
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Wireless Penetration Testing and Ethical Hacking (Security 617)"
at http://www.giac.org/registration/gawn

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gawn

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Discovering Rogue Wireless Access Points
Using Kismet and Disposable Hardware

GAWN Gold Submission

Authored by:
Larry Pesce

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Table of Contents

Table of Contents ………………………………………………………………… 2

Objective …………………………………………………………………………. 3

About Kismet ……………………………………………………………………. 3

About the Linksys WRT54GL …………………………………………………… 3

About our Other Disposable Hardware ………………………………………….. 4

Installing Kismet on Linux ………………………………………………………. 5

Installing Open Source Firmware on a Linksys WRT54GL ……………………... 6

Installing Kismet on the WRT54GL ……………………………………………… 8

Configuring kismet-drone on the WRT54GL ……………………………………. 9

Configuring Kismet Under Ubuntu with a Kismet Drone ………………………... 12

Using Kismet Under Ubuntu ……………………………………………………… 14

Issues with Detecting Rogues with the Linksys WRT54GL ……………………… 16

Drone Placement for Maximum Coverage ……………………………………….. 16

Installing WRT54GL Drones in a Production Environment ……………………… 19

Detecting Rogue APs with the Linksys WRT54GL ……………………………… 21

Going Mobile and Notes About Antennas ………………………………………... 26

Mapping and Recovery …………………………………………………………… 31

Conclusion ………………………………………………………………………... 38

Footnotes ………………………………………………………………………….. 38

 2

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Objective

The objective of this paper is to instruct the reader on how to install and operate Kismet
under a Linux operating system, as well as on a Linksys WRT54GL and other disposable
hardware. Through the course of this paper, the reader will understand how to use these
types of technology to detect rogue access points.

About Kismeti

Kismet is an 802.11 layer2 wireless network detector, sniffer, and intrusion detection
system. Kismet will work with any wireless card which supports raw monitoring (rfmon)
mode, and can sniff 802.11b, 802.11a, and 802.11g traffic.

Kismet identifies networks by passively collecting packets and detecting standard named
networks, detecting (and given time, de-cloaking) hidden networks, and inferring the
presence of non-beaconing networks via data traffic.

About the Linksys WRT54GLii

The Linksys Wireless-G Broadband Router is really three devices in one box. First,
there's the Wireless Access Point, which lets you connect both screaming fast Wireless-G
(802.11g at 54Mbps) and Wireless-B (802.11b at 11Mbps) devices to the network.
There's also a built-in 4-port full-duplex 10/100 Switch to connect your wired-Ethernet
devices together. Connect four PCs directly, or attach more hubs and switches to create as
big a network as you need. Finally, the Router function ties it all together and lets your
whole network share a high-speed cable or DSL Internet connection. See Figure 1 for an
illustration.

Figure 1 – Linksys WRT54GL

 3

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

About our Other Disposable Hardware

During the course of writing this paper, the author has discovered that the Linksys
WRT54GL has not been able to give us all of the proper information in order to
accurately locate and recover rogue access points. As a result, we will need to acquire
some additional hardware, at low or no cost.

In this case the author was able to acquire a fully working, low end laptop for free from a
local company who was going to dispose of it with their local computer recycler. This
laptop can be found on E-bay regularly for about $100, with the following specs and
illustrated in Figure 2:

Dell Latitude L400

• 700 MHz Pentium III Processor
• 128 Megabytes of RAM
• 8 Gig Hard drive (with appropriate disk wiping)
• External CD-ROM
• Power adapter

Figure 2 – Dell L400 laptop

The author was able to acquire a bundled Dell TrueMobile 802.11b wireless card with
external antenna that is suitable for use with Kismet. However, later in this document we
will describe an additional appropriate wireless card and additional antennas, at a total
cost of about $160.

For purpose of this paper, the author was able to put together a very inexpensive laptop
for Kismet, and for connecting to Kismet drones for about $260 including PCMCIA
network cards and antennas. With the cost of each drone at about $70, a moderate sized
installation of drones and management laptop/recovery laptop are affordable to
organizations on a very limited budget.

 4

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Installing Kismet on Linux

In this paper we will be installing Kismet on Ubuntu 6.06, the author’s Linux distribution
of choice. While this installation process may reference this particular Linux installation,
the steps should be very similar under all Linux distributions that support Kismet. For
installation under BSD derived OSes, OS X, or Windows, refer to the documentation on
the Kismet websiteiii, as all of these installation methods is beyond the scope of this
document.

The easiest way to install Kismet under Ubuntu is via the built in Debian style package
manager, aptitude. We will illustrate the installation here, but the preferred method will
be to install from source, as sometimes the package repositories may contain an older
version of Kismet.

To install using aptitude under Ubuntu 6.06 we need to perform a few simple steps. First
lets make sure that our repository is up to date. With your Ubuntu systems attached to
the internet, issue the following command:

sudo aptitude update

After the repository has been updated successfully from the internet, we will now need to
verify that the repository has updated:

sudo aptitude search kismet

This command will output the list of all know package names that contain the phrase
kismet:

p kismet - Wireless 802.11b monitoring tool

Now that we can confirm that aptitude knows where to obtain kismet, we need to install
it:

sudo aptitude install kismet

To install from source under Ubuntu, we must first make sure that we have the build
environment available so, we will need to perform the following on our internet
connected Ubuntu machine:

sudo aptitude install build-essential

After we have set up our build environment, we will need to obtain the latest version of
the source code. We will use wget to obtain the source:

wget http://www.kismetwireless.net/code/kismet-2006-04-
R1.tar.gz

 5

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Now that we have obtained the source we will need to un-archive the source so that we
can begin compiling:

tar –zxvf kismet-2006-04-R1.tar.gz

Now we will begin to compile the code to build our executable:

cd kismet-2006-04-R1
./configure
make
sudo make install

Now that we have compiled kismet, we need to perform some basic configuration to
make it work in our environment by editing the config file, /usr/local/etc/kismet.conf, as
root. We need to perform the following actions:

• Define a user to drop privileges to by editing the suiduser directive in the config
file to reflect an appropriate user on this Ubuntu system.

• Set a capture source. We will leave this section alone at the moment, as we will
need some additional information from our WRT54GL drone install, which we
will illustrate later in this paper.

