
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Wireless Penetration Testing and Ethical Hacking (Security 617)"
at http://www.giac.org/registration/gawn

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gawn

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD Protocols for Securing IoT Devices

White Paper

Author: Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu
Advisor: Randy Marchany

Accepted: 5/14/2019

Abstract

An exponential growth of Internet of Things (IoT) devices on communication networks is
creating an increasing security challenge that is threatening the entire Internet
community. Attackers operating networks of IoT devices can target any site on the
Internet and bring it down using denial of service attacks. As exemplified in various
DDoS attacks that took down portions of the Internet in the past few years (such as the
attacks on Dyn and KrebsOnSecurity (Hallman, Bryan, Palavicini Jr, Divita, Romero-
Mariona, 2017)), IoT users need to take drastic steps in securing them. This research will
discuss the steps in attempting to secure IoT devices using DICE and MUD.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 2
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

1. Introduction
	

Identification of networked assets is the first step in securing any network. With IoT

devices, the asset inventory problem is also growing exponentially, and there is an urgent

need for efficient and positive identification of these devices on the network for properly

configuring, managing, and updating them. With the rapid growth of the number of IoT

devices and significant growth expected in the future, attackers view these devices as

relatively defenseless and compromise them to use in their attacks (Zelonis, 2018). Once

attackers control networks of IoT devices, they are able to attack any target on the

Internet to bring it out of service, and therefore put the overall healthy functioning of the

Internet at risk. By using the increasing number of vulnerable IoT devices available

online, various DDoS attacks occurred that took down significant portions of the Internet

such as the attacks on Dyn and KrebsOnSecurity. With the numbers of IoT devices

predicted to rapidly rise even further, it is essential to take drastic steps in securing these

devices (Hallman, Bryan, Palavicini Jr, Divita, Romero-Mariona, 2017).

 	
1.1 Overview of DICE and MUD
	

There are a number of efforts underway by different organizations to enumerate and

manage IoT devices securely. Microsoft's Device Identifier Composition Engine (DICE)

and Cisco’s Manufacturer Usage Description (MUD) are such efforts. Microsoft’s Device

Identifier Composition Engine – DICE (used to be known as RIOT), is a hardware and

software- based family of techniques that attests the health of the hardware and software

on IoT devices (Microsoft, 2015). IoT devices that employ cryptography utilize a private

key called a Unique Device Secret (UDS) to secure their operation. Malicious actors may

leak the key by compromising the code on the chip. Obtaining the key can lead the

attacker to impersonate the device and replace the firmware (Elliptic Semiconductor Inc.,

2015). Therefore, it is essential to prevent disclosure of the UDS. DICE implements three

measures to help secure the UDS.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 3
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

First, the power-on latch locks read access to the UDS before early boot-code

transfers control to subsequent execution layers. Second, even if power-on latch prevents

reading the UDS, copying the UDS as-is to memory by the early boot code could lead to

it’s disclosure from RAM. A cryptographic one-way function makes a hash of the UDS

to store in RAM so that in the event of RAM disclosure, the original UDS is safe. Now

using the transformed UDS key, the original UDS will not be revealed if subsequent

malicious actions compromise the RAM or later code. Third, to prevent compromise of

the device by attempts to modify the early boot-code, the cryptographic one-way function

uses a measurement of the boot code as input together with the UDS. The function

outputs a key called the Compound Device Identifier taking both the UDS and early boot

code measurement as input (optionally taking the hardware state and configuration as

input as well). This process ensures that modification of early boot code generates a new

key so that the original UDS is secure (Microsoft, 2015).

Cisco MUD is an extension to DHCP (as well as LLDP and 802.1x) that includes a

URI to the IoT device’s manufacturer. The device uses this URI to download

configuration information that defines what the device is supposed to do. This

configuration helps prevent the IoT device from participating in DDoS in the event of

device compromise. The policy set for the device on its network access point would only

allow traffic from it to go where, and in the manner the manufacturer specifies, and not to

the malicious actor’s DDoS target.

1.2 Choosing protocols

With different approaches available to help secure IoT devices, some may be

infeasible due to cost but may be advantageous in other aspects. Each organization that

utilizes IoT devices faces the problem of intelligently choosing which approach is most

suitable for their networks.

As this research shows, implementing security techniques on different devices can be

difficult; therefore, it is essential for there to be practical guides to facilitate adopting

techniques in securing IoT devices. This research will clarify the various advantages and

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 4
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

disadvantages of DICE and MUD as demonstrated through experimentation to help

organizations choose the best approach in securing their IoT devices.

	

2. Method
	

This research attempts to test Microsoft DICE and Cisco MUD on IoT devices using

the Rapid7 IoT testing methodology (Heiland, Sevier, Littlebury, 2017) as a means of

helping organizations choose the most effective IoT security protocol for their needs.

	

2.1. Testing Steps
	

The first step is mapping out the IoT ecosystem of the setup. As part of the end-to-

end ecosystem methodology, this involves mapping the device, related sensors and

actuators, related mobile apps and control software, Cloud API and associated web

services, and network communication protocols used such as Ethernet, 802.11 Wi-Fi, and

Bluetooth.

