even if they did understand the ALERTs, might not know how to follow-up on

them.

While the final outcome of this project is less than expected there are promising future

directions that could be taken. The distributed packet capturing ability of Kismet in

combination with a 3rd party IDS can be explored to see if this might provide better IDS

extensibility and customizability. Looking beyond just detection, prevention and containment

abilities could be added to the solution. The extensibility of OpenWRT makes this possible.

Jason Murray 33

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

11 References

Erik Anderson (2008). BusyBox: The Swiss Army Knife of Embedded Linux. Retrieved April 6,

2009, from the BusyBox Web site: http://www.busybox.net/

D. J. Bernstein (2009). The multilog program. Retrieved January 11, 2009, from cr.yp.to Web

site: http://cr.yp.to/daemontools/multilog.html

Cisco (2009). WRT54GL Product Page. Retrieved April 6, 2009, from Linksys by Cisco Web

site: http://www.linksysbycisco.com/CA/en/products/WRT54GL

Harry66 (Jan, 2008). WRT54GSv2 WLAN monitoring. Retrieved February 10, 2009, from

OpenWRT Forums site: http://forum.openwrt.org/viewtopic.php?id=14039

Intoverflow (Nov 14, 2008). OpenWRT and Ubiquiti NanoStation 2. Retrieved January 20,

2009, from Integer Overflow Web site:

http://intoverflow.wordpress.com/2008/11/14/openwrt-and-ubiquiti-nanostation-2/

Mike Kershaw (2008). Kismet. Retrieved January 21, 2009, from the Kismet Web site:

http://www.kismetwireless.net/

Mike Kershaw (2008). Kismet README. Retrieved January 21, 2009, from the Kismet Web

site: http://www.kismetwireless.net/documentation.shtml

Mike Kershaw (2008). Kismet Downloads. Retrieved January 21, 2009, from the Kismet Web

site: http://www.kismetwireless.net/download.shtml

Andrew Lockhart (2005). Snort Wireless. Retrieved December 29, 2008, from Snort Wireless

Web site: http://snort-wireless.org/

MetaGeek (2009). inSSIDer a Wi-Fi network scanner for Windows. Retrieved March 15,

2009, from Meta Geek Web site: http://www.metageek.net/products/inssider

NetStumber (2007). Wirless Networking Tool. Retrieved March 14, 2009, from the

NetStumbler Web site: http://www.netstumbler.com/

Himawan Nugroho (Feb 23, 2005). Kismet on WRT54G the Easiest Way. Retrieved January

Jason Murray 34

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

20, 2009, from Inevitable Web site: http://brokenpipes.blogspot.com/2005/02/kismet-

on-wrt54g-easiest-way.html

OpenWRT (2008). Table of Hardweare. Retrieved December 2, 2008, from OpenWRT Web

site: http://oldwiki.openwrt.org/TableOfHardware.html

OpenWRT (2008). Hardware/Linksys. Retrieved December 2, 2008, from OpenWRT Web

site: http://oldwiki.openwrt.org/Hardware(2f)Linksys.html

OpenWRT (2008). Linksys WRT54G. Retrieved December 2, 2008, from OpenWRT Web

site: http://oldwiki.openwrt.org/OpenWrtDocs(2f)Hardware(2f)Linksys(2f)WRT54G.html

OpenWRT (2008). Kamikaze 8.09 download directory. Retrieved December 3, 2008, from

OpenWRT Web site: http://downloads.openwrt.org/kamikaze/8.09/

OpenWRT (2008). OpenWRT Installation. Retrieved December 2, 2008, from OpenWRT Web

site: http://oldwiki.openwrt.org/OpenWrtDocs(2f)Installation.html

OpenWRT (2008). OpenWRT Using, Bootup. Retrieved December 4, 2008, from OpenWRT

Web site: http://oldwiki.openwrt.org/OpenWrtDocs(2f)Using.html

OpenWRT (2008). OpenWRT Kamikaze Configuration. Retrieved December 4, 2008, from

OpenWRT Web site:

http://oldwiki.openwrt.org/OpenWrtDocs(2f)KamikazeConfiguration.html

Renderman (2005). The Renderlab: WRT54G Kismet Drone How-To V0.3.3. Retrieved

December 1, 2008, from The Renderlab Web site:

http://www.renderlab.net/projects/wrt54g/openwrt.html

SWATCH (2007). The Simple WATCHer of Logfiles. Retrieved January 11, 2009, from the

Swatch Web site: http://swatch.sourceforge.net/

SWATCH (2008). The SWATCH Manpage.

