GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Implementing and Auditing CIS Controls (Security 566)"
at http://www.giac.org/registration/gccc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gccc

Continuous Security: Implementing the Critical

Controls in a DevOps Environment
GIAC GCCC Gold Certification, MSISM
Author: Alyssa Robinson, lyssanr@yahoo.com
Advisor: Stephen Northcutt
Accepted: 12/20/2016

Abstract
DevOps is an agile-aligned software development methodology that is growing quickly

in popularity, expected to reach nearly 25% of Global 2000 organizations (Gartner, 2015)
by 2016. Adoption of DevOps practices introduces complications for implementing and
auditing standardized security controls, presenting issues such as constantly changing
assets, continuous deployment and a breakdown in the traditional segregation of duties.
DevOps tools and philosophies also provide advantages, providing opportunity for
integration of security automation as part of the development and deployment of

applications and giving Security early input into design and implementation.

1.0 Introduction

Since the first DevOps Days conference was held in 2009, adoption of DevOps
strategies has been growing rapidly, with 25% of global IT companies predicted to have
moved towards DevOps by 2016 (Gartner, 2015). The very definition of DevOps is still
evolving, but most agree it encompasses a set of cultural values in addition to the tools
and practices that enable continuous delivery (Loukides, 2015). Continuous delivery
provides a competitive advantage to software companies (Humble, 2014) by lowering the
risk and cost associated with releases. It also enables near-immediate feedback on new
features; practicing continuous delivery requires collaboration and empathy amongst the
teams involved in the delivery process (Fowler, 2013).

The changes in roles, processes, and tools that accompany DevOps can in some
cases vary quite widely from the guidelines recommended by the 20 Critical Controls or
other control frameworks. The changes affect the implementation of some controls far

more than others: methods for keeping an accurate inventory of authorized devices in a

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

public cloud environment, with automated scale-up of resources are extremely different
from those used to track hardware inventory in a physical datacenter; in both DevOps and
traditional development organizations, however, the same methods can be used to
develop a reasonable training program for security skills. While the DevOps focus on
automation and continuous improvement can have a positive impact on control adoption
(DeLuccia, Gallimore, et al., 2015), the loss of visibility and control in certain elements
of the infrastructure that comes with public cloud environments can be a hindrance

(Netwirx, 2015) or necessitate the introduction of compensating controls.

2.0 What is DevOps?

Some define DevOps as a cultural movement, others as a set of tools or
technology practices. In reality it is both; the tools and practices influence cultural change
in an organization and vice-versa (Davis & Daniels, 2015). DevOps has its roots in the
ideas of Lean Manufacturing: driving out waste in the form of features that never get
used, unnecessary processes and bad quality software (Davis & Daniels, 2015). DevOps
culture focuses on bringing development and operations teams together, improving trust
and removing barriers to getting useful features delivered to customers (DevOps
Enterprise Forum 2015). Damon Edwards, co-host of the DevOps Café podcast series,
explains DevOps as “removing the bottlenecks, conflicts, and risk from the lifecycle
between business decision and customer outcome.” One core tenet of DevOps involves
giving teams that develop code the capability to deploy it when it is ready and the
responsibility for supporting it in production; this both increases deployment speed and
provides immediate feedback that promotes the building of more resilient services (Pais,
2015). According to ThoughtWorks consultant Chris Hilton, “The most valuable thing
you can do as a software developer is make that connection between creation and use.”

DevOps practices focus on building quality into the code, on automated testing
and on a culture of continuous improvement that leads to improved stability and
throughput. Using continuous deployment techniques, DevOps practitioners have found a
way to improve both speed and stability in the systems they support (Puppet Labs, 2015).
The 2015 Puppet Labs State of DevOps Report shows high performing DevOps
organizations achieving 30x more frequent deployments, with a 200x increase in speed

from code commit to deploy and 60% fewer production failures. Bank of America cites a

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

6x reduction in production defects after moving to a DevOps deployment model, while
Ticketmaster has reduced their Mean Time to Repair by 90% (Pais, 2015).