The second step, as outlined in the Rapid7 IoT device testing methodology, involves

setting up DICE and MUD protocols to run on the following IoT devices:

• Cloud JAM

• CEC1702 IoT Development Kit

Both these devices support Microsoft DICE by including specific hardware

cryptography features. Cisco MUD, in theory, should run on all IoT devices including

these two.

Following Rapid7’s methodology, ‘Functional Testing’ of devices takes place to

ensure that they are working as intended. ‘Open Intelligence Gathering’ involves

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 5
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

performing recon on device components (to use for later security testing of protocols),

such as subsystems, communication types, and radio frequencies.

After these steps, ‘Capture & Analysis of Data Communication’ to and from devices

is performed using proxies between end-points (such as between the device and the

Cloud or between the mobile application and the Cloud) while looking for vulnerabilities

in communications. Vulnerabilities could arise from the external entities to which the

devices may attempt to communicate. For example, devices making undocumented call-

outs to strange addresses or domains; identifying exposed ports and checking for

improper misconfigurations; testing wireless attacks such as subverting pairing and

replay attacks; and DoS attack attempts.

‘Vulnerability Testing of Mobile and Control Applications’ follows after capturing

and analysis of data communications, by looking for weak authentication, improper

storage of data, and conformity to standard encryption methods.

3. Findings and Discussions

3.1. CloudJAM
RushUp IoT company provides CloudJAM, a product that supports Microsoft

DICE. CloudJAM is a small device that incorporates temperature and motion sensors and

sends this data as well as receives commands from and to a Cloud application through

Wi-Fi. The testing below will be based on the Rapid7 IoT testing methodology.

3.1.1. IoT ecosystem of the CloudJAM

CloudJAM has a board called the NUCLEO-F401RE Nucleo that has the

following Nucleo Expansion Boards built-in:

X-NUCLEO-IDW01M1 – Wi-Fi capabilities

X-NUCLEO-IKS01A2 – environmental and motion sensor

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 6
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

X-NUCLEO-NFC01A1 – NFC sensor

The device has an embedded debugger to allow development and debugging. This feature

allows developing firmware and then flashing onto the device.

The CloudJAM device has the following features:

• Micro-USB supplies 5V power

• Integrates ST-Link V2 in-circuit debugger and programmer

• STM32F401RET6 microcontroller that has an ARM Cortex M4 processor

• Humidity and temperature sensor - HTS221

• Nano pressure sensor - LPS22HB MEMS

• 3D accelerometer and 3D gyroscope. - LSM6DSL iNEMO inertial module

• High-performance eCompass - LSM303AGR

• 2.4 GHz IEEE 802.11 b/g/n Wi-Fi - SPWF01SA-11 module.

• 64-Kbit Dynamic NFC / RFID - M24SR64-YMN6.

• 4 push buttons

• 9 LEDs

• 50x50x6mm size with mounting holes

• Stores SSID and password in NFC component for Wi-Fi connection

• Can utilize ST25 NFC Tap mobile Android app from Google Play Store to set

Wi-Fi credentials

3.1.2. Setting up the CloudJAM

The CloudJAM IoT device is set up to run Microsoft DICE over Azure IoT hub

using the steps in Appendix 1. Cisco MUD testing requires a MUD Manager to accept

and process the MUD URL from the IoT device. Figure 1 displays the MUD procedure:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 7
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Figure 1: MUD Process Flow (Why MUD?, n.d.)

As the diagram above shows, the IoT device utilizes Cisco MUD:

- Emits either an 802.1x, LLDP, or DHCP request to its network access point

such as router or switch. This request houses a MUD URL.

- The network access point should be able to know how to handle the request

that contains the MUD URL. Currently, the only Cisco network access points

that support MUD URLs are the Catalyst switches whose price points start at

around $1K and can cost upward of $15K or more.

- After receiving the request, the Catalyst switch extracts the MUD URL,

encapsulates it in a RADIUS packet, and sends it to an Authentication,

Authorization, and Accounting (AAA) server. Cisco’s AAA server is the

Identity Services Engine (ISE). The base license for Cisco ISE costs around

$500.

- The AAA server passes the MUD URL to the MUD Controller which is also

contained within Cisco ISE.

- The MUD Controller uses HTTPS to contact the server hosting the MUD file

that the MUD URL indicates.

- After verifying that the MUD file is from the device’s manufacturer, the MUD

Controller retrieves a copy of the MUD file. The MUD file is a YANG data

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 8
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

model using JSON representation and specifies the manufacturer's intention

for the IoT device’s and communication patterns.

- The MUD Controller translates the manufacturer’s specifications and

permissions for the device into context-specific policies given to the AAA

Server/Cisco ISE.

- The ISE server enforces the policies in the form of Access Control Lists that it

sends to the Network Access Point.

Testing the MUD server using Cisco’s proprietary hardware and software can cost

at least $1500 for a Catalyst switch and the Cisco ISE software. Appendix 2 lists steps for

an alternative setup to perform Cisco MUD tests using the open source osMUD (MUD

manager) running on an OpenWRT virtual router image.