Wikipedia (2009). Linksys WRT54G Series. Retrieved April 8, 2009, from the Wikipedia Web

site: http://en.wikipedia.org/wiki/Linksys_WRT54G_series

Jason Murray 35

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

12 Appendix – Start-up and Configuration Files

In order for the system to start up automatically a number of configuration files and

start-up scripts need to be in place, both on WRT54 (OpenWRT) and the Kismet Server

(OpenBSD).

OpenWRT Start-Up and Configuration Files

Kismet Drone Start-Up: /etc/init.d/kismet_drone

#!/bin/sh /etc/rc.common
Copyright 2009 Jason Murray

START=70
STOP=20

start() {

 echo -n "Setting radio for kismet_drone"
 /sbin/ifconfig wl0 up ; /usr/sbin/iwconfig wl0 mode Monitor channel 1 txpower 5mW
 /sbin/ifconfig wl0 down; /sbin/ifconfig wl0 up ; /usr/sbin/iwconfig wl0 mode Mon-
itor channel 1 txpower 5mW
 /usr/sbin/wl ap 0
 echo "."
 echo -n "Running kismet_drone"
 /usr/bin/kismet_drone -f /etc/kismet/kismet_drone.conf > /dev/null 2>&1 &
 sleep 3
 echo "."

}

stop() {

 killall kismet_drone

}

boot() {

nothing special needs to be called on boot so just do start()
 start

}

Jason Murray 36

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

Enabling Kismet Drone Start-Up. This will automatically start and stop the

kismet_drone.

/etc/init.d/kismet_drone enable

Kismet Drone Configuration: /etc/kismet/kismet.conf

Kismet drone config file

version=2005.04.R1

Name of server (Purely for organiational purposes)
servername=Kismet

User to setid to (should be your normal user)
suiduser=nobody

Port to serve packet data... This probably shouldn't be the same as the port
you configured kismet_server for, or else you'll have problems running them
on the same system.
tcpport=3501
People allowed to connect, comma seperated IP addresses or network/mask
blocks. Netmasks can be expressed as dotted quad (/255.255.255.0) or as
numbers (/24)
allowedhosts=127.0.0.1,192.168.1.2
Maximum number of concurrent stream attachments
maxclients=5

Packet sources:
source=capture_cardtype,capture_interface,capture_name
Card type - Specifies the type of device. It can be one of:
cisco - Cisco card with Linux Kernel drivers
cisco_cvs - Cisco card with CVS Linux drivers
cisco_bsd - Cisco on *BSD
prism2 - Prism2 using wlan-ng drivers with pcap support (all
current versions support pcap)
prism2_hostap - Prism2 using hostap drivers
prism2_legacy - Prism2 using wlan-ng drivers without pcap support (0.1.9)
prism2_bsd - Prism2 on *BSD
orinoco - Orinoco cards using Snax's patched driers
generic - Generic card with no specific support. You will have
to put this into monitor mode yourself!
wsp100 - WSP100 embedded remote sensor.
wtapfile - Saved file of packets readable by libwiretap
ar5k - ar5k 802.11a using the vt_ar5k drivers
Capture interface - Specifies the network interface Kismet will watch for
packets to come in on. Typically "ethX" or "wlanX". For the WSP100 capture

Jason Murray 37

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

engine, the WSP100 device sends packets via a UDP stream, so the capture
interface should be in the form of host:port where 'host' is the WSP100 and
'port' is the local UDP port that it will send data to.
Capture Name - The name Kismet uses for this capture source. This is the
name used to specify what sources to enable.