DevOps focuses on quickly moving new features out to the customers, where
valuable insights about the changes can be gained (Davis & Daniels, 2015). Even though
DevOps is not about specific tools, the push to reduce this cycle time does drive the
adoption of many common toolsets. Version control systems track changes to files and
allow collaboration between teams, facilitating comparisons and merging between
versions, and rollback in the case of issues (Davis & Daniels, 2015). Configuration
management systems automate the provisioning of new systems, enforcing consistent
application installation, system and application configuration across classes of servers.
The configuration information lives in a source code repository, and systems such as
Chef, Puppet, Salt, or Ansible allow developers to treat the configuration of the servers
that will run application software as code. This “infrastructure as code” can itself be
versioned and tested, providing assurances that identical configurations will be in place
everywhere, and improving the odds that software that tested fine in the staging system
will be fine in production as well (Riley, 2014). Finally, an automated system for reliably
moving software through the build -> deploy -> test -> release process is the key
component (Humble & Farley, 2010) in any DevOps system. Continuous integration
tools such as Jenkins make a formerly slow and error-prone task easy and repeatable,
enabling the deployment of small changes and giving fast feedback about how the code

operates and what customers think about new features.

2.1 DevOps Complications
Adopting DevOps practices can create challenges when implementing

standardized security control infrastructures, particularly when facing audit of a security
program (DeLuccia, Gallimore, et al., 2015). Many of even the most popular
configuration management and continuous integration tools are brand new to the market
or are open-sourced. The relative immaturity and lack of corporate backing lead to
concerns about how meticulously the developers have adhered to secure development
standards or how quickly patches will be released when a security flaw is found
(Vadalasetty, 2003). Cloud deployment is the most common option for DevOps

practitioners (Linthicum, 2014), which often means relying on an external Infrastructure

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

as a Service (IaaS) or Platform as a Service (PaaS) provider. This reliance reduces control
and visibility at the hardware and network layers; the flexibility of Cloud providers to
quickly scale up and down that make them attractive in DevOps environments may also
complicate the tracking of hardware assets over time (Minjar, 2015). DevOps by design
blurs lines between developer and operator of an application, which can lead to questions
regarding segregation of duties if proper checkpoints aren’t introduced to limit a

particular developer’s end-to-end control over the system (DeLucia, Duval, et al, 2015).

2.2 DevOps Advantages
Even with these challenges, the DevOps movement has several major advantages

in improving software security. The DevOps focus on fast deployment, continual
improvement, and automation naturally forces collaboration with security teams; without
this collaboration, a potential deployment barrier exists in the form of last-minute manual
audits and reviews (Davis & Daniels, 2015). Security teams must be engaged early in the
design process to ensure the ability to deploy continuously (Bellis, 2015). Reducing these
barriers to deployment makes it easy to deploy small changes rather than bundling a
group of changes together. This practice reduces risk by making it easier to test changes
completely and easier to pinpoint any issues and fix or roll back quickly (Bellis, 2015).
Configuration management systems provide a mechanism to standardize configurations
for logging, alerting and security metrics that are needed to determine when a security
incident is in progress, (Davis & Daniels, 2015) and to enforce policies around secure

configuration.

3.0 CC1: Inventory of Authorized and Unauthorized Devices

Perhaps the most obvious deviation from the Critical Controls in a DevOps
environment is seen in Critical Control One, the Inventory of Authorized and
Unauthorized Devices. In the traditional IT environment, it is easy to create a baseline of
authorized devices by listing all physical hardware and cross-reference it with a scan of
the local address space that might turn up a long-forgotten system in a closet or hidden
under a desk. In a DevOps environment, however, it is far more likely that managed
systems are run by an [aaS provider in the cloud, or that the very idea of a “device” is

obscured by layers of virtual machines and deployed containers. There may be no

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

contiguous set of IPs to scan and find lost servers, or doing so may violate terms of
service of a cloud provider (Amazon, 2011).

