
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Implementing and Auditing CIS Controls (Security 566)"
at http://www.giac.org/registration/gccc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gccc


Alyssa!Robinson,!lyssanr@yahoo.com!

1!

Continuous Security:  Implementing the Critical 
Controls in a DevOps Environment 

GIAC GCCC Gold Certification, MSISM 
Author: Alyssa Robinson, lyssanr@yahoo.com 

Advisor: Stephen Northcutt 
Accepted: 12/20/2016 

Abstract 
DevOps is an agile-aligned software development methodology that is growing quickly 

in popularity, expected to reach nearly 25% of Global 2000 organizations (Gartner, 2015) 

by 2016. Adoption of DevOps practices introduces complications for implementing and 

auditing standardized security controls, presenting issues such as constantly changing 

assets, continuous deployment and a breakdown in the traditional segregation of duties. 

DevOps tools and philosophies also provide advantages, providing opportunity for 

integration of security automation as part of the development and deployment of 

applications and giving Security early input into design and implementation.  

1.0+Introduction+

Since the first DevOps Days conference was held in 2009, adoption of DevOps 

strategies has been growing rapidly, with 25% of global IT companies predicted to have 

moved towards DevOps by 2016 (Gartner, 2015). The very definition of DevOps is still 

evolving, but most agree it encompasses a set of cultural values in addition to the tools 

and practices that enable continuous delivery (Loukides, 2015). Continuous delivery 

provides a competitive advantage to software companies (Humble, 2014) by lowering the 

risk and cost associated with releases. It also enables near-immediate feedback on new 

features; practicing continuous delivery requires collaboration and empathy amongst the 

teams involved in the delivery process (Fowler, 2013). 

 The changes in roles, processes, and tools that accompany DevOps can in some 

cases vary quite widely from the guidelines recommended by the 20 Critical Controls or 

other control frameworks. The changes affect the implementation of some controls far 

more than others:  methods for keeping an accurate inventory of authorized devices in a 



Alyssa!Robinson,!lyssanr@yahoo.com!

2!

public cloud environment, with automated scale-up of resources are extremely different 

from those used to track hardware inventory in a physical datacenter; in both DevOps and 

traditional development organizations, however, the same methods can be used to 

develop a reasonable training program for security skills. While the DevOps focus on 

automation and continuous improvement can have a positive impact on control adoption 

(DeLuccia, Gallimore, et al., 2015), the loss of visibility and control in certain elements 

of the infrastructure that comes with public cloud environments can be a hindrance 

(Netwirx, 2015) or necessitate the introduction of compensating controls. 

2.0+What+is+DevOps?+

Some define DevOps as a cultural movement, others as a set of tools or 

technology practices. In reality it is both; the tools and practices influence cultural change 

in an organization and vice-versa (Davis & Daniels, 2015).  DevOps has its roots in the 

ideas of Lean Manufacturing:  driving out waste in the form of features that never get 

used, unnecessary processes and bad quality software (Davis & Daniels, 2015). DevOps 

culture focuses on bringing development and operations teams together, improving trust 

and removing barriers to getting useful features delivered to customers (DevOps 

Enterprise Forum 2015).  Damon Edwards, co-host of the DevOps Café podcast series, 

explains DevOps as “removing the bottlenecks, conflicts, and risk from the lifecycle 

between business decision and customer outcome.” One core tenet of DevOps involves 

giving teams that develop code the capability to deploy it when it is ready and the 

responsibility for supporting it in production; this both increases deployment speed and 

provides immediate feedback that promotes the building of more resilient services (Pais, 

2015). According to ThoughtWorks consultant Chris Hilton, “The most valuable thing 

you can do as a software developer is make that connection between creation and use.” 

DevOps practices focus on building quality into the code, on automated testing 

and on a culture of continuous improvement that leads to improved stability and 

throughput. Using continuous deployment techniques, DevOps practitioners have found a 

way to improve both speed and stability in the systems they support (Puppet Labs, 2015).  

The 2015 Puppet Labs State of DevOps Report shows high performing DevOps 

organizations achieving 30x more frequent deployments, with a 200x increase in speed 

from code commit to deploy and 60% fewer production failures. Bank of America cites a 



!

Alyssa!Robinson,!lyssanr@yahoo.com!

3!

6x reduction in production defects after moving to a DevOps deployment model, while 

Ticketmaster has reduced their Mean Time to Repair by 90% (Pais, 2015). 