To enable multiple sources, specify a source line for each and then use the
enablesources line to enable them. For example:
source=prism2,wlan0,prism
source=cisco,wl0,cisco
#source=wrt54g,eth1,wireless
For v1 hardware uncomment this:
source=wrt54g,prism0,wireless

Comma-separated list of sources to enable. This is only needed if you wish
to selectively enable multiple sources.
enablesources=prism,cisco

Do we channelhop?
channelhop=true

How many channels per second do we hop? (1-10)
channelvelocity=5

By setting the dwell time for channel hopping we override the channelvelocity
setting above and dwell on each channel for the given number of seconds.
#channeldwell=10

Do we split channels between cards on the same spectrum? This means if
multiple 802.11b capture sources are defined, they will be offset to cover
the most possible spectrum at a given time. This also controls splitting
fine-tuned sourcechannels lines which cover multiple interfaces (see below)
splitchannels=true

Basic channel hopping control:
These define the channels the cards hop through for various frequency ranges
supported by Kismet. More finegrain control is available via the
"sourcechannels" configuration option.

Don't change the IEEE80211<x> identifiers or channel hopping won't work.

Users outside the US might want to use this list:
defaultchannels=IEEE80211b:1,7,13,2,8,3,14,9,4,10,5,11,6,12
defaultchannels=IEEE80211b:1,6,11,2,7,3,8,4,9,5,10

802.11g uses the same channels as 802.11b...
defaultchannels=IEEE80211g:1,6,11,2,7,3,8,4,9,5,10

802.11a channels are non-overlapping so sequential is fine. You may want to

Jason Murray 38

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

adjust the list depending on the channels your card actually supports.

defaultchannels=IEEE80211a:36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,128,
132,136,140,149,153,157,161,184,188,192,196,200,204,208,212,216
defaultchannels=IEEE80211a:36,40,44,48,52,56,60,64

Combo cards like Atheros use both 'a' and 'b/g' channels. Of course, you
can also explicitly override a given source. You can use the script
extras/listchan.pl to extract all the channels your card supports.
defaultchannels=IEEE80211ab:1,6,11,2,7,3,8,4,9,5,10,36,40,44,48,52,56,60,64

Fine-tuning channel hopping control:
The sourcechannels option can be used to set the channel hopping for
specific interfaces, and to control what interfaces share a list of
channels for split hopping. This can also be used to easily lock
one card on a single channel while hopping with other cards.
Any card without a sourcechannel definition will use the standard hopping
list.
sourcechannels=sourcename[,sourcename]:ch1,ch2,ch3,...chN

ie, for us channels on the source 'prism2source' (same as normal channel
hopping behavior):
sourcechannels=prism2source:1,6,11,2,7,3,8,4,9,5,10

Given two capture sources, "prism2a" and "prism2b", we want prism2a to stay
on channel 6 and prism2b to hop normally. By not setting a sourcechannels
line for prism2b, it will use the standard hopping.
sourcechannels=prism2a:6

To assign the same custom hop channel to multiple sources, or to split the
same custom hop channel over two sources (if splitchannels is true), list
them all on the same sourcechannels line:
sourcechannels=prism2a,prism2b,prism2c:1,6,11

Where to put the pid file?

piddir=/var/run

Channel Hopping Script: Running every minute in cron.

#!/bin/sh /etc/rc.common
Copyright 2009 Jason Murray

for i in 1 2 3 4 5 ; do
 wl channel 1 ; sleep 1
 wl channel 6 ; sleep 1
 wl channel 11 ; sleep 1
 wl channel 2 ; sleep 1
 wl channel 7 ; sleep 1

Jason Murray 39

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

 wl channel 3 ; sleep 1
 wl channel 8 ; sleep 1
 wl channel 4 ; sleep 1
 wl channel 9 ; sleep 1
 wl channel 5 ; sleep 1
 wl channel 10 ; sleep 1
done
this will get us to 55 seconds
so 5 more hops to get us to a minute
unfortunately we stay on some channels more frequently

wl channel 1 ; sleep 1
wl channel 6 ; sleep 1
wl channel 11 ; sleep 1
wl channel 6 ; sleep 1
wl channel 11 ; sleep 1

Channel Hopping Script: add as a cron job

root@kismet-drone1:/etc/rc.d# crontab -l

* * * * * /usr/bin/freqhop.sh

OpenBSD Start-Up Commands and Configuration Files

Kismet Server Start-Up: add to /etc/rc.local

Start kismet_server
echo -n " kismet_server"
/usr/local/bin/kismet_server 2>&1 | multilog -* +ALERT* /var/log/kismet/alerts &

Kismet Server Configuration: /etc/kismet/kismet.conf

Kismet config file
Most of the "static" configs have been moved to here -- the command line
config was getting way too crowded and cryptic. We want functionality,
not continually reading --help!