Automated deployment of both software and infrastructure allows for automated
scale-up and scale-down of deployments in response to changing demand (Newman,
2015), rollout of new software, or changed infrastructure configurations (Humble &
Farley, 2010). This practice introduces time as an important element in the asset
inventory, relevant both to understanding what systems need to be monitored and updated
at the current point in time and later to audit the state of the system at any given point in
the past. Deployment automation makes it simple to meet the “quick win” of
automatically updating the inventory system (Cole & Terala, 2015) in the common case;
the configuration management system or service discovery mechanism may even serve as
the asset inventory. Independent verification or control using mechanisms like scanning,
DHCP logging or NAC/802,1x (Cole & Terala 2015), however, are impossible in

situations where the network is controlled by a third party.

getinstancelds

public java.util.List<java.lang.String> getInstanceIds()
An array of instance IDs to be described. If you use this parameter, DescribeInstances retuns a description of the specified instances. Otherwise, it returns a description of every instance.
Returns:

An arrayofnsance IDs o be descrbed. I you use s parameler, besc e s ances rourms descripton of th specifed nstances. Othoriss t reurs a deseilon of every stance.
Figure 1: Amazon API for polling all instances

Since virtual machines or containers may still be spun up outside of the automated
system, or glitches in automation may leave a VM in a state that is untracked but running,
the system must still be verified. Cloud provider portals, invoices and APIs can all
provide independent verification of the automated inventory (Barr, 2014) and asset
tracking software providers like Qualys have begun to provide support for tracking cloud

assets as well.

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

"servers": [

{
"id": "616fb98f-46ca-475e-917e-2563e5a8cd19",
"links": [
{
"href": "http://openstack.example.com/v2/openstack/servers/616fb98f-46ca-475e-917e-25
63e5a8cd19",
"rel": "self"
}I
{
"href": "http://openstack.example.com/openstack/servers/616fb98f-46ca-475e-917e-2563e
5a8cd19",
"rel": "bookmark"
}
]r
"name": "new-server-test"
}
]
}

Figure 2: Openstack API server instance response

CC2: Inventory of Authorized and Unauthorized Software

O
®
=2
o
<
3
)
3
=+
o'
o
wn

Production Deployment New Deployment

Figure 3: Blue-Green Deployment

Automated deployment of infrastructure and software is associated with several
practices that complicate tracking of authorized software across the application servers.
In a blue-green deployment scenario, a second sent of applications (the green
deployment) is brought up in parallel to the original deployment (the blue deployment) to
allow for testing and cutover with no downtime. In some cases, only a subset of traffic
may move to the green deployment, to allow comparison of the two running sets of

software in production, looking for cost increases or performance changes (Humble &

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

Farley, 2011) or to allow a quick rollback to the previous version. Once traffic is fully cut
over, the blue deployment gets decommissioned. The same scenario might be used to roll
out changes to “infrastructure as code”, treating server configuration or database schema
the same way application code gets treated (Fowler, 2010). Similarly, feature flags may
be used to turn new features on for particular sets of users and allow analysis of system or
user behavior (Humble & Farley, 2011). These practices mean that multiple versions of
software — either developed by a third party or in-house — will likely be in use at a time
and must be tracked and considered through each phase of the deployment lifecycle. This
includes versions of images for the virtual machines or containers running the application
software (Minjar, 2015).

Common DevOps practices offer advantages in limiting servers to an approved
list of installed software. Many hosting providers allow upload of a custom image file or
container image, which gives an agreed-upon hardened baseline, with only whitelisted
software packages installed. From there, configuration management tools can be used to
configure access only to approved software repositories, providing another control point.
Configuration management tools can also restrict software packages to specific required

or excluded versions, providing an ability to block versions with known vulnerabilities.

CC3: Secure Configurations for Hardware and Software (on Servers)

Default accounts, unnecessary services and unpatched software all provide
attackers with easy pathways to gain control of their targeted systems (Terala &
Cole, 2015). Installing and running only the required set of software and
services and keeping that software up to date and configured according to best
practices minimizes the available attack surface (Terala & Cole, 2015). While
many DevOps environments run in private or public cloud environments and
don’t give the option of hardware shipped with a hardened configuration,
custom hardened system images can be used in many cases to spin up new
virtual machines or containers. The Center for Internet Security (CIS), which

currently maintains the Critical Controls, offers images configured according to

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

their security benchmarks for multiple operating systems on the AWS Elastic
Compute Cloud.