• Set an absolute path for our output logs by modifying the logtemplate directive.
The author prefers the logs for kismet to appear in his home directory, so he
would use /home/lpesce in this case. If this directive is not defined, kismet will
output the logs in the directory in which kismet was started. This has potential to
make a mess of the system by leaving logs all over, which the author can never
find when he needs them. An example of this directive would be:

logtemplate=/home/lpesce/%n-%d-%i.%l

Save the config file. We are almost ready to run kismet, however if we were to start it
now, we would get an error. We have not defined any capture sources; kismet has no
idea at this point where to obtain information about wireless networks. Let’s go ahead
and build our kismet drone to give it the information it needs.

Installing Open Source Firmware on a Linksys WRT54GL

Fortunately, in 2000, several individuals discovered that Linksys had included open
source software in the firmware of the WRT54G line of hardware. As a result, Linksys
opened the firmware, and released it back to the community.

The community has taken the open Linksys firmware and developed a number of
different forks of the firmware; some good, some not so good. All of the community
developed firmware contain improvements in functionality over the stock Linksys

 6

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

firmware: WPA, increased wireless power, even direct access to the underlying Linux
OS.

For the purposes of this paper we will utilize the OpenWRT firmware on the Linksys
WRT54GL . In this author’s opinion, the OpenWRT firmware is the most robust for our
purposes, is easy to use, and will allow us access to the underlying Linux command line.
Additionally we will be focusing on the WRT54GL hardware, as this model is easily
modified, readily available, and distributed by Linksys for the sole purpose of third party
firmware support.

To install OpenWRT on the WRT54GL, we will first need to obtain the appropriate
firmware from the OpenWRT website at http://www.openwrt.org. We will be
downloading WhiteRussian RC5, with the jffs2 file system. One could utilize the
SquashFS file system as well, however the jffs2 file system is easier for us to modify
right out of the gate, albeit with some reduced available memory size. The discussion of
SquashFS versus jffs2 is beyond the scope of this paper.

Once we have acquired and extracted the OpenWRT firmware, we will need to connect
our PC/Laptop to any of the four Ethernet ports (not the WAN port) on the WRT54GL,
with the PC set to obtain an IP address via DHCP. Apply power to the WRT54GL, and
after a few moments the PC will obtain an IP address. If it does not, we may need to
perform a manual IP address renewal. Once an IP address has been obtained, we will note
that the PC has been assigned an IP address out of the 192.168.1.0 Class C subnet range,
with a default gateway of 192.168.1.1. With this information, we are able to begin the
upgrade of the firmware of the WRT54GL.

Open a web browser of choice and point it to 192.168.1.1, where we are presented with
the default Linksys login page. We will need to log in to the interface with the default
username of admin, and a password of admin. Once logged in to the web interface, we
will need to navigate to the Administration tab, and then select Upgrade Firmware. To
perform the upgrade, click the Browse button, select the correct OpenWRT firmware
from our local disk, click OK, and then the Upgrade button. After a few minutes the
WRT54GL will reboot and the upgrade will almost be complete.

One item of note, is that the upgrade will not truly be complete at this stage. With the use
of the jffs2 file system, the file system will not be created and ready for use, until a
second reboot. After the PC has obtained a new DHCP address after the first reboot, wait
one minute, and manually reboot the WRT54GL by removing the power.

After the second reboot, lets begin to use the device, by logging in to the web
administration of out new OpenWRT firmware. Direct your browser to the default
gateway address of 192.168.1.1, where we will be presented with the new OpenWRT
administration website. Now we can set a new password for the administrative user, root.
Upon selecting any of the menu options, we will be prompted to provide a new root
password. Let us provide a new password of our choice (a strong one of course), and
verify. We will now need to re-log into the device as root with our new password.

 7

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Before we can continue we need to have internet connectivity to our WRT54G on the
Internet or WAN port. When an Ethernet cable is connected, the default configuration of
our OpenWRT installation is to obtain IP address information on the Internet/WAN port
via DHCP. We will be assuming that you have an appropriately configured DHCP server
for this exercise. We do need internet connectivity for our WRT54GL to obtain packages
from the internet for installation. There are other methods, but they are not nearly as
efficient.

Installing Kismet on the WRT54GL

We now need to begin installing some software on our WRT54GL to make it a bit more
useful for our purposes; Kismet, Kismet-drone and wl drivers through “ipkg” packages.
The kismet and Kismet-drone packages are what we will use to detect our rogue access
points. The wl drivers package includes some wireless utilities that we require for this
installation. Unfortunately, the wireless chipset in the WRT54GL does not support
channel hopping (scanning though all 12 U.S. channels), so in order for us to perform
channel hopping with Kismet and kismet_drone we will need the wl driver package in
this pursuit, which will be detailed later in this document.

So, we will need to SSH to the WRT54GL as root to install our packages with:

ssh 192.168.1.1 –l root

Once connected, we need to perform the following commands:

ipkg update
ipkg install kismet

By installing the kismet base, it will install the other dependencies: libncurses, libgcc,
kismet-client and kismet-server. We also need to install kismet-drone

ipkg install kismet-drone

In order to provide channel hopping for our kismet installation, we will need to install the
wl package:

ipkg install wl

We also need to provide a script to automate the channel hopping process, as the
broadcom chipset in the WRT54G does not support channel hopping. In order to perform
channel hopping, we need to provide a manual method, via a scriptiv in /etc/init.d:

cd /etc/init.d
vi S70JW_scan

 8

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Paste the contents of the following script in to an editable vi window:

#!/bin/sh
while : ; do
 wl channel 1 ; sleep 1
 wl channel 6 ; sleep 1
 wl channel 11 ; sleep 1
 wl channel 2 ; sleep 1
 wl channel 7 ; sleep 1
 wl channel 3 ; sleep 1
 wl channel 8 ; sleep 1
 wl channel 4 ; sleep 1
 wl channel 9 ; sleep 1
 wl channel 5 ; sleep 1
 wl channel 10 ; sleep 1
done

Save the file and exit vi.

Alternatively we can obtain the script form the internet with wget from Renderman’s
Renderlabv:

wget http://www.renderlab.net/projects/wrt54g/S70JW_scan

We also need to change the permissions to the file to be executable at boot regardless of
the method in which we obtained the script:

chmod 777 S70JW_scan

The script that we have just created will set the channel of the wireless chipset using the
wl command every second. We have set it to start up after every reboot, as in this
particular type of installation, which is why we have placed it as part of the system
startup scripts. If it did not restart after every reboot, we would be only able to monitor
one channel, which would not be very useful to us, as a nefarious individual has the
ability to set their rogue on any of the 12 available channels at will, so we need to be able
to detect on all 12 channelsvi. We should also note that the author’s chipset in the
WRT54GL does not support channels 13 or 14 (for use outside the U.S. in limited
countries), which is important, as an attacker could potentially violate any FCC (or
equivalent regulatory agency) regulations in pursuit of their goals. Unfortunately the
WRT54GL would miss APs transmitting on channels 13 and 14 in the U.S., and the
author does not condone violating any regulatory requirements.