DevOps focuses on quickly moving new features out to the customers, where 

valuable insights about the changes can be gained (Davis & Daniels, 2015). Even though 

DevOps is not about specific tools, the push to reduce this cycle time does drive the 

adoption of many common toolsets. Version control systems track changes to files and 

allow collaboration between teams, facilitating comparisons and merging between 

versions, and rollback in the case of issues (Davis & Daniels, 2015). Configuration 

management systems automate the provisioning of new systems, enforcing consistent 

application installation, system and application configuration across classes of servers. 

The configuration information lives in a source code repository, and systems such as 

Chef, Puppet, Salt, or Ansible allow developers to treat the configuration of the servers 

that will run application software as code. This “infrastructure as code” can itself be 

versioned and tested, providing assurances that identical configurations will be in place 

everywhere, and improving the odds that software that tested fine in the staging system 

will be fine in production as well (Riley, 2014).  Finally, an automated system for reliably 

moving software through the build -> deploy -> test -> release process is the key 

component (Humble & Farley, 2010) in any DevOps system. Continuous integration 

tools such as Jenkins make a formerly slow and error-prone task easy and repeatable, 

enabling the deployment of small changes and giving fast feedback about how the code 

operates and what customers think about new features. 

2.1+DevOps+Complications+
 Adopting DevOps practices can create challenges when implementing 

standardized security control infrastructures, particularly when facing audit of a security 

program (DeLuccia, Gallimore, et al., 2015). Many of even the most popular 

configuration management and continuous integration tools are brand new to the market 

or are open-sourced. The relative immaturity and lack of corporate backing lead to 

concerns about how meticulously the developers have adhered to secure development 

standards or how quickly patches will be released when a security flaw is found 

(Vadalasetty, 2003). Cloud deployment is the most common option for DevOps 

practitioners (Linthicum, 2014), which often means relying on an external Infrastructure 



!

Alyssa!Robinson,!lyssanr@yahoo.com!

4!

as a Service (IaaS) or Platform as a Service (PaaS) provider. This reliance reduces control 

and visibility at the hardware and network layers; the flexibility of Cloud providers to 

quickly scale up and down that make them attractive in DevOps environments may also 

complicate the tracking of hardware assets over time (Minjar, 2015). DevOps by design 

blurs lines between developer and operator of an application, which can lead to questions 

regarding segregation of duties if proper checkpoints aren’t introduced to limit a 

particular developer’s end-to-end control over the system (DeLucia, Duval, et al, 2015). 

2.2+DevOps+Advantages+
Even with these challenges, the DevOps movement has several major advantages 

in improving software security. The DevOps focus on fast deployment, continual 

improvement, and automation naturally forces collaboration with security teams; without 

this collaboration, a potential deployment barrier exists in the form of last-minute manual 

audits and reviews (Davis & Daniels, 2015). Security teams must be engaged early in the 

design process to ensure the ability to deploy continuously (Bellis, 2015). Reducing these 

barriers to deployment makes it easy to deploy small changes rather than bundling a 

group of changes together. This practice reduces risk by making it easier to test changes 

completely and easier to pinpoint any issues and fix or roll back quickly (Bellis, 2015). 

Configuration management systems provide a mechanism to standardize configurations 

for logging, alerting and security metrics that are needed to determine when a security 

incident is in progress, (Davis & Daniels, 2015) and to enforce policies around secure 

configuration.   

3.0+CC1:+Inventory+of+Authorized+and+Unauthorized+Devices+

! Perhaps the most obvious deviation from the Critical Controls in a DevOps 

environment is seen in Critical Control One, the Inventory of Authorized and 

Unauthorized Devices. In the traditional IT environment, it is easy to create a baseline of 

authorized devices by listing all physical hardware and cross-reference it with a scan of 

the local address space that might turn up a long-forgotten system in a closet or hidden 

under a desk. In a DevOps environment, however, it is far more likely that managed 

systems are run by an IaaS provider in the cloud, or that the very idea of a “device” is 

obscured by layers of virtual machines and deployed containers. There may be no 



!

Alyssa!Robinson,!lyssanr@yahoo.com!

5!

contiguous set of IPs to scan and find lost servers, or doing so may violate terms of 

service of a cloud provider (Amazon, 2011).  

 Automated deployment of both software and infrastructure allows for automated 

scale-up and scale-down of deployments in response to changing demand (Newman, 

2015), rollout of new software, or changed infrastructure configurations (Humble & 

Farley, 2010). This practice introduces time as an important element in the asset 

inventory, relevant both to understanding what systems need to be monitored and updated 

at the current point in time and later to audit the state of the system at any given point in 

the past. Deployment automation makes it simple to meet the “quick win” of 

automatically updating the inventory system (Cole & Terala, 2015) in the common case; 

the configuration management system or service discovery mechanism may even serve as 

the asset inventory. Independent verification or control using mechanisms like scanning, 

DHCP logging or NAC/802,1x (Cole & Terala 2015), however, are impossible in 

situations where the network is controlled by a third party.  