Once hardened configurations for operating systems and application
components are developed, DevOps deployment tools and configuration
management services like Puppet, Chef, Ansible and Salt greatly simplify the
process of rolling these out to all systems and keeping the configurations in sync
over time. Configuration management tools run periodically and provide
assurance that security configurations have not changed (Terala & Cole, 2015),
alerting or automatically return a system to a known good state if configurations
get changed manually. Any updates to the “infrastructure as code” security
configuration will undergo peer review and can kick off automated application
scans or SCAP checks (Terala & Cole, 2015) prior to deployment, triggering an
approval process before security-relevant changes make it to production
(DeLuccia, Gallimore, et al, 2015). Puppet offers modules for implementing many
of the CIS Benchmark hardening elements for Red Hat operating systems and
Amazon Red Hat AMIs, while Chef offers recipes that will audit, though not

automate, enforcement of the CIS Benchmarks (Timberman, 2015).

Integration Production

Run
acceptance
Doy T tests
nggg" Run Unit Deploy to oAl Deploy to
. tests integration production
reviews tests
*SCAP scans
«App scans

Check-in

Figure 4 Security Testing and Continuous Deployment

Docker and other container technologies are increasingly popular methods
for deploying applications in DevOps environments, due to advantages in
portability, efficiency in resource sharing and speed of deployment (Suleman,
2015). Docker also offers some security advantages, in the form of increased
isolation of applications, particularly in multi-tenant environments (Zeltser,

2015). Docker images, however, cannot be patched and updated or have

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

running configuration changed on the fly; updated software or secure
configuration must be baked in as part of the image build and new containers
deployed, (Doran, 2015) leading to situations where multiple container versions
of varying security may be running (Zeltser, 2015). While publicly-available
container images make it easy to test out new technologies, these images may
contain outdated software or other vulnerabilities. As Docker gains popularity,
however, tools are becoming available to scan Docker images (Doran, 2015) and
recently the Center for Internet Security has even provided a Docker security

benchmark (Petazzoni, 2015).

CC4: Continuous Vulnerability Assessment and Remediation

Keeping up with the relentless pace of newly-announced vulnerabilities is a
challenge across traditional and DevOps systems alike. Once again, however, the
focus on automation, testing, and continuous monitoring in DevOps
environments can be advantageous; the same systems that allow automated
deployments of new application code via thorough unit and functional testing
provide a strong foundation for testing new patches. Deployment strategies for
Blue-Green deployments and A-B testing allow gradual rollout and immediate
feedback regarding issues and changes in system behavior. Security scans that
happen as part of the deployment process provide verification that updates
address known issues and reach all intended targets.

Another security advantage for container systems like Docker is that
application containers are treated as transient; rather than worrying about
patching individual systems, with all of the change history and possible
differences they contain, container images can be patched as part of the
application build and identical containers are tested and deployed to replace the
old (Zeltser, 2015). A similar (but heavier-weight) strategy could of course be
used with virtual machines, rolling out newly patched image files by scaling the
system up using the new images and then removing the older, un-patched

systems when scaling down (Minjar, 2015).

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

10

Patch Set A: Patch Set B:

2
37 vulnerabilities
{ |
Return time 15 ms : Return time- 25 ms
errors/1000: 300

errors/1000: 100

Visits/user 150
—>

Visits/user 50

Impact Impact

>

Figure 5 A/B Testing of Patch Set Deployments

CSC6: Application Software Security

In the 2015 Trustwave Global Security Report, vulnerabilities were found in
98% of the applications scanned with the Trustwave App Scanner product. These
included issues with data leakage, cross-site scripting, SQL injection and
authorization, among others. Efficiently preventing these vulnerabilities from
making it to production is essential for success in a DevOps environment. The
automated deployment pipeline provides a mechanism to require that defenses like
code review, static analysis and web application scanning (Cole & Terala, 2015) are

performed before new software is moved to production.