3.1.3. Functional testing the CloudJAM

To test the functionality of CloudJAM, the CloudJAM device is started up by

powering it with a USB cable, and it automatically starts sending messages to the Azure

IoT hub. We also test sending messages from the Cloud (Azure IoT hub) to the device.

When starting the CloudJAM, it first starts the procedure of connecting to an SSID that is

using a pre-set configuration on the device. It gives an option to modify the SSID

configuration by holding down the ‘USER’ button as the device is starting.

The device contains the following nine status LEDs:

- TLK – bicolor status LED

- 5V – showing power supply presence

- USR – user free LED

- WLD – Wi-Fi blink (Blue LED)

- WUP – Wi-Fi power up (Red LED)

- WLK – Wi-Fi link

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 9
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

- PIN – iNEMO interrupt 2

- INT - iNEMO interrupt 1

- WTX – Wi-Fi TXD1

During initialization, only the 5V and the WTX LEDs are luminous. While the

AP is setting up and waiting to connect to AP, the WLK LED is on. The WLD and WUP

LEDs blink on/off three times: twice after initialization message: ‘[Init]. Initilized WiFi

data structures WiFi: WAIT FOR Module Activation Procedure...’ and shows up on

UART output, and then once after ‘[Init]. Try to Connect to SSID: <SSID redacted>...’

shows up on UART output. After synchronizing with the NTP server, the USR LED

lights up and messages are sent to the Azure IoT Hub.

The Azure IoT Hub Device Explorer tool (Azure IoT SDK – Csharp, 2019)

allows the user to manage the devices connected to the Azure IoT hub as well as receive

and send messages to the devices. The ‘Management’ tab in Device Explorer shows

devices that are setup (provisioned) in the user’s Azure IoT hub as well as their status.

Even though the CloudJAM (with name ‘rushup’ in Azure IoT Hub provisioning, in this

case) is connecting and communicating with the Azure IoT Hub, for some reason, the

Management tab in the Device Explorer still shows the ConnectionState as

‘Disconnected’:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 10
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Figure 2: Management Tab in Device Explorer

When pressing the ‘Refresh’ button on Device Explorer, sometimes the PrimaryKey and

SecondaryKey values disappear for the rushup (CloudJAM) device, and sometimes they

reappear. The cause of this result is still unknown. On the ‘Data’ tab of Device Explorer,

it shows the messages that Azure IoT hub is receiving from the device:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 11
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Figure 3: Above are part of the messages seen in the UART analysis of the device

communication discussed in Section 3.1.5 on Capture and Analysis of CloudJAM Data

Communications.

Some messages from CloudJAM the device to the Cloud include:

- Current Temperature: 25.5 degree Celsius

- The device is not sending motion (acceleration) data, pressure, and humidity

to the Cloud possibly due to a failure to initialize sensor board, as shown in

the output in Section 3.1.5.

- From the 4 push-buttons on the device:

o Pressing the ‘USR’ user button doesn’t do anything when the device is

running, however, when device initially starts, pressing and holding

the user button allows the user to set up the SSID credentials for

connecting to the Wireless Access Point (AP).

o Pressing the ‘RST’ reset button resets the device to initialize and

restart its connection process to an AP, and also starts sending

messages containing information regarding the temperature and other

data to the Azure IoT hub.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 12
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

o Pressing the ‘WRST’ button lights up the WLD and WUP LEDs and

then stops Wi-Fi transmissions by sometimes displaying ‘WiFi error’

on UART output. Transmissions sometimes start up again after some

time.

o Pushing the ‘WUSR’ button during initialization results in ‘WiFi AP

ready’ message showing in UART output.

Sending messages from the Cloud (either from Azure Portal or Device

Explorer) to the device include:

o reset – unlike the physical ‘RST’ button on the device, sending ‘reset’

message from Cloud only resets the device when connected to the

Cloud

o quit – stops the application and therefore, the sending of further

messages from device to Cloud. The device does not accept further

messages from the Cloud after this without a hard reset with the push

button.

o led on - turns on USER LED

o led off – turns off USER LED

3.1.4. Open Intelligence Gathering from the CloudJAM
CloudJAM is made up of an STMicroelectronics Open Development Environment

board called the NUCLEO-F401RE Nucleo. This board has an STM32 microcontroller,

STM32F401RET6 ARM Cortex M4 with FPU & DSP, 96 kB SRAM, 512 kB FLASH,

84 MHz CPU, and ART accelerator, running in an LQFP64 package. It has an onboard

ST-LINK/V2-1 programmer/debugger using USB re-enumeration with 3 interfaces:

Virtual COM port, debug port, and mass storage. It also has an ST-LINK USB Vbus or

external power supply option, 1 user LED shared with Arduino for a total of 9 LEDs, 1

MCU reset, 1 Wi-Fi module reset, 1 MCU user, and 1 Wi-Fi user push-buttons. It also

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 13
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

has a 32.768 kHz LSE crystal oscillator; supports Arduino Uno V3 and ST Morpho board

expansion connectors; supports IAR, Keil, ARM Mbed, and GCC-based IDEs; has a

5V/0.5A USB micro power input; Additionally, CloudJAM has three STM32 Nucleo

Expansion Boards whose mapping out is in the paragraphs below.