Configuring kismet-drone on the WRT54GL

Just like the setup under Linux, we need to modify kismet configuration files. Where we
will only be having the WRT54GL act in the kismet-drone configuration for AP

 9

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

detection. In this case we need to edit /etc/kismet/kismet_drone.conf to define the source
for the wireless interface. While SSHed to the WRT54GL, use vi to make the changes to
the file by setting the appropriate source:

source=wrt54g,eth1,wrt54g

Make sure that all other “source” lines are commented out or removed.

We will also need to change the setting to determine which hosts are allowed to connect
to the drone via the network. In the illustration here we will set it the drone to allow
anyone to connect the Kismet drone on the WRT54GL. Please use appropriate settings
for your network, and only allow certain hosts to connect. Hosts can be defined in this
setting as comma separated values, with individual hosts, or by network with appropriate
subnet mask.

Change the allowed hosts line in the kismet_drone.conf to read:

allowedhosts=0.0.0.0/0.0.0.0

Save the config.

We also need to make some changes to the firewall on our WRT54GL so that we can
connect to the kismet drone on the WAN port for our later exercises. We should also
allow SSH connections on the wan port as well. We can accomplish these firewall
changes by editing /etc/firewall.user. In this file we need to locate the Open Port to
WAN configuration section. In this section we will note that two configuration lines
exist for enabling SSH access via the WAN port, but they have been commented out.

Uncomment the two SSH configuration lines in the Open Port to WAN section, and copy
and paste a second copy of the two lines. Modify the new second copy of the SSH
configuration lines, and modify port 22 to be 3501, the default kismet_drone port. Our
final Open Port to WAN section should look like this:

iptables -t nat -A prerouting_rule -i $WAN -p tcp --dport 22 -j ACCEPT
iptables -A input_rule -i $WAN -p tcp --dport 22 -j ACCEPT
iptables -t nat -A prerouting_rule -i $WAN -p tcp --dport 3501 -j ACCEPT
iptables -A input_rule -i $WAN -p tcp --dport 3501 -j ACCEPT

Save and exit the /etc/firewall.user file. These changes will be applied after a reboot, but
we can make them active immediately by issuing the following command:

/etc/init.d/S45firewall restart

We need to make sure that we also start kismet_drone as a service, as we may not have
SSH access to the device if deployed remotely. We will need to have access to the drone
on TCP 3501, as this is the default port that kismet_drone communicates with, however it
is configurable via the /etc/kismet/kismet_drone.conf file.

 10

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

To set kismet_drone to start up on boot, use vi to create the file
/etc/init.d/S80kismet_drone on the router with the following:

#! /bin/sh
echo "Setting radio for kismet_drone"
mkdir /var/log
/sbin/ifconfig eth1 up
/usr/sbin/wl ap 0
/usr/sbin/wl disassoc
/usr/sbin/wl passive 1
/usr/sbin/wl promisc 1
/usr/sbin/wl monitor 1
echo "Running kismet_drone"
/usr/bin/./kismet_drone -f /etc/kismet_drone.conf >
/dev/null 2>&1 &
sleep 3
echo "kismet_drone now running"

We also need to make sure that the file is executable:

chmod 777 S80kismet_drone

The script will do a number of things for us to set up the WRT54GL to allow
kismet_drone to run, and to protect the user from any legal entanglements. The first two
steps make sure our environment is sane, by making sure our log directory exists, and
sets the wireless interface into the up state. Then the script performs a number of actions
to the wireless:

• wl ap 0 sets the WRT54GL in client mode to prevent unauthorized access to the
client wired network

• wl disassoc clears any incidental network associations that could affect scanning
results.

• wl passive 1 puts the built in scan engine into passive mode to prevent from
connecting to any wireless networks as a client. This prevents accidental traffic
capture on wireless networks that we are not authorized to connect to.

• wl promisc 1 places the wireless interface into promiscuous mode just for good
measure, as we don’t want to miss any appropriate wireless traffic.

• Finally, the script starts kismet_drone using the configuration file that we have
modified for our installation.

Now that we have completed the setup of our drone, we should test that our configuration
survives a reboot. Reboot the WRT54GL by either removing the power, or by issuing the
reboot command via SSH. Once the reboot has completed, SSH to the WRT54GL as
root, and let us verify that we have our scripts running:

 11

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

ps –ef

This command should return the following output:

 PID Ui VmSize Stat Command
 1 root 368 S init
 2 root SW [keventd]
 3 root RWN [ksoftirqd_CPU0]
 4 root SW [kswapd]
 5 root SW [bdflush]
 6 root SW [kupdated]
 8 root SW [mtdblockd]
 49 root SWN [jffs2_gcd_mtd2]
 67 root 348 S logger -s -p 6 -t
 69 root 368 S init
 70 roo 344 S syslogd -C 16
 72 root 304 S klogd
 330 root 328 S wifi up
 425 root 380 S udhcpc -i vlan1 -b -p /var/run/vlan1.pid -R
 441 nobody 424 S dnsmasq -K -F
 447 root 400 S /usr/sbin/dropbear
 448 root 380 S httpd -p 80 -h /www -r OpenWrt
 457 root 260 S telnetd -l /bin/login
 458 root 344 S crond -c /etc/crontabs
 846 root 600 R /usr/sbin/dropbear
 859 root 520 S -ash
 1454 root 748 S /usr/bin/./kismet_drone –f /etc/kismet/kismet_drone
 1462 root 388 S /bin/sh /etc/init.d/S70JW_scan start
12254 root 244 S sleep 1
12255 root 360 R ps -ef

We will note that in this case, our two init.d scripts have restarted after a reboot and are
running under PIDs 1454 and 1462. Now that we have successfully created our drone,
let’s configure kismet under Ubuntu to use it.

Configuring Kismet Under Ubuntu with a Kismet Drone

Earlier in this paper we discussed defining a capture source in our kismet configuration
under Ubuntu. You will recall that we left the source alone in order to obtain more
information about our drone, which we have now built on our WRT54GL.