‘ Class Fail Error Skii Total
=tests.unit_test54datacenterprcviders.test_openstack_network_provider.TestOpenstackBase 0 0
tests.unit_tests.servertype.test_dH_servertype. Test (R ~Servertype
_tests.unit_tests‘test_volumemeta.TestVolumemeta
_tests.unit_tests4service.test__service.Tes_Service
_tests.unit_tests4datacenterproviders.test_openstack_network_pravider.TestNetworkProvider
tests.unit_tests.servertype.test_repos_servertype.TestReposServertype

~
=y
~

o oo o/o|o
wRr o ww s
w

o oo oo
o oo o

Figure 6 Jenkins-integrated static analysis

Jenkins, Hudson, and most other popular deployment tools provide easy support
via plugins both for requiring code review and for running static analysis as part of
the pipeline. These acceptance tests should be designed to complete quickly and can
be run before new code is even deployed to the integration/staging environment
(Humble & Farley, 2011). Further security testing, such as tests of security-related
functionality, vulnerability scanning, and application security scans can then be run
in parallel to other acceptance testing within the staging environment (De Vries,
2015). Keeping the production deployment infrastructure separate from the

infrastructure that pushes code to non-production envionments like load or staging

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

11

can help to provide the access needed to automate and debug while enforcing
segregation of duties and limited access to the production environment (Smith,

2014).

CSC12: Controlled Use of Administrative Privileges

In the DevOps model, where everyone has the potential to administer systems and
debug production issues, controlling administrative credentials becomes even more
important. In a continuous deployment, “infrastructure as code” environment, the
code itself acts as a privileged user (Lawler, 2015); administrative privileges will be
used by the configuration management and orchestration systems that spin up new
servers, install software and make configuration changes in response to events and
alerts in the environment (Andre, 2015). These credential “secrets” must be used by
the orchestration systems, but not available to anyone with access to the code
repositories, enabling untraceable administrative actions and greatly increasing the
potential for exploitation.

Secrets Management systems aim to role-based access control and auditability to
the DevOps system (Lawler, 2015), while preserving the automation and lack of
human intervention that is key to continuous deployment (Gilman, 2015).
Configuration management systems like Chef and Puppet provide their own
solutions for protecting secrets stored within the infrastructure code using public-
key encryption. While this meets the goal of hashing or encrypting stored
passwords (Cole & Terala, 2015), they lack more advanced features such as role-
based controlled access to the secrets, or full featured support for rotating
passwords and SSH keys. - for example, not every server managed by Puppet needs
to access the PII database - In the idealized DevOps environment, no individual
developer or administrator should be SSHing into a system at all (Parsons, 2014); a
popular quote from Piston Cloud CEO Joshua McKenty reads “OpenStack is a system for
managing your servers like cattle -- you number them, and when they get sick and you
have to shoot them in the head, the herd can keep moving. It takes a family of three to
care for a single puppy, but a few cowboys can drive tens of thousands of cows over great

distances, all while drinking whiskey.” Following this model, problematic application

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

12

servers are simply killed off in response to an alert and the orchestration engine spins up
servers to replace the lost capacity. If this were always the case, the goal of minimizing
administrative privileges (Cole & Terala, 2015) would be simple to achieve. The reality,
however, is rarely that simple, and there will be times that developers and sysadmins
need access to determine root cause for a recurring issue. Secrets management systems
like Hashicorp’s Vault and Conjur’s SSH Management solution provide methods to
automatically provision temporary access via one-time passwords or SSH keys and to
enable SSH key rotation for service accounts. When an application server needs direct
access for debugging, orchestration services can quarantine the problematic system,
removing it from the set of “production” servers used by customers and then

automatically grant the necessary access.

. End user

(%
8
g
wn
Load Balancer s
= 2
3
: App
developer

Figure 7: One-time access for debug

Conclusion

The success of the DevOps movement means that DevOps practices are being
adopted by diverse organizations, from small startups to Fortune 500 companies. As
the movement matures, security is no longer an afterthought and consensus is
building about the right ways to integrate security best practices into the DevOps
cultural and technical evolution. In the last year alone, there has been an explosion
in the numbers of tools available to help secure DevOps environments, from
repository firewalls (Weeks, 2015) to new application scanners and security
functional test infrastructures (DeVries, 2015), to new SSH Management solutions
and the ability to scan Docker containers (Doran, 2015). Contained within the

DevOps philosophy and the typical microservices architecture is the freedom to

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

13

choose the tools that are best for a particular culture and environment (Newman,
2015) and every month there are more tools to choose from.