Version of Kismet config
version=2007.09.R1

Name of server (Purely for organizational purposes)
servername=Kismet

User to setid to (should be your normal user)
suiduser=_kismet

Do we try to put networkmanager to sleep? If you use NM, this is probably

Jason Murray 40

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

what you want to do, so that it will leave the interfaces alone while
Kismet is using them. This requires DBus support!
networkmanagersleep=true

Sources are defined as:
source=sourcetype,interface,name[,initialchannel]
Source types and required drivers are listed in the README under the
CAPTURE SOURCES section.
The initial channel is optional, if hopping is not enabled it can be used
to set the channel the interface listens on.
YOU MUST CHANGE THIS TO BE THE SOURCE YOU WANT TO USE
OpenBSD examples:
a/b: source=radiotap_bsd_ab,ath0,radiotap_bsd_ab
b: source=radiotap_bsd_b,ipw0,radiotap_bsd_b
b (wi(4)) source=prism2_openbsd,wi0,prism2_openbsd
source=kismet_drone,192.168.1.7:3501,drone1
#source=kismet_drone,192.168.1.8:3501,drone2

Comma-separated list of sources to enable. This is only needed if you defined
multiple sources and only want to enable some of them. By default, all defined
sources are enabled.
For example:
enablesources=prismsource,ciscosource

Automatically destroy VAPs on multi-vap interfaces (like madwifi-ng).
Madwifi-ng doesn't work in rfmon when non-rfmon VAPs are present, however
this is a fairly invasive change to the system so it CAN be disabled. Expect
things not to work in most cases if you do disable it, however.
vapdestroy=true

Do we channelhop?
channelhop=true

How many channels per second do we hop? (1-10)
channelvelocity=5

By setting the dwell time for channel hopping we override the channelvelocity
setting above and dwell on each channel for the given number of seconds.
#channeldwell=10

Do we split channels between cards on the same spectrum? This means if
multiple 802.11b capture sources are defined, they will be offset to cover
the most possible spectrum at a given time. This also controls splitting
fine-tuned sourcechannels lines which cover multiple interfaces (see below)
channelsplit=true

Basic channel hopping control:

Jason Murray 41

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

These define the channels the cards hop through for various frequency ranges
supported by Kismet. More finegrain control is available via the
"sourcechannels" configuration option.

Don't change the IEEE80211<x> identifiers or channel hopping won't work.

Users outside the US might want to use this list:
defaultchannels=IEEE80211b:1,7,13,2,8,3,14,9,4,10,5,11,6,12
defaultchannels=IEEE80211b:1,6,11,2,7,3,8,4,9,5,10

802.11g uses the same channels as 802.11b...
defaultchannels=IEEE80211g:1,6,11,2,7,3,8,4,9,5,10

802.11a channels are non-overlapping so sequential is fine. You may want to
adjust the list depending on the channels your card actually supports.

defaultchannels=IEEE80211a:36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,128,
132,136,140,149,153,157,161,184,188,192,196,200,204,208,212,216
defaultchannels=IEEE80211a:36,40,44,48,52,56,60,64

Combo cards like Atheros use both 'a' and 'b/g' channels. Of course, you
can also explicitly override a given source. You can use the script
extras/listchan.pl to extract all the channels your card supports.
defaultchannels=IEEE80211ab:1,6,11,2,7,3,8,4,9,5,10,36,40,44,48,52,56,60,64

Fine-tuning channel hopping control:
The sourcechannels option can be used to set the channel hopping for
specific interfaces, and to control what interfaces share a list of
channels for split hopping. This can also be used to easily lock
one card on a single channel while hopping with other cards.
Any card without a sourcechannel definition will use the standard hopping
list.
sourcechannels=sourcename[,sourcename]:ch1,ch2,ch3,...chN

ie, for us channels on the source 'prism2source' (same as normal channel
hopping behavior):
sourcechannels=prism2source:1,6,11,2,7,3,8,4,9,5,10

Given two capture sources, "prism2a" and "prism2b", we want prism2a to stay
on channel 6 and prism2b to hop normally. By not setting a sourcechannels
line for prism2b, it will use the standard hopping.
sourcechannels=prism2a:6

To assign the same custom hop channel to multiple sources, or to split the
same custom hop channel over two sources (if splitchannels is true), list
them all on the same sourcechannels line:
sourcechannels=prism2a,prism2b,prism2c:1,6,11