On our Ubuntu installation, we now need to edit /usr/local/etc/kismet.conf to define an
capture source of our WRT54GL. By defining this source, we will be telling kismet to
obtain information about the wireless networks from the WRT54GL drone via the
network, as opposed to a wireless card located locally to our Ubuntu installation. The
wonderful thing about this set up is that we have the ability to monitor wireless networks
from a remote location via a wired network. Sure, we can accomplish this over our own
LAN, but this could also be accomplished via the internet as long as we have the IP of the
WRT54GL, and can open a single TCP port to the drone.

So, in our installation we need to define a source directive in /usr/local/etc/kismet.conf:

source=kismet_drone,192.168.1.1:3501,drone1

 12

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

This defines our source as a kismet_drone (so that kismet can appropriately decipher the
data), the IP address and port of our drone (in this case 192.168.1.1 on port 3501) and an
arbitrary name.

It is possible to have more than one input source. You could obtain information from
multiple drones as well as a local wireless card simultaneously. This would be extremely
helpful if one were to install an entire network of drones in a facility. We will cover this
a bit more in depth later in this chapter.

Now that we have an appropriate capture source defined for Kismet, we need to verify
that our setup is functional. Make sure that the WRT54GL is plugged in, and your
Ubuntu computer is attached to a LAN port on the WRT54GL. Once you have obtained
an IP address via DHCP from the WRT54GL, lets start kismet:

sudo kismet

Kismet should now connect to the drone running on the WRT54GL and display the
information that it is obtaining about wireless networks on the Ubuntu computer as
indicated in Figure 3.

Figure 3 – The Kismet display

 13

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Obviously your discovered wireless networks will be different, and the network list has
been sanitized. Now that we have Kismet working with a drone, we will also need to
make it work with our Ubuntu installation so that we can accurately recover rogue access
points.

Using Kismet Under Ubuntu

Previously in this paper, we have installed Kismet under Ubuntu and set up a capture
source to use a kismet drone. However, we will also need to set up our Kismet
installation to read from a local source.

In this example we will be using a wireless card in our laptop with an Atheros based
chipset. In this case we will be using the 300mW a/b/g from Ubiquiti Networksvii. I
have previously configured this card under this Ubuntuviii, and a discussion of setting up
various wireless cards is beyond the scope of this paper.

For this installation, we will need to add an additional capture source to the
/usr/local/etc/kismet.conf file:

source=madwifi_ag,ath0,local

This source defines the driver to use, the BSD style interface, and a unique name. We’ve
elected to use the madwifi_ag driver (as previously configured) which will utilize the A,
G and B bands, contrary to what the name implies; the G portion of the driver actually
utilizes both B and G bands simultaneously. Additionally, the ath0 interface is the
appropriate interface for this card for use with our drivers.

Before we start Kismet, we can make some modifications to the default GUI layout to
make recovering rogue APs easier. We will note the default display in Figure 4.

Figure 4 – Kismet default display

 14

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

You will note that in the default display that there is no indication of wireless signal
level. We are able to obtain the wireless signal level for each AP that is discovered with
Kismet, by performing the following in the Kismet GUI:

• Display the sort discovered networks list menu by pressing s, and then sorting the
networks as you see fit. The author prefers to sort by SSID, by then pressing s.
Press q to return to the main display

• Use the arrow keys to highlight a network in question, and press the l key to
display signal information. After reading the information and noting the graph,
press q to return to the main display.

• Use arrow keys to highlight the next network in question…
• Lather, rinse and repeat as needed.

As you can see, the process for obtaining signal information from multiple access points
can be tedious. We can modify the default to display our most needed information by
adding the SNR (Signal to Noise Ratio) figure, and the graph to the default display.
As we will be using the wireless signal level (via SNR) and the signal graph to recover
rogue APs, it will be much easier to have that information displayed up front.

In order to make our display more helpful to us we will need to modify the default layout
of the Kismet display. We can accomplish this by editing the
/usr/local/etc/kismet_ui.conf. In this file, we will make note of the column configuration
directive as this line defines the columns that are displayed. To the end of the column
directive line, add signal and signalbar separated by commas so that it looks like this:

columns=decay,name,type,wep,channel,packets,flags,ip,size,
signal,signalbar

 15

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Now that we have modified how our display will look, restart Kismet, and we will note
that the display has changed in Figure 5.

Figure 5 – Signal information in Kismet display

Now let us put all of this information together and get hunting some rogue access points!

Issues with Detecting Rogues with the Linksys WRT54GL

Unfortunately, the author discovered during the research for this paper, that we cannot
use the WRT54GL for actually recovering rogue APs. In order to accurately locate the
rogue APs we need to have signal strength information that we just configured in the last
section under our Ubuntu installation. As the author discovered, Kismet on the

 16

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

WRT54GL is unable to gather signal strength information! This limitation is due to the
nature of the drivers for the Broadcom wireless chipset on the WRT54GL. Broadcom
has not released the source code or enough design specifications to determine signal
strength from the chipset. The binary driver available from either Linksys or Broadcom
does not support signal strength information, or the community is unable to determine
signal strength.

However the WRT54GL is still valuable in this exercise. Due to the low cost, small form
factor and ease of use, we can leverage one or more of these devices set up as drones to
detect a new AP entering our environment.

Drone Placement for Maximum Coverage

When we place a drone, we will want to place the drone in an appropriate place to
maximize our coverage. Every place that is not covered by the wireless signal of our
drone is a place in which a drone could possibly be placed and would be undetectable.
Let us take this simple example under consideration as indicated in Figure 6.

Figure 6 – Ineffective drone placement

In this example, we have an empty square room with our drone placed in the lower right
hand corner. While this may be a convenient location for placement, it is clear that we do
not have coverage (as indicated by the red circle) in the upper left corner of our room. In
the area that is not covered, it would be possible to install a rogue access point, and have
it go undetected by our drone. It is also good to note that the drone has a rather large
wireless footprint outside of our structure, which may have value in some applications.

If we were to centrally locate our drone, we could more effectively cover our room as
illustrated in Figure 7.

 17

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Figure 7 – Effective placement of a drone

After moving our drone, we can clearly see that we have achieved full coverage inside
our room.

This example is cut and dry. However there may be instances in which we are not able to
cover an entire space with one drone. Figure 8 indicates that we have a much larger,
empty room with multiple drones placed in opposing corners.