The cultural and technical practices that comprise the DevOps shift have both
advantages and disadvantages when implementing a Critical Controls-based control
infrastructure. In a regulated environment, DevOps teams will need to involve
security early in the process to ensure a smooth deployment for new features; the
opportunity for greater collaboration with security teams can only be a positive
step. The glut of new security tools adapted for DevOps environments has the ability
to provide new levels of visibility and automation for implementing security
controls. Such new tools may not be fully mature, however, and may have flaws or
lack features present in more established products. There is also a lack of precedent
when it comes to using such tools for audit against security standards. As the shift
towards DevOps continues, we can expect increased maturity for DevOps security
tools and best practices that should make implementation of these important

controls easier in the future.

References

Amazon. (2011, November). AWS Acceptable Use Policy. Retrieved from
https://aws.amazon.com/aup/

Andre, J. (2015, February). Who Watches the Watchmen? Securing Configuration
Management Systems. Retrieved from http://blog.threatstack.com/who-watches-t
he-watchmen-securing-configuration-management-systems

Barr, J. (2014, November). Track AWS Resource Configurations With AWS Config |
AWS Official Blog. Retrieved from https://aws.amazon.com/blogs/aws/track-
aws-with-config/

Belis, E. (2015, November). DOES15 - Ed Bellis - Security as Code A SecDevOps Use
Case [Video file]. Retrieved from
https://www.youtube.com/watch?v=JQO0yLU26j51

Cole, E. & Tarala, J..(2015). Implementing & Auditing the Critical Security Controls — In
Depth. The SANS Institute.

Davis, J., & Daniels, K. (2015) Effective DevOps. Sebastopol: O’Reilly Media, Inc.

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

14

DeLuccia, J., Duval, P., Kapadia, M., Kim, G., Mangot, D., Pal, T., Wickett, J., & Yoo, J.
(2015) An Unlikely Union: DevOps and Audit. Portland: IT Revolution.
Retrieved from
http://devopsenterprise.io/media/DOES_forum_security 102015.pdf

DeLuccia, J., Gallimore, J., Kim, G., & Miller, B. (2015). DevOps Audit Defense Toolkit.
Retrieved from
http://images.itrevolution.com/documents/DevOps_Audit Defense Toolkit v1.0.
pdf

DevOps Forum. (2015). Mythbusting DevOps in the Enterprise. Retrieved from IT
Revolution website:
http://devopsenterprise.io/media/DOES_forum_addressing_culture 102015.pdf

De Vries, S. (2015, April). Automated Security Testing in a Continuous Delivery
PipelineDevOps.com. Retrieved from http://devops.com/2015/04/06/automated-

security-testing-continuous-delivery-pipeline

Doran, J. (2015, July). Is your Docker container secure? Ask Vulnerability Advisor! -
BlueMix Dev. Retrieved from
https://developer.ibm.com/bluemix/2015/07/02/vulnerability-advisor/

Dunn, J. (2014, September). Detecting & Repairing Shellshock with Chef | Chef Blog.
Retrieved from https://www.chef.io/blog/2014/09/30/detecting-repairing-
shellshock-with-chef/

Edwards, D. (2012, November). The History Of DevOps - IT Revolution IT
Revolution[Video file]. Retrieved from http://itrevolution.com/the-history-of-
devops/

Fowler, M. (2010, March). BlueGreenDeployment. Retrieved from
http://martinfowler.com/bliki/BlueGreenDeployment.html

Fowler, M. (2013, May). ContinuousDelivery. Retrieved from
http://martinfowler.com/bliki/ContinuousDelivery.html

Gartner (2015, March). DevOps Will Evolve From a Niche to a Mainstream Strategy
Employed by 25 Percent of Global 2000 Organizations. (n.d.). Retrieved from
http://www.gartner.com/newsroom/id/2999017

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

15

Gilpin, K. (2015, April). What is a DevOps Secrets Server?. Retrieved from
https://blog.conjur.net/what-is-a-devops-secrets-server

Hay, A. (2013, May). Automating Secure Server Baselines with Chef. Paper presented at
ChefConf.