The first Nucleo Expansion Board is the X-NUCLEO-IDW01M1 – which provides

Wi-Fi capabilities using the SPWF01SA module. The SPWF01SA module can

transmit/receive IEEE 802.11 b/g/n using low power at 2.4 GHz. It has an STM antenna

and runs on an STM32 ARM Cortex-M3 processor with 64 KB RAM and 512KB of

FLASH memory. It has 1 MB extended flash for FOTA. The device has simple AT

command UART interface to update Firmware; TCP/IP, TLS/SSL integrated protocol

stacks; supports 8 simultaneous TCP/UDP clients and one socket server. It also supports

one socket client with TLS/SSL up to TLS 1.2 including encryption algorithms: AES

128/256, MD5/SHA-1/SHA-256 hashes, and RSA/ECC PKI. CloudJAM also has

application layer functionality that supports web servers serving dynamic web pages. It

supports REST APIs to receive and post web content. CloudJAM supports

WEP/WPA/WPA2 security; station, IBSS, and miniAP (supporting 5 stations) system

modes; transmits 18.3 dBm @ 1Mbps DSSS and 13.7 dBm @ 54 Mbps OFDM; receives

-96.0 dBm @ 1 Mbps DSSS and -74.5 dBm @ 54 Mbps OFDM. It has 16 configurable

GPIOs. CloudJAM also supports advanced low-power modes with a standby Real Time

Clock (RTC) operating at 43 µA. Sleep mode DTIM=1 running at 15 mA; receiving

traffic typically at 105 mA; and transmitting traffic typically at 243 mA @ 10 dBm (low-

power mode). CloudJAM includes a single voltage supply at 3.3 V; has a temperature

range of -40 °C to 85 °C; is FCC/CE/IC/SRRC certified and RoHS compliant; has the ST

morpho and the Arduino UNO R3 connector layouts; is compatible with the

STM32Cube software development tools.

The second Nucleo Expansion board - X-NUCLEO-IKS01A2 - senses motion and

environmental conditions such as pressure and temperature. It contains the LSM6DSL 3D

accelerometer (±2/±4/±8/±16 g) along with a 3D Gyroscope

(±125/±245/±500/±1000/±2000 dps). It has the LSM303AGR Microelectromechanical

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 14
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

systems (MEMS) 3D magnetometer (±50 gauss) and MEMS 3D accelerometer

(±2/±4/±8/±16 g). It also has an HTS221 capacitive digital humidity and temperature

sensor; the LPS22HB MEMS pressure sensor 260-1260 hPa digital barometer; an I2C

PIN to interface with the STM32 microcontroller; a DIL23 socket to accommodate

additional MEMS adapters and/or other sensors; it is also compatible with STM32Cube

firmware; the LSM6DSL has I2C sensor hub features; has an Arduino UNO R3

connector and is RoHS compliant.

The third Nucleo Expansion board is the X-NUCLEO-NFC01A1 which is a dynamic

NFC tag evaluation sensor. It contains the M24SR64-Y dynamic NFC/RFID tag

Integrated Controller with 64 kbit EEPROM memory. It also has an NFC antenna of size

31 mm x 30 mm operating at 13.56 MHz; comes with an Arduino UNO R3 connector, 3

general purpose color LEDs; and is powered by Arduino UNO R3 connectors.

3.1.5. Capture and Analysis of CloudJAM Data Communications

Connecting the CloudJAM device to USB power gives the following

communications output through UART serial connection:

[Init]. Starting configuration procedure for SSID and PWD....

[Init]. Keep pressed user button to set Wi-Fi Access Point

parameters (SSID and PWD) from NFC (if mounted) or via serial terminal.

Otherwise parameters saved to FLASH will be used.

[Init].

[Init]. Read from FLASH:

 SSID =<SSIDname redacted>

 Key =<WiFi pwd redacted>

 Authentication =WPA2

[Init]. AP settings set.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 15
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

[Init]. Initilized WiFi data structures WiFi: WAIT FOR Module

Activation Procedure...

[Init]. Wi-Fi Module Activated

[Init]. WiFi MAC Address is: 00:80:E1:B9:5F:E6

[Init]. Try to Connect to SSID: <SSIDname redacted>...

[Init]. WiFi connected to AccessPoint

[Version]. FP-CLD-AZURE1 version : 02.00.00.00

[Version]. Microsoft Azure IoT SDK version 1.0.11

[Version]. Openstm32 Compiler Platform

[Version]. Build Date: Mar 11 2019 Time: 14:45:30

[Version]. STM32 Nucleo Build.

[Version]. Built for X_NUCLEO_IKS01A1 sensor board.

[Version]. Starting IoTHub HTTP Client application.

[IotHub]. Launching NTP procedure.