Figure 8 – Drone placement in corners of larger space

 18

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Again, in this illustration of our larger room, we have some gaps in coverage with our
drones. A more effective solution for this room might be to increase the number of
drones to four as indicated in Figure 9.

Figure 9 – Coverage with 4 drones

 19

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

In this larger room with the addition of more drones as indicated in Figure 7, we have
completely covered our room with signal with plenty of overlap, and some significant
bleed over into the exterior of our structure.

It is important to note in these examples we are illustrating absolute ideal conditions. The
signal of our drones in these environments has not been affected by placement of
furniture, elevators, and walls that may reduce coverage. Additionally, the exterior of the
structure would impose some signal loss to the bleed over ranges. When faced with a
real world installation, it would be advisable to perform extensive testing in the real
world environment to achieve appropriate coverage.

With the installation of four drones, we have increased our costs, however we have also
reduced our risk. In all environments, it may be possible to have some risk involved at a
reduced cost. The balance of risk versus cost should be analyzed for each real world
installation.

Installing WRT54GL Drones in a Production Environment

One needs to exercise caution when installing our WRT54GL kismet drones in a
production environment. These devices are access points after all, and they should be
treated as such. While the wireless interface on these access points are active, you will
recall that they are constantly channel hopping. While this will certainly make it difficult
(if not impossible) for an attacker to connect to our drones via wireless, it is possible for a
failure to occur, thus making this access point another method of access to the wired
network.

 20

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

During our installation of drones, we should also take into account the two Ethernet
segments that exist on our router; the LAN and the WAN. Both of these segments can
cause different installation issues. Regardless of the method of installation the Ethernet
side of our drones should be attached to a network separate from the production network,
whether via a standalone air-gapped network, or on a DMZ with limited or no access to
other networks. Also, do not forget to account for an additional Ethernet port for our
Ubuntu laptop that will act as our monitoring station.

When using the Ethernet port for connection to our standalone drone network, we need to
note the default IP configuration of the WRT54GL. If we are attaching multiple drones,
note that the default configuration of the drones is to have a LAN IP address of
192.168.1.1, and are set to deliver DHCP addresses on the LAN interfaces. This can
cause issues with duplicate IP addresses, and issues with multiple DHCP servers handing
out the same address pool on the same network segment.

If you wish to implement multiple WRT54GLs on the drone network, you will want to
change the LAN IP and disable the DHCP server on one or more devices. In order to
change these settings, enter the commands below as needed.

To change the IP address of the LAN interface of the WRT54GL, perform the following
via SSH and inserting the appropriate IP address and subnet mask where appropriate:

lan_ifname=br0
lan_ifnames="vlan0 eth2"
lan_proto=static
lan_ipaddr=x.x.x.x
lan_netmask=x.x.x.x

To disable the DHCP server, edit the /etc/dnsmasq.conf and comment out the dhcp-
authoritative line in the enable dhcp section. The new enable dhcp section should look
like this:

enable dhcp (start,end,netmask,leasetime)
dhcp-authoritative
dhcp-range=192.168.1.100,192.168.1.250,255.255.255.0,12h
dhcp-leasefile=/tmp/dhcp.leases

LAN DHCP will be disabled after a reboot, or we can force it to disable by restarting the
service:

/etc/init.d/S50dnsmasq restart

In the other scenario, we may wish to connect the WRT54GL drones to the protected
drone network via the WAN port. This configuration will provide more security from
attacks via the wired network, should anyone gain access. As you may remember, during
the configuration of our drone, we modified the iptables firewall rules for the WAN port,
and these iptables rule sets can be as strict as you desire.

 21

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Keep in mind, that when connecting via the WAN port, that by default it expects to
obtain IP information via DHCP. If there is no DHCP server on the protected drone
network you will want to configure the WAN IP addresses for a static IP address. This
can be accomplished by issuing the following commands to the WRT54GL via SSH, and
inserting the appropriate IP address and subnet mask where appropriate:

wan_ifname=vlan1
wan_ipaddr=x.x.x.x
wan_netmask=x.x.x.x
wan_proto=static

Detecting Rogue APs with the Linksys WRT54GL

As indicated earlier in this paper, there are some significant problems with recovering
rogue access points using the Linksys WRT54GL as of this writing. However it is
possible to detect rogue APs with the WRT54GL as a kismet drone.

We will need to set up our kismet drone(s) in our environment with appropriate coverage,
and connect our Ubuntu laptop to our protected drone network. We can use our existing
configuration on our Ubuntu laptop as both a monitoring station and as a rogue APs
recovery unit. We will need to make a few additions to our kismet.conf to ensure that we
have defined all of our capture sources.

We will verify that we have 4 drones defined as capture sources, and one local capture
source in our /usr/local/etc/kismet.conf. Our capture sources should look something
similar to this, with IP addresses as appropriate for our installation:

source=kismet_drone,192.168.1.1:3501,drone1
source=kismet_drone,192.168.1.2:3501,drone2
source=kismet_drone,192.168.1.3:3501,drone3
source=kismet_drone,192.168.1.4:3501,drone4

Now that we have all of our capture sources defined in our master kismet.conf under
Ubuntu, we need to create configurations for use when monitoring drones and for
recovering rogue APs with our laptop. Let’s make two copies of our kismet.conf:

sudo cp /usr/local/etc/kismet.conf
/usr/local/etc/kismet_monitor.conf
sudo cp /usr/local/etc/kismet.conf
/usr/local/etc/kismet_recover.conf

Now we will need to use both configuration files for our dual purpose. In
kismet_monitor.conf, we will remove the local capture source, and leave the drones. We
will do exactly the opposite in kismet_recover.conf, as we will leave the local source, and
remove the drones.

 22

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

We now also will want to be able to start kismet in our two different modes. In order for
us to start kismet, we will need to specify command line options to use the different
configuration files. The following line will start kismet to monitor our drone installations

sudo kismet –f /usr/local/etc/kismet_monitor.conf

We can start our recovery efforts with kismet by starting it with:

sudo kismet –f /usr/local/etc/kismet_recover.conf

In order to determine which drone has spotted a rogue AP, we need to perform some
command line and or scripting magic. Unfortunately, when using multiple drones
attached to a single monitor, we are unable to determine which drone has actually seen an
access point. All data compiled at the monitor location has no concept of which drone it
originated at. Conversations with the Kismet developer, and on the forums seem to
indicate that gathering this information is unlikely to happen.