Humble, J. (2014, February). The case for continuous delivery - O'Reilly Media.
Retrieved from https://www.oreilly.com/ideas/the-case-for-continuous-delivery

Humble, J., & Farley, D. (2011). Continuous delivery. Upper Saddle River, NJ: Addison-
Wesley

Linthicum, D. (2014, October). Devops has moved out of the cloud | InfoWorld.
Retrieved from http://www.infoworld.com/article/2836372/cloud-

computing/does-devops-drive-the-cloud-or-vice-versa.html

Loukides, M. (2015, February). What is DevOps (yet again)? - O'Reilly Media. Retrieved
from https://www.oreilly.com/ideas/what-is-devops-yet-again

Minjar, & Amazon Web Services. (2015). ITIL Asset and Configuration Management in
the Cloud. Retrieved from

http://www.minjar.com/documents/resources/AWS _asset_configuration _manage

ment_ whitepaper.pdf

Netwirx. (2015, December). Security Concerns and Lack of Visibility Hinder Cloud
Adoption, Say 65% of IT Pros. Retrieved from
http://www.netwrix.com/netwrix_reveals_security concerns in_cloud.html

Newman, S. (2015). Building microservices: Designing fine-grained systems. Sebastopol:
O'Reilly.

Pais, M. (2015, November). Speeding and Scaling the DevOps Enterprise - IT Revolution
IT Revolution. Retrieved from http://itrevolution.com/speeding-scaling-devops-
enterprise/

Parsons, T. (2014, August). 5 Ways to Make Your DevOps Team More Efficient |
Logentries. Retrieved from https://blog.logentries.com/2014/08/make-your-
devops-team-more-efficient/

Petazzoni, J. (2015, May). Someone said that 30% of the images on the Docker Registry
contain vulnerabilities. Retrieved from

https://jpetazzo.github.i0/2015/05/27/docker-images-vulnerabilities/

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

16

Puppet Labs. (2015). 2015 State of Devops Report.

Reid, J. (2014). DevOps in Practice. Retrieved from O'Reilly website:
http://www.oreilly.com/webops-perf/free/devops-in-practice.csp

Smith, S. (2014, April). Atlassian Blogs: Practical Continuous Deployment. Retrieved
from http://blogs.atlassian.com/2014/04/practical-continuous-deployment/

Suleman, A. (2015). 8 Proven Real-World Ways to Use Docker. Retrieved from
https://www.airpair.com/docker/posts/8-proven-real-world-ways-to-use-docker

Riley, C. (2014, May). Meet Infrastructure as Code - DevOps.com Retrieved from
http://devops.com/2014/05/05/meet-infrastructure-code/

Timberman, J. (2015, April). Chef Audit Mode: CIS Benchmarks | Chef Blog. Retrieved
from https://www.chef.io/blog/2015/04/09/chef-audit-mode-cis-benchmarks/
Vadalasetty, S. (2003, October). Security Concerns in Using Open Source
Software for Enterprise Requirements. Retrieved from
https://www.sans.org/reading-room/whitepapers/awareness/security-concerns-
open-source-software-enterprise-requirements-1305

Trustwave. (2015). Trustwave Global Security Report. Retrieved from
https://www2.trustwave.com/rs/815-RFM-

693/images/2015_TrustwaveGlobalSecurityReport.pdf

Weeks, D. (2015, December). DevOpsSec: Survival is Not Mandatory -
DevOps.comDevOps.com. Retrieved from
http://devops.com/2015/12/08/devopssec-survival-not-mandatory/

Zeltser, L. (2015, December). Security Risks and Benefits of Docker Application
Containers. Retrieved from https://zeltser.com/security-risks-and-benefits-of-

docker-application/

Alyssa Robinson, lyssanr@yahoo.com

© 2015 The SANS Institute Author retains full rights.