Port to serve GUI data

Jason Murray 42

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

tcpport=2501
People allowed to connect, comma seperated IP addresses or network/mask
blocks. Netmasks can be expressed as dotted quad (/255.255.255.0) or as
numbers (/24)
allowedhosts=127.0.0.1,192.168.1.0/24
Address to bind to. Should be an address already configured already on
this host, reverts to INADDR_ANY if specified incorrectly.
bindaddress=127.0.0.1,192.168.1.2
Maximum number of concurrent GUI's
maxclients=5

Do we have a GPS?
gps=false
Host:port that GPSD is running on. This can be localhost OR remote!
gpshost=localhost:2947
Do we lock the mode? This overrides coordinates of lock "0", which will
generate some bad information until you get a GPS lock, but it will
fix problems with GPS units with broken NMEA that report lock 0
gpsmodelock=false

Packet filtering options:
filter_tracker - Packets filtered from the tracker are not processed or
recorded in any way.
filter_dump - Packets filtered at the dump level are tracked, displayed,
and written to the csv/xml/network/etc files, but not
recorded in the packet dump
filter_export - Controls what packets influence the exported CSV, network,
xml, gps, etc files.
All filtering options take arguments containing the type of address and
addresses to be filtered. Valid address types are 'ANY', 'BSSID',
'SOURCE', and 'DEST'. Filtering can be inverted by the use of '!' before
the address. For example,
filter_tracker=ANY(!00:00:DE:AD:BE:EF)
has the same effect as the previous mac_filter config file option.
filter_tracker=...
filter_dump=...
filter_export=...

Alerts to be reported and the throttling rates.
alert=name,throttle/unit,burst/unit
The throttle/unit describes the number of alerts of this type that are
sent per time unit. Valid time units are second, minute, hour, and day.
Burst rates control the number of packets sent at a time
For example:
alert=FOO,10/min,5/sec
Would allow 5 alerts per second, and 10 alerts total per minute.
A throttle rate of 0 disables throttling of the alert.
See the README for a list of alert types.
alert=NETSTUMBLER,10/min,1/sec
alert=WELLENREITER,10/min,1/sec
alert=LUCENTTEST,10/min,1/sec
alert=DEAUTHFLOOD,10/min,2/sec

Jason Murray 43

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

alert=BCASTDISCON,10/min,2/sec
alert=CHANCHANGE,5/min,1/sec
alert=AIRJACKSSID,5/min,1/sec
alert=PROBENOJOIN,10/min,1/sec
alert=DISASSOCTRAFFIC,10/min,1/sec
alert=NULLPROBERESP,10/min,1/sec
alert=BSSTIMESTAMP,10/min,1/sec
alert=MSFBCOMSSID,10/min,1/sec
alert=LONGSSID,10/min,1/sec
alert=MSFDLINKRATE,10/min,1/sec
alert=MSFNETGEARBEACON,10/min,1/sec
alert=DISCONCODEINVALID,10/min,1/sec
alert=DEAUTHCODEINVALID,10/min,1/sec

Known WEP keys to decrypt, bssid,hexkey. This is only for networks where
the keys are already known, and it may impact throughput on slower hardware.
Multiple wepkey lines may be used for multiple BSSIDs.
wepkey=00:DE:AD:C0:DE:00,FEEDFACEDEADBEEF01020304050607080900

Is transmission of the keys to the client allowed? This may be a security
risk for some. If you disable this, you will not be able to query keys from
a client.
allowkeytransmit=true

How often (in seconds) do we write all our data files (0 to disable)
writeinterval=300

How old (and inactive) does a network need to be before we expire it?
This is really only good for limited ram environments where keeping a
total log of all networks is problematic. This is in seconds, and should
be set to a large value like 12 or 24 hours. This is intended for use
on stationary systems like an IDS
logexpiry=86400

Do we limit the number of networks we log? This is for low-ram situations
when tracking everything could lead to the system falling down. This
should be combined with a sane logexpiry value to flush out very old
inactive networks. This is mainly for stationary systems like an IDS.
limitnets=10000

Do we track IVs? this can help identify some attacks, but takes a LOT
of memory to do so on a busy network. If you have the RAM, by all
means turn it on.
trackivs=false