[IotHub]. Connected with NTP Server: time-d.nist.gov

[IotHub]. Set UTC Time: Thu Apr 18 04:03:44 2019

[IotHub]. Sync with NTP server completed.

 Socket already close[IotHub][E]. Failed init sensors (Accelero).

[IotHub]. Starting the IoTHub client sample HTTP...

[IotHub][E]. Failed to init sensor board, using dummy data.

[IotHub][E]. Failure to set option "timeout"

[IotHub]. IoTHubClient_LL_SetMessageCallback...successful.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 16
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

[IotHub]. Sending message: {"id":"0080E1B95FE6","name":"Nucleo-

0080E1B95FE6","ts":"2019-04-

18T04:03:45.000000Z","mtype":"ins","temp":25.50}

[IotHub]. IoTHubClient_LL_SendEventAsync accepted message [0] for

transmission to IoT Hub.

[IoTHub]. Confirmation[0] received for message tracking id = 0

with result = IOTHUB_CLIENT_CONFIRMATION_OK

[IotHub]. IoTHubClient_LL_DoWork...sent data.

[IotHub]. Sending message: {"id":"0080E1B95FE6","name":"Nucleo-

0080E1B95FE6","ts":"2019-04-

18T04:03:51.000000Z","mtype":"ins","temp":25.50}

 To capture the packets that CloudJAM is sending to the Access Point, a Panda

Wireless PAU06 300Mbps Wireless-N USB Adapter is being used with a high-gain

antenna that is operating in monitor mode. A separate adapter is used so that the laptop

adapter doesn’t need to be changed to monitor mode and so that it is not busy capturing

packets in addition to being used for managing the Azure IoT hub and other wireless

traffic. The packet capture is run using a Linux VM to set up the PAU06 in monitor mode

and Wireshark is used to capture packets. The Kali Rolling version during experimenting

is 4.15.0-kali3-amd64 #1 SMP Debian 4.15.17-1kali1 (2018-04-25) x86_64 GNU/Linux.

Appendix 3 lists the steps used to put the PAU06 device in monitor mode.

By analyzing the packet capture of the CloudJAM device upon connection, a

probe request is observed from the CloudJAM device with the onboard SSID that the user

sets. After that, a probe response comes from the router. Using the Wireshark filter

“wlan.addr == 00:80:e1:b9:5f:e6” limits the packet display in Wireshark to CloudJAM

communication by using the MAC address of the CloudJAM device.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 17
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Source Destination Byte

Length

Message

Stmicroe_b9:5f:e6 Broadcast 112 Probe Request, SN=217, FN=0,

Flags=........, SSID=<SSID

redacted>

36:1f:e4:e4:44:8b Stmicroe_b9:5f:e6 240 Probe Response, SN=4039, FN=0,

Flags=........, BI=100,

SSID=<SSID redacted>

Stmicroe_b9:5f:e6 36:1f:e4:e4:44:8b 48 Authentication, SN=12, FN=0,

Flags=........

 Stmicroe_b9:5f:e6

(00:80:e1:b9:5f:e6)

28 Acknowledgement, Flags=........

36:1f:e4:e4:44:8b Stmicroe_b9:5f:e6 59 Authentication, SN=791, FN=0,

Flags=........

Stmicroe_b9:5f:e6 36:1f:e4:e4:44:8b 110 Association Request, SN=13,

FN=0, Flags=........, SSID=<SSID

redacted>

 Stmicroe_b9:5f:e6

(00:80:e1:b9:5f:e6)

(RA)

28 Acknowledgement, Flags=........

36:1f:e4:e4:44:8b Stmicroe_b9:5f:e6 98 Association Response, SN=792,

FN=0, Flags=........

Table 1: CloudJAM communication to Access Point

The above packet capture summarizes the initial communication between the

CloudJAM and the router access point. After an initial probe request and response, the

device sends an authentication packet with the authentication algorithm set to Open

System. The AP replies with an authentication response giving more information such as

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 18
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Vendor information, in this case, Broadcom. The CloudJAM device sends an association

request packet and receives a response from the AP followed by the four-way WPA

handshake that occurs between the client device and AP and then the client device sends

a DHCP packet to the AP with IP value set to 0.0.0.0.

The remaining communication in the packet capture between the router and the

CloudJAM device looks unintelligible upon observation and most likely utilizes an

encryption algorithm. However, this data most likely contains the information that is

output when viewing the UART output above from the USB port that connects the

CloudJAM device to the host machine. Additionally, performing any of the device

functionality such as sending commands from Cloud to the device to turn LED on/off,

resetting, and quitting or pressing push buttons, did not generate legible packet traffic.

3.1.6. Vulnerability Testing of Control Applications
During this phase of testing, vulnerabilities in authenticating/connecting to Azure

IoT hub (DICE) and MUD are being sought out.

- When testing input for the SSID and password while connecting to the access

point, if a password of 189 characters is input (without even pressing ‘Enter’),

then the application locks up and can no longer process any other input.

- If a slightly smaller password is input, one of 184 characters, then pressing

‘Enter’ moves to the next question of security type and when ‘2’ is input by

the user, the application locks up and does not proceed. Packet capture shows

that at this point the only traffic is comprised of probe requests and responses

along with null function responses from AP to the client.