However, in a multiple drone scenario, we are able to have some workarounds. First, let
us assume that we have four drones located and labeled as indicated In Figure 10.

Figure 10 – Four labeled drones

In this scenario, we will need to create several kismet.conf files in /usr/local/etc. We will
create each kismet.conf with a single source entry; one for each drone in our environment.

 23

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

As needed, we will exit our kismet monitor when a rogue AP is discovered, and cycle
through restarting kismet for each drone and searching for our rogue AP.

There are a few problems associated with exiting our multiple drone monitor set up and
cycling through our drones to re-locate a rogue AP. If a period of time has passed from
when we discovered the rogue AP to when we take action, the rogue AP may have a
cloaked SSID (the SSID is not broadcast), which Kismet would have initially displayed
as <no ssid>. However, kismet acts in a passive manner, so the longer it listens for
wireless traffic in a given location the more information that it can gather. So, if a client
were to associate to the rogue AP, kismet would then be able to determine the SSID as
that information is transmitted over the air in the clear, which kismet can interpret.

When we exit the kismet monitor connected to all of our drones and cycle through our
drones one at a time, we have effectively cleared our display, and have lost any
information gathered from cloaked rogue APs. It is important to note that before exiting
the multiple drone monitor to record the MAC address of the rogue AP. This can be
obtained by scrolling through the list with the arrow keys to the alleged rogue AP, and
entering i on the keyboard to display the AP information screen as shown in Figure 11.

Figure 11 – Access Point information screen

It may be required to sort the wireless network list before it is possible to scroll through
the wireless networks with the arrow keys. This is accomplished by performing a sort on

 24

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

the wireless network display, effectively disabling the autosort feature (which is the
default sort method). Sorting can be performed by typing s at the main display which
will display the sort method selection as shown in Figure 12.

Figure 12 – Display sort screen

The author prefers to sort the network list by SSID by typing s in the sort method display,
but you should choose a sort method that is appropriate for you.

Now that we have our rogue AP MAC address recorded, we will begin cycling through
our drones. Upon connecting to each drone, we will be presented with a list of wireless
networks. If the rogue is not displayed by SSID (even after a sort), we can probably
assume that the rogue has been cloaked. This is the exact reason that we have recorded
the MAC address of our rogue, as we are able to obtain additional information about all
of the APs discovered by kismet, even for APs that are cloaked. We can sort our wireless
network list in Kismet, and examine the additional information (as described earlier) for
each cloaked AP. With this additional information, we are able to determine if they are a
match to the previously discovered rogue by comparing MAC addresses.

Let us assume that the drone has been placed in one corner of our building as indicated in
Figure 13.

Figure 13 – Rogue in corner

 25

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

It is possible for us to get lucky and find our rogue AP on our first drone that we cycle
though, but this may not give us enough information to narrow down our rogue. It is a
good idea to cycle through all of our drones in a particular geographic location; don’t
forget to not only think horizontally (on a single floor), but vertically as well (across
multiple floors. If you were to install multiple drones across several floors, it may be
possible for drones to discover a rogue AP from a floor above and below. By only
checking one drone for our rogue, we could go on a wild goose chase attempting to
recover our rogue.

It is also important to examine multiple drones in the same geographic location to narrow
down search areas for recovery. For example, assume we have a rogue AP in the location
as shown in Figure 14.

Figure 14 – Rogue in overlapping coverage area

 26

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

In this instance, if we were to only check one drone, we’d probably want to begin our
recovery in the areas covered by drone 1, which is a fairly significant area. If we had
checked all of our drones in our geographic location we would have noted that the rogue
was actually seen by drone 1 and drone 2 in the overlapping drone coverage area. We
would have also noted that the rogue AP was not seen by drone 3 and drone 4, so these
areas could be eliminated from the start. Given that this rogue was seen by two access
points, it is a fairly good indication that it is located in the overlap zone for drone 1 and
drone 2. This overlap area is significantly smaller than the location we could have
searched had we only investigated drone 1. Depending on the size of the overlap area in
an installation, we might have been able to skip the mapping for recovery section entirely
and performed a manual search.

Once we have been able to narrow our search location by cycling through our drones, we
will want to go mobile with our laptop and perform some mapping to recover the rogue
AP.

Going Mobile and Notes About Antennas

In order for us to begin mapping the location of our drone we need to shut down Kismet
(after recording the MAC address of the rogue!), and gather our equipment and head to
the suspected location. When we arrive, we will want to insert our wireless card and
attach our directional (yagi) antenna.

 27

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

For this paper, the author elected to use a 300mW PCMCIA Atheros based wireless card
from Ubiquitiix available from a number of internet based retailers for about $130. Yes,
in this case, the wireless card was more expensive than the disposable laptop!
Additionally, a Senaox 200mW Prism 2.5 based card, available for about $60 could have
been used for some more cost effectiveness. Both cards are illustrated in Figure 15.

Figure 15 – Senao (top) and Ubiquiti (bottom) PCMCIA network cards

Additionally, a yagi antennaxi (Figure 17) and connector (pigtail)xii will be necessary to
perform mapping for our rogues while mobile, and can be obtained for around $40. The
antenna and pigtail can be interchanged between the two recommended cards. It may
also be a good idea to order a pair of omni directional antennasxiii for either card, and be
able to reuse the card for other purposes. These omni directional antennas can be
purchased for about $15, and are also interchangeable between the two recommended
cards. The omni antenna and yagi pigtail are shown in Figure 16.

Figure 16 – Yagi antenna

 28

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Figure 17 – Omnidirectional Antenna (left), Yagi pigtail (right)

As you will note, we have just touched upon two different types of antennas; omni
directional and yagi. These two antenna types have some very significant design
differences for different tasks. The WRT54GL drones come equipped with omni
directional antennas, which cover an area with wireless over a large, circular area shaped
similar to a donut. The omni directional antennas typically are deployed horizontally, but
can provide a “tall” coverage area that may extend through multiple floors in the same
donut shape, as indicated by the coverage diagram in Figure 18.

Figure 18 – Omni antenna horizontal polarity coverage

 29

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A yagi antenna has a focused coverage area with a general shape of a slice of pie, with
the point beginning at the antenna. Yagi antennas can have different widths of focus,
depending on the design. In addition to the narrow focus, shaped like a pie, orientation of
the antenna becomes very important as well. A yagi antenna is subject to polarization
(orientation), in either the horizontal or vertical planes. Imagine that slice of pie laying
on a plate (horizontal polarization) or standing on edge (vertical polarization). With that
description, it is easy to understand how those features can be to our advantage. Note the
“pie” shape of the yagi Figure 19.