Do we use sound?
Not to be confused with GUI sound parameter, this controls wether or not the
server itself will play sound. Primarily for headless or automated systems.
sound=false
Path to sound player

Jason Murray 44

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

soundplay=/usr/local/bin/play
Optional parameters to pass to the player
soundopts=--volume=.3
New network found
sound_new=/usr/local/share/kismet/wav/new_network.wav
Wepped new network
sound_new_wep=${prefix}/com/kismet/wav/new_wep_network.wav
Network traffic sound
sound_traffic=/usr/local/share/kismet/wav/traffic.wav
Network junk traffic found
sound_junktraffic=/usr/local/share/kismet/wav/junk_traffic.wav
GPS lock aquired sound
sound_gpslock=/usr/local/share/kismet/wav/foo.wav
GPS lock lost sound
sound_gpslost=/usr/local/share/kismet/wav/bar.wav
Alert sound
sound_alert=/usr/local/share/kismet/wav/alert.wav

Does the server have speech? (Again, not to be confused with the GUI's speech)
speech=false
Server's path to Festival
festival=/usr/bin/festival
Are we using festival lite? If so, set the above "festival" path to also
point to the "flite" binary
flite=false
Are we using Darwin speech?
darwinsay=false
What voice do we use? (Currently only valid on Darwin)
speech_voice=default
How do we speak? Valid options:
speech Normal speech
nato NATO spellings (alpha, bravo, charlie)
spell Spell the letters out (aye, bee, sea)
speech_type=nato
speech_encrypted and speech_unencrypted - Speech templates
Similar to the logtemplate option, this lets you customize the speech output.
speech_encrypted is used for an encrypted network spoken string
speech_unencrypted is used for an unencrypted network spoken string
#
%b is replaced by the BSSID (MAC) of the network
%s is replaced by the SSID (name) of the network
%c is replaced by the CHANNEL of the network
%r is replaced by the MAX RATE of the network
speech_encrypted=New network detected, s.s.i.d. %s, channel %c, network encrypted.
speech_unencrypted=New network detected, s.s.i.d. %s, channel %c, network open.

Where do we get our manufacturer fingerprints from? Assumed to be in the
default config directory if an absolute path is not given.
ap_manuf=ap_manuf
client_manuf=client_manuf

Use metric measurements in the output?

Jason Murray 45

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

metric=true

Do we write waypoints for gpsdrive to load? Note: This is NOT related to
recent versions of GPSDrive's native support of Kismet.
waypoints=false
GPSDrive waypoint file. This WILL be truncated.
waypointdata=/var/log/kismet/way_kismet.txt
Do we want ESSID or BSSID as the waypoint name ?
waypoint_essid=false

How many alerts do we backlog for new clients? Only change this if you have
a -very- low memory system and need those extra bytes, or if you have a high
memory system and a huge number of alert conditions.
alertbacklog=50

File types to log, comma seperated
dump - raw packet dump
network - plaintext detected networks
csv - plaintext detected networks in CSV format
xml - XML formatted network and cisco log
weak - weak packets (in airsnort format)
cisco - cisco equipment CDP broadcasts
gps - gps coordinates
logtypes=network,csv,xml,weak,cisco,gps

Do we track probe responses and merge probe networks into their owners?
This isn't always desireable, depending on the type of monitoring you're
trying to do.
trackprobenets=true

Do we log "noise" packets that we can't decipher? I tend to not, since
they don't have anything interesting at all in them.
noiselog=false

Do we log corrupt packets? Corrupt packets have enough header information
to see what they are, but someting is wrong with them that prevents us from
completely dissecting them. Logging these is usually not a bad idea.
corruptlog=true

Do we log beacon packets or do we filter them out of the dumpfile
beaconlog=true

Do we log PHY layer packets or do we filter them out of the dumpfile
phylog=true

Do we mangle packets if we can decrypt them or if they're fuzzy-detected
mangledatalog=true

Do we do "fuzzy" crypt detection? (byte-based detection instead of 802.11

Jason Murray 46

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

frame headers)
valid option: Comma seperated list of card types to perform fuzzy detection
on, or 'all'
fuzzycrypt=wtapfile,wlanng,wlanng_legacy,wlanng_avs,hostap,wlanng_wext,ipw2200,ip-
w2915