- Testing ST25 NFC TAP Mobile application to transfer SSID configuration

didn’t work.

- In the limited source code review, no vulnerabilities were discovered.

- A possible avenue of testing could involve attempting to update the firmware

from a ‘malicious’ source by using simple AT commands given through the

UART interface or by using REST APIs mentioned in the open source intel

gathering for the device in Section 3.1.4.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 19
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

- Another possible route is to set up a ‘malicious’ AP with the same SSID as the

one configured in the device but with higher power so that the device connects

to it. This AP can be used in attempting to decrypt the traffic to Azure IoT hub

using a MITM attack. Using a bridging the air gap attack, lateral movement

from a compromised host in an organization to a wireless AP may allow for

the modification of the firmware and then the unencrypted traffic to be sent to

a remote attacker.

- After much back and forth with the manufacturer, the CloudJAM device is

still unable to emit the DHCP option header to test Cisco MUD; there is no

vulnerability testing of MUD for this reason.

3.2. CEC1702 IoT Development Kit
	

The CEC1702 device from Microchip is an evaluation board used to test various IoT

applications using a Plug-in-Module (PIM) that also supports programming in keys for

DICE authentication.

3.2.1. IoT ecosystem of the CEC1702 Kit
CEC1702 IoT Development Kit (Microchip Part # DM990013-BNDL) includes the

following:

- CEC1x02 DevBoard including a Plug-in Module (PIM) with a CEC1702

chip for DICE

- Mikroe WiFi7 Click module with ATWINC1500 WiFi chip

- Mikroe Thermo5 Click module with EMC1414 Temperature sensor

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 20
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

3.2.2. Setting up the CEC1702 Dev Kit

The CEC1702 Dev Kit is set up to run Microsoft DICE over Azure IoT hub. osMUD is a

MUD manager platform that takes a MUD URL and downloads the respective MUD file

from the specified location to pass back to the Access Point connecting the IoT device.

Please see Appendix 2 for setting up osMUD on OpenWRT for MUD testing. For setting

up the CEC1702 Dev Kit to connect to the Azure IoT Hub, follow the steps in this

official Microchip manufacturer guide’s Getting Started tab:

https://catalog.azureiotsolutions.com/details?title=CEC1x02DevBoard&source=null

3.2.3. Functional testing the CEC1702 Dev Kit

The Microchip ICD4 (Microchip Part # DV164045) debugs the CEC1702 as well

as flashes the firmware onto it using the MPLAB IDE. From the ‘Debug’ menu, selecting

‘Debug Project’ in MPLAB starts the debug process by flashing the firmware onto the

CEC1x02 Dev Board. The ICD4 is connected via JTAG 8-pin cable to the Dev Board

using a debugger adapter (Microchip Part # AC102015). First, the ICD 4 connects to the

laptop to power it on via USB, and its LEDs become purple when booting. After it is

ready, the Dev Board plugs in via USB to power it up using micro USB. During firmware

flash, the LED of the ICD4 connecting to the Dev Board becomes yellow. During the

debug process, the output of the ICD4 is:

Connecting to MPLAB ICD 4...

Currently loaded versions:

Application version............01.05.18

Boot version...................01.00.00

FPGA version...................01.00.00

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 21
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Script version.................00.02.77

Script build number............5215401e64

Target voltage detected

Target device CEC1702 found.

Device Revision Id = 0x84

Resetting...

Reset complete

Erasing...

The following memory area(s) will be programmed:

program memory: start address = 0xb0000, end address = 0xfafff

program memory: start address = 0x100000, end address = 0x101fff

Programming/Verify complete

Running

Analysis of the firmware code (app_control_led function in

prov_dev_client_ll_sample.c), shows the following messages that the device can accept:

- led on

- led off

- led red

- led green

- led blue

- led yellow

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 22
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

- led magenta

- acq_time <seconds>

The LED messages are designed to turn on/off or change the color of the LED

light. The acq_time <seconds> function is used to change the temperature acquisition

interval of the device from its environment to a specified number of seconds.

3.2.4. Open Intelligence Gathering from the CEC1702 Dev Kit

The CEC1702 chip is an ARM Cortex M4 based microcontroller. It operates with

3.3V and 1.8V and has a complete ARM-standard of debugging support with a JTAG-

based DAP port composed of SWJ-DP and AHB-AP Debugger access functions. The

CEC1702 contains 64K of boot ROM as well 2 blocks of SRAM totaling 480KB (with

each block being used either for program or data). The CEC1702 has up to 65 General

Purpose I/O pins (GPIOs) powered by 1.8V each. It also has 2 standard 16C550 UARTs.

The CEC1x02 DevBoard has 480KB of RAM. The software used to program the

firmware of the CEC1702 DevBoard is written in the C programming language. The

device uses the MQTT protocol to communicate with the Azure IoT Cloud and has WiFi

connectivity to the Internet using the Mikroe WiFi7 Click module. Its I/O hardware

interfaces consist of GPIO and I2C/SPI. The DevBoard communicates with the Azure

Device Provisioning Service using HTTPS and attests its identity using X.509

certificates. The Mikroe Click modules connect to the CEC1x02 DevBoard through

MIKROBUS2 slots.