Figure 19 – Yagi antenna horizontal polarity coverage

 30

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

With a yagi in horizontal polarization, we will be examining a pie shaped wedge on a
single floor of our environment. With the vertical polarization, we’d be examining a
narrow path over multiple floors. Seeing that we have cycled though our drones to
determine what floor our rogue AP is on, vertical polarization would probably be
overkill. For our best results for rogue AP recovery we will be using our yagi antenna
with horizontal polarity.

One additional note on a yagi antenna is that while most of the direction of the antenna is
facing “forward”, there is a small bit of coverage behind the antenna as well as indicated
in blue highlighting in Figure 20.

Figure 20 – Yagi antenna rear lobes

It is important to note this as we map our readings to recover rogue APs, as these rear
lobes can detect a close rogue AP with a strong signal, and it is possible to have that
rogue be located behind the reading location. We’ll discuss these pitfalls more in depth
later in this paper.

Now that we understand the differences in our antennas, we need to take our rogue
discovery mobile. Shut down our multiple drone kismet monitor down after recording
the rogue MAC address, insert our wireless card and attach our yagi antenna. We will
then want to restart Kismet with our configuration for our mobile setup; the configuration
that we created earlier with no drone capture sources and our wireless card as a local
capture source. We can start our Kismet mobile setup by issuing the following
command:

sudo kismet –f /usr/local/etc/kismet_recover.conf

We should now notice that we have signal strength and signal to noise ratio (SNR)
displayed in the Kismet display. Obviously, we are able to obtain signal strength from

 31

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

the chipset in our PCMCIA wireless card, unlike that of the wireless chipset in the
Linksys WRT45GL as we can see highlighted in red in Figure 21:

Figure 21 – Signal strength in Kismet

We have previously modified our kismet display to place this information on the main
display, as this will be the vital information on performing our rogue AP recovery.

Mapping and Recovery

There are several methods that can be used for creating our maps for recovery; some
electronic, some manual. Even with these two categories, there are many varied methods
for performing the mapping and information gathering, all with their benefits and
detractions. We will be illustrating the method that has proved the best results for the
author while maintaining a low, disposable cost.

In the author’s opinion, the best way to perform our mapping is the low-tech approach;
paper, pencil and some educated guessing. With our low cost hardware, we certainly
wouldn’t want to do complex statistical analysis with our readings; it would probably
take too much time. The paper and pencil can get us close enough, in a short amount of
time.

 32

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

The recovery process will almost never be able to give us an “X marks the spot” type of
answer as to where a rogue AP is located. What our mapping process will give us is the
ability to significantly reduce the area in which we will need to perform a physical
search. A physical search will certainly be a part of the process, but by making some
educated guesses through our mapping efforts, the area in which we have to search will
be significantly less.

In addition to our paper and pencil, intuition is also a very integral part of the process.
Unfortunately using signal strength and or signal to noise ratio (SNR) is not a perfect
science, even in our perfect world scenarios that we have been using. In a real world
example, there are a huge amount of outside forces that affect our signal strength and
SNR; furniture, cordless phones, harmonic frequencies from unknown sources, building
materials, microwaves, etc. The list can go on and on; with so many variables, educated
guessing plays a large role. We’ll take our readings and learn how to make some
educated guesses.

As a first step, we will need to print off a copy of a map of the suspected area of our
drone. In the event that a map is not available, draw up a reasonable representation of the
area. Remember, it does not need to be perfect, or to scale! Find a suitable writing
implement, and let us begin taking some readings. We’ll use the map of our single drone
environment for illustration purposes as indicated in Figure 22.

Figure 22 – Map used for Recovery

 33

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

In this example, we’ll assume that the rogue AP was only seen by a single drone so that
we can illustrate how we will narrow down a large area for our physical search. The
same concepts will apply to a smaller area or by multiple drones. Additionally, we’ve
elected not to focus on a rogue AP that has been seen by two drones. In many real world
cases, the area covered by two or more drones in which a rogue has been seen may be a
small enough area to physically search without having to perform additional readings.

For this paper, the author will digitally mark up the example map for legibility purposes,
where the real world example would be collected on paper. Certainly any real world
example could be recorded digitally as well.

In order to begin mapping, we’ll want to pick some common sense locations to take some
signal readings from. Ideally we want to pick our reading locations form the far edges of
the coverage area of the drone. In Figure 23, we’ve selected 4 locations, designated as
blue circles at the edges of the drone #1 coverage area.

Figure 23 – Reading locations

From each of our test locations, we will need to take several readings with the yagi
antenna pointed in different directions. We’ll want to be sure that we are point the yagi
inside our drone coverage area, as that is where the rogue would appear to be. You will

 34

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

note that we will be taking multiple readings from each location. These directions are
intended to cover the entire drone coverage area with our pie shaped yagi antenna
coverage area. For each reading we should obtain enough information to to make
educated guesses on the location of the rogue AP. In Figure 24 we will note the
suggested directions for pointing the antenna for our readings.

Figure 24 – Directions for signal strength readings

To obtain our readings, we will be using Kismet to record the signal strength of our rogue
from each location and direction on our map. We’ll be recording those values on the map
for later interpretation. In order to obtain our readings, start Kismet with our recovery
configuration file, sort the network list and locate the appropriate entry of the rogue AP
by matching it to our previously recorded MAC addresses. These steps have been
covered at length in this paper, so please refer to the appropriate sections for additional
information.

For each location and direction, we will be recording the signal strength as indicated in
the display of Kismet. We will note when we point the yagi and remain still for each
direction that the signal strength will change each time the display will refresh.
Obviously, this makes it difficult to take an absolutely accurate reading. We will
probably notice that each direction will display dips and increases, however we will
quickly notice that there will be a very distinct range that repeats. For our educated
guess, take a quick mental average of several readings in the repeatable range during a
15-30 second time period, and record it on the map. We’ll then need to repeat the same

 35

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

signal strength reading process for all of our directions in all locations. When we are
complete, we should have a map that looks similar to the map in Figure 25.

Figure 25 – Recorded readings

Once we have obtained all of our readings, we can begin to interpret them using some
educated guesses. First off, we should note that with signal strength, bigger is better; the
larger the number, the stronger the signal. We also need to remember some elementary
math; -1 is actually larger than -5. So, a smaller negative number in our readings mean
increased wireless signal.