Do we do forgiving fuzzy packet decoding? This lets us handle borked drivers
which don't indicate they're including FCS, and then do.
fuzzydecode=wtapfile,radiotap_bsd_a,radiotap_bsd_g,radiotap_bsd_bg,radiotap_bsd_b,p
capfile

Do we use network-classifier fuzzy-crypt detection? This means we expect
packets that are associated with an encrypted network to be encrypted too,
and we process them by the same fuzzy compare.
This essentially replaces the fuzzycrypt per-source option.
netfuzzycrypt=true

What type of dump do we generate?
valid option: "wiretap"
dumptype=wiretap
Do we limit the size of dump logs? Sometimes ethereal can't handle big ones.
0 = No limit
Anything else = Max number of packets to log to a single file before closing
and opening a new one.
dumplimit=0

Do we write data packets to a FIFO for an external data-IDS (such as Snort)?
See the docs before enabling this.
#fifo=/tmp/kismet_dump

Default log title
logdefault=Kismet

logtemplate - Filename logging template.
This is, at first glance, really nasty and ugly, but you'll hardly ever
have to touch it so don't complain too much.
#
%n is replaced by the logging instance name
%d is replaced by the current date as Mon-DD-YYYY
%D is replaced by the current date as YYYYMMDD
%t is replaced by the starting log time
%i is replaced by the increment log in the case of multiple logs
%l is replaced by the log type (dump, status, crypt, etc)
%h is replaced by the home directory
ie, "netlogs/%n-%d-%i.dump" called with a logging name of "Pok" could expand
to something like "netlogs/Pok-Dec-20-01-1.dump" for the first instance and
"netlogs/Pok-Dec-20-01-2.%l" for the second logfile generated.
%h/netlots/%n-%d-%i.dump could expand to
/home/foo/netlogs/Pok-Dec-20-01-2.dump
#
Other possibilities: Sorting by directory

Jason Murray 47

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

logtemplate=%l/%n-%d-%i
Would expand to, for example,
dump/Pok-Dec-20-01-1
crypt/Pok-Dec-20-01-1
and so on. The "dump", "crypt", etc, dirs must exist before kismet is run
in this case.
logtemplate=/var/log/kismet/%n-%d-%i.%l

Where do we store the pid file of the server?
piddir=/var/run/

Where state info, etc, is stored. You shouldnt ever need to change this.
This is a directory.
configdir=/var/log/kismet/

cloaked SSID file. You shouldn't ever need to change this.
ssidmap=ssid_map

Group map file. You shouldn't ever need to change this.
groupmap=group_map

IP range map file. You shouldn't ever need to change this.
ipmap=ip_map

Swatch Start-Up: add to /etc/rc.local

Start swatch
echo -n " swatch"
/usr/local/bin/swatch --config-file /etc/swatchrc --tail-file
/var/log/kismet/alerts/current 2>&1 &

A Basic Swatch Configuration: /etc/swatch

watchfor /Suspicious client ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-
F]{2}:[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=5,seconds=604800
 mail "nobody@example.com",subject="Suspicious Client"

watchfor /Out-of-sequence BSS timestamp on ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-
9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=1,seconds=300
 mail "nobody@example.com",subject="Potential AP Spoof"

watchfor /Netstumbler.*from ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-
F]{2}:[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=1,seconds=300
 mail "nobody@example.com",subject="Netstumbler Probe"

watchfor /Deauthentication\/Dissassociate.*on ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:

Jason Murray 48

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

An Inexpensive wireless IDS using Kismet and OpenWRT.

[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=1,seconds=300
 mail "nobody@example.com",subject="Deauth Flood"

watchfor /Beacon on ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:
[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=1,seconds=300
 mail "nobody@example.com",subject="AP Changed Channel"

watchfor /Broadcast.*on ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]
{2}:[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=1,seconds=300
 mail "nobody@example.com",subject="Broadcast Dissassociation"

watchfor /Suspicious traffic on ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:
[0-9A-F]{2}:[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=1,seconds=300
 mail "nobody@example.com",subject="Potentail DoS Dissassociation"

watchfor /Illegal SSID length.*from ([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]
{2}:[0-9A-F]{2}:[0-9A-F]{2})/
 threshold track_by=$1,type=both,count=1,seconds=300
 mail "nobody@example.com",subject="Long SSID"

Jason Murray 49