3.2.5. Capture and Analysis of CEC1702 Dev Kit Data Communications

This step involves collecting data from various sub-systems of the CEC1702 Dev

Kit as it is running different tasks. Following that data analysis helps clarify how normal

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 23
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

data communication works and discover possible security vulnerabilities. For this, more

information from the manufacturer is required to get the CEC1702 Dev Kit properly

connecting to the Azure IoT Hub. Currently, it is experiencing difficulty with an invalid

pub key error. Even after going back and forth with the manufacturer for over a month,

troubleshooting the connection to Azure IoT Hub to test DICE is ongoing.

3.2.6. Vulnerability Testing of Control Applications
After much back and forth with the manufacturer, the CEC1x02 Dev Board was

still unable to connect to Azure IoT Hub for DICE Testing nor was it able to be modified

to emit a DHCP option header to test Cisco MUD. There is no vulnerability testing that

occurred at this time of this device for these reasons.

3.3. Findings Discussion
	

After a few months of work, it was not as easy as anticipated to secure two IoT

devices using the two proposed protocols, DICE and MUD. One of the devices,

CloudJAM, came with DICE working almost out of the box, as after following a

relatively simple tutorial, the device successfully connected to the Azure IoT hub using

DICE. However, this device didn’t implement MUD yet due to not finding where in the

source code of the firmware to modify the DHCP header to contain the MUD URL. The

manufacturer was also unable to provide this information. It appears that a newer version

of DHCP client software is required on the firmware as the current version does not

support option 161 in the DHCP header, which the MUD URL requires. The same issue

applies for the CEC1702 device regarding modifying the DHCP header. The

manufacturer is communicating with me as DICE is still being tested to work with the

device. Among the information conveyed is that Azure IoT hub is updated since they last

got the device to work with it, so they recommended newer firmware source code.

However, as of now, this source code produces compilation errors.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 24
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

4. Recommendations and Implications for Future
Research

After getting DICE and MUD to work with both devices, it is recommended that

organizations use the testing in Section 3.1.6 and conduct similar tests for the CEC1702

device. It is also recommended that standards and best practices in the industry promote

manufacturers to help in supporting these protocols, primarily by upgrading the DHCP

clients in the IoT devices to allow emission of DHCP Header option 161 that supports the

MUD URL.

5. Conclusion
	

Security in IoT is still very new. Even though DICE and MUD seem like effective

proposals to help solve the security problem in IoT, there are very few devices that

support DICE in the market. MUD intends to work for all IoT devices; however, the

implementation of it is difficult. Manufacturers should help guide customers to upgrade

the DHCP client in IoT devices to implement MUD. Setting up the MUD manager is also

difficult and costly. It would cost at least $1500 to buy the Cisco Catalyst switch and ISE

server. The open source route of setting up osMUD is free but only supports DHCP

currently. In conclusion, I would recommend that researchers and manufacturers develop

and produce more guides detailing practical steps in implementing DICE and MUD in

various use cases to help consumers making DICE and MUD work in securing their IoT

devices.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 25
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

References
	
Acar, A., Fereidooni, H., Abera, T., Sikder, A.K., Miettinen, M., Aksu, H., Conti, M.,

Sadeghi, A., & Uluagac, A.S. (2018). Peek-a-Boo: I see your smart home activities, even

encrypted! CoRR, abs/1808.02741.

Azure IoT SDK - CSharp. Retrieved April 30, 2019, from

https://github.com/Azure/azure-iot-sdk-csharp

Bruhadeshwar, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I., & Ray, I. (2018).

IoTSense: Behavioral Fingerprinting of IoT Devices. CoRR, abs/1804.03852.

CEC1702 IoT Development Kit. Retrieved February 3, 2019, from

https://www.microchip.com/DevelopmentTools/ProductDetails/dm990013-bndl

Cloud JAM. Retrieved February 3, 2019, from

https://catalog.azureiotsolutions.com/details?title=Cloud_JAM&source=all-devices-page

Elliptic Semiconductor Inc., An Overview of Secret Key and Identity Management for

System-on-Chip Architects. (Apr 07, 2015). Retrieved March 27, 2019, from

https://www.design-reuse.com/articles/15407/an-overview-of-secret-key-and-identity-

management-for-system-on-chip-architects.html

Hallman, Roger & Bryan, Josiah & Palavicini Jr, Geancarlo & Divita, Joseph & Romero-

Mariona, Jose. (2017). IoDDoS — The Internet of Distributed Denial of Service Attacks:

A Case Study of the Mirai Malware and IoT-Based Botnets.

10.5220/0006246600470058.

Heiland, Deral & Sevier, Nathan & Littlebury, Chris. IoT Security Testing Methodology.

(2017, May 10). Retrieved January 30, 2019, from

https://blog.rapid7.com/2017/05/10/iot-testing-methodology/. Video available at

https://www.youtube.com/watch?v=Vg4NALUMsAs .