By looking at our recorded figures, clearly the lower left hand corner has some readings
that are significantly larger than the others. From that educated guess, we could be led to
believe that the rogue AP is located fairly close to our reading location given that the
signal strength is high. As a result, we’d probably want to focus our search area in that
relative area. This estimated reduced search area has been indicated in Figure 26 in blue.

 36

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Figure 26 – Reduced search area

Additionally, we see some other supporting information from the three remaining read
locations. The top left point has a reading of -28 pointing towards our reduced search
location in the lower left. In the top right (-39) and in the bottom right (-30), we have
additional, similar type of readings all pointing to our reduced search area. Clearly these
particular readings are significantly different than the other readings (those in the -80s
and -90s) from those same three locations.

In Figure 26, we have centrally located our reduced search area facing outward from our
reading location. We can also attempt to shift that to the left or down, based on a more
refined look at out readings. If we look at our readings in the lower left again, we can
note that the signal readings would indicate that the rogue AP signal is stronger towards
the -15 reading (pointing up) as opposed to the -19 reading (pointing right). If we then
compare the stronger -15 reading and the opposing reading in the upper left corner of -28
to the weaker reading of -19 and the opposing reading in the lower right corner of -30.
These comparisons do seem to indicate that the rogue AP would be located closer to the
left hand side of our map. We can further refine our reduced search area as indicated in
Figure 27.

 37

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Figure 27 – Refined reduced search area

We should be wary of our reduced search area in this case. Certainly these search areas
are only a rule of thumb, but we should make note as to why we can be in error.

In this particular case we have indicated that the figures that we are relying on to refine
our reduced area are indicative of a sifted search area, but we should note that the figures
are very close. We have also indicated on our methodologies for reading that the signal
strength can vary, and that we are only recording approximate values. As a result of
these sampling methods, we are inserting a moderate margin of error. While many of the
recorded signal level values have a significant difference, we do need to make a mental
note about the relative margin of error. Through the understanding of this margin of
error, we should understand that we should only use these refined search areas as a good
starting point for our physical search. If in fact the rogue AP has not been located in our
starting area, gradually expand the search area until the rogue AP has been located.

Now that we have defined a starting area for our physical recovery, we need to perform
our physical search. We will want to look in all of the obvious places: on top of desks, in
any equipment closets, etc. Don’t forget about all of the not-so-obvious places: Behind
large items of furniture, in cabinets and drawers, taped to the back side of a printer, etc.
The possibilities are endless for hiding locations, especially for those determined to

 38

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

disguise an AP. There have been reports of APs stuffed inside of a teddy bearxiv, and
inside of an apparently operational personal UPS devicexv.

A relatively fool proof method of locating rogue APs during a physical sweep would be
to trace every network cable from the wall to final destination. This method will
certainly locate any rogues that are easy to spot (such as a WRT54G, or a teddy bear), but
could potentially overlook any devices such as a disguised AP (such as the UPS
example). In the instance that there may be a disguised AP, it may be necessary to
validate the functionality of every device in the search area.

Conclusion

The objective of this paper was to instruct the reader on how to install and operate Kismet
and use disposable hardware to locate rogue APs. Along the way, we have discovered
that there are a number of issues with this type of installation using disposable hardware.

Unfortunately, there are a number of issues obtaining any signal information from
kismet_drone on a WRT54GL due to the nature of the wireless drivers. While this may
change in the future, either by additional support with the existing drivers, or by the
change of wireless chipsets in future WRT54G series of devices. It is likely that the
chipset change will happen, as Linksys is releasing a WRT54G version 7, which is
rumored to contain an Atheros wireless chipset, much like our Ubiquiti PCMCIA card.

Due to the lack of signal information, we have to reduce our initial search areas with
multiple drones or by using Kismet on a very inexpensive laptop. Unfortunately this
process is not very streamlined or terribly efficient, and as a result would not be very
practical for a large, or geographically separated environment. It would be suitable for a
mid-sized business looking to implement rogue AP detection with a small capital cost.
This type of installation may also work as an interim, temporary, or proof of concept
situation in order to justify a larger, more efficient installation.

Using Kismet, kismet_drone and disposable hardware can be an effective solution at low
cost, but there are a number of technical difficulties associated with this type of
installation.

i From http://www.kismetwireless.net
ii From
http://www.linksys.com/servlet/Satellite?c=L_Product_C2&childpagename=US%2
FLayout&cid=1133202177241&pagename=Linksys%2FCommon%2FVisitorWrapper
iii From http://www.kismetwireless.net/documentation.shtml#readme
iv This script was originally written by Joshua Wright, and can be found at
http://www.renderlab.net/projects/wrt54g/S70JW_scan
v http://www.renderlab.net
vi The particular channel hopping pattern was determined by Joshua Wright, in currently
undocumented research. This channel hopping pattern is the best option to eliminate any

 39

© SANS Institute 2006, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

6,
 A

ut
ho

r r
et

ai
ns

 fu
ll

rig
ht

s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

bleed through for adjacent channels, as 802.11b channels overlap. Design considerations
is support of Joshua’s research can be found in an article at
http://www.commsdesign.com/design_corner/showArticle.jhtml?articleID=16505876 by
Greg Ratzel of Cirronet, Inc.
vii A detailed description of the Ubiquiti PCMCIA card can be found at
http://www.ubnt.com/super_range_cardbus.php4
viii http://www.pauldotcom.com/KarmaUbuntu.pdf
ix http://www.ubnt.com
x A detailed description of the Senao PCMCIA card can be found at
http://www.netgate.com/product_info.php?products_id=43
xi A detailed description of the Yagi antenna can be found at
http://www.netgate.com/product_info.php?cPath=23_36&products_id=76
xii A detailed description of the MMCX pigtail can be found at
http://www.netgate.com/product_info.php?cPath=21&products_id=30
xiii A detailed description of the MMCX omni-directional antenna card can be found at
http://www.netgate.com/product_info.php?cPath=23_33&products_id=34
xiv A detailed write up of a teddy bear AP can be found at
http://www.renderlab.net/projects/teddy-net/
xv As described in Renderman’s presentation at DEFCON 14, indicated in slides 15-21
located at
http://www.churchofwifi.org/FileLib_Index.asp?FID=27&LibName=DC%20%2014%20
presentation%20material&PID=98

 40