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 26
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Kim, J.-J & Hong, S.-P. (2015). A device identification method in the internet of things

(IoT) environments. 10. 33614-33616.

Microsoft, DICE: Device Identifier Composition Engine. (Jan 01, 2015). Retrieved

March 25, 2019, from https://www.microsoft.com/en-us/research/project/dice-device-

identifier-composition-engine/

Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M., Tippenhauer, N.O., Guarnizo, J.D., &

Elovici, Y. (2017). Detection of Unauthorized IoT Devices Using Machine Learning

Techniques. CoRR, abs/1709.04647.

Miettinen, Markus et al. “IoT SENTINEL: Automated Device-Type Identification for

Security Enforcement in IoT.” 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS) (2017): n. pag. Crossref. Web.

Why MUD?. Retrieved April 22, 2019, from https://developer.cisco.com/docs/mud/.

Wong, William G., A Roundtable Q&A on the Device Identity Composition Engine

(DICE). (Mar 09, 2018). Retrieved March 25, 2019, from

https://www.electronicdesign.com/embedded-revolution/roundtable-qa-device-identity-

composition-engine-dice

Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo, Martín Ochoa, Nils

Ole Tippenhauer, and Yuval Elovici. 2017. ProfilIoT: a machine learning approach for

IoT device identification based on network traffic analysis. In Proceedings of the

Symposium on Applied Computing (SAC '17). ACM, New York, NY, USA, 506-509.

DOI: https://doi.org/10.1145/3019612.3019878

Zelonis, Josh. Top Cybersecurity Threats In 2019. Landscape: The Zero Trust

Cybersecurity Playbook. Forrester. December 10, 2018	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 27
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Appendix 1
Setting up CloudJAM for DICE

1- For setting up CloudJAM to use DICE, firmware modification is needed to support

DICE. For that, modify the source code of the firmware with an IDE such as AC6 System

Workbench for STM32 to do coding. Download this IDE from this link:

http://www.openstm32.org/System+Workbench+for+STM32

2- When CloudJAM is running, viewing its output requires running a serial terminal such

as TeraTerm to view the UART output. Download this software from this link:

https://ttssh2.osdn.jp/

3- Then set up the Azure IoT hub to which the CloudJAM connects using DICE by

following these steps:

https://catalog.azureiotsolutions.com/docs?title=Azure/azure-iot-device-

ecosystem/setup_iothub

4- Provision (connect) the CloudJAM device to the Azure IoT hub using Device Explorer

as mentioned in the steps in this link:

https://catalog.azureiotsolutions.com/docs?title=Azure/azure-iot-device-

ecosystem/manage_iot_hub

5- Before connecting to the Azure IoT hub, build and compile the firmware code and

write it to the CloudJAM device as in step 3.1 on this page (Getting started tab):

https://catalog.azureiotsolutions.com/details?title=Cloud_JAM&source=null

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 28
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Appendix 2
Setting up osMUD on OpenWRT for MUD testing

1- Setup openWRT on a virtual machine. This VM acts in place of a physical router. The

steps in the link below help in setting up a VM that runs OpenWRT:

https://openwrt.org/docs/guide-user/virtualization/virtualbox-vm

2- Once the OpenWRT router VM is set up, install the osMUD manager onto it. Prepare

an OpenWRT docker container image in which to build osMUD using the steps in this

guide:

https://github.com/osmud/osmud/blob/master/BuildAndInstall.md

3- Once the docker container image is ready from the previous step, build the osMUD

image in the docker container and get the osMUD IPK file, using the steps in this link:

https://github.com/osmud/osmud#build-osmud-for-openwrt

4- After obtaining the osMUD image file, install osMUD onto the router with the

following steps:

https://github.com/osmud/osmud#install-osmud-on-the-router

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 29
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

Appendix 3
Setting up PAU06 Wi-Fi Adapter for monitor mode in Kali

Linux

1- First, see the associated physical interface for the wireless card with the command:

ls /sys/class/ieee80211

This command shows something like ‘phy0’ or phy and another number depending on

how many times the adapter was unplugged/replugged into the machine.

2- Delete the automatically added child interface wlan0 to add a child interface in

monitor mode:

iw dev wlan0 del

iw is the command used for wireless configuration.

3- Add the child interface in monitor mode with the following command (with the

appropriate phy<number>:

iw phy phy0 interface add wlan0mon type monitor

Check the information regarding the newly added interface with the following command:

iw dev wlan0mon info

This command shows the type of interface listing as monitor.

4- Set the new child interface into the ‘UP’ state using ifconfig:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

DICE and MUD protocols for Securing IoT Devices	 30
	

Muhammed Zahid Ayar, Muhammed.Ayar@student.sans.edu	 	 	

ifconfig wlan0mon up

5- Then to be able to capture not only management frames but also high-throughput data

frames, widen the channel bandwidth with the following command:

iw dev wlan0mon set channel 1 HT40+

Now the wlan0mon child interface is ready to for capturing wireless packets with

Wireshark or other packet capturing tool.