!
Figure'1:'Amazon'API'for'polling'all'instances 

 Since virtual machines or containers may still be spun up outside of the automated 

system, or glitches in automation may leave a VM in a state that is untracked but running, 

the system must still be verified. Cloud provider portals, invoices and APIs can all 

provide independent verification of the automated inventory (Barr, 2014) and asset 

tracking software providers like Qualys have begun to provide support for tracking cloud 

assets as well.  



!

Alyssa!Robinson,!lyssanr@yahoo.com!

6!

!
Figure'2:'Openstack'API'server'instance'response 

CC2:+Inventory+of+Authorized+and+Unauthorized+Software+

!

 
Figure'3:'Blue>Green'Deployment'

Automated deployment of infrastructure and software is associated with several 

practices that complicate tracking of authorized software across the application servers. 

In a blue-green deployment scenario, a second sent of applications (the green 

deployment) is brought up in parallel to the original deployment (the blue deployment) to 

allow for testing and cutover with no downtime. In some cases, only a subset of traffic 

may move to the green deployment, to allow comparison of the two running sets of 

software in production, looking for cost increases or performance changes (Humble & 



!

Alyssa!Robinson,!lyssanr@yahoo.com!

7!

Farley, 2011) or to allow a quick rollback to the previous version. Once traffic is fully cut 

over, the blue deployment gets decommissioned. The same scenario might be used to roll 

out changes to “infrastructure as code”, treating server configuration or database schema 

the same way application code gets treated (Fowler, 2010). Similarly, feature flags may 

be used to turn new features on for particular sets of users and allow analysis of system or 

user behavior (Humble & Farley, 2011). These practices mean that multiple versions of 

software – either developed by a third party or in-house – will likely be in use at a time 

and must be tracked and considered through each phase of the deployment lifecycle. This 

includes versions of images for the virtual machines or containers running the application 

software (Minjar, 2015).  

! Common!DevOps practices offer advantages in limiting servers to an approved 

list of installed software. Many hosting providers allow upload of a custom image file or 

container image, which gives an agreed-upon hardened baseline, with only whitelisted 

software packages installed. From there, configuration management tools can be used to 

configure access only to approved software repositories, providing another control point. 

Configuration management tools can also restrict software packages to specific required 

or excluded versions, providing an ability to block versions with known vulnerabilities.   

!

CC3:+Secure+Configurations+for+Hardware+and+Software+(on+Servers)+

Default!accounts,!unnecessary!services!and!unpatched!software!all!provide!

attackers!with!easy!pathways!to!gain!control!of!their!targeted!systems!(Terala!&!

Cole,!2015).!!Installing!and!running!only!the!required!set!of!software!and!

services!and!keeping!that!software!up!to!date!and!configured!according!to!best!

practices!minimizes!the!available!attack!surface!(Terala!&!Cole,!2015).!While!

many!DevOps!environments!run!in!private!or!public!cloud!environments!and!

don’t!give!the!option!of!hardware!shipped!with!a!hardened!configuration,!

custom!hardened!system!images!can!be!used!in!many!cases!to!spin!up!new!

virtual!machines!or!containers.!The!Center!for!Internet!Security!(CIS),!which!

currently!maintains!the!Critical!Controls,!offers!images!configured!according!to!



!

Alyssa!Robinson,!lyssanr@yahoo.com!

8!

their!security!benchmarks!for!multiple!operating!systems!on!the!AWS!Elastic!

Compute!Cloud.!!

Once!hardened!configurations!for!operating!systems!and!application!

components!are!developed,!DevOps!deployment!tools!and!configuration!

management!services!like!Puppet,!Chef,!Ansible!and!Salt!greatly!simplify!the!

process!of!rolling!these!out!to!all!systems!and!keeping!the!configurations!in!sync!

over!time.!!Configuration!management!tools!run!periodically!and!provide!

assurance!that!security!configurations!have!not!changed!(Terala!&!Cole,!2015),!

alerting!or!automatically!return!a!system!to!a!known!good!state!if!configurations!

get!changed!manually.!Any!updates!to!the!“infrastructure!as!code”!security!

configuration!will!undergo!peer!review!and!can!kick!off!automated!application!

scans!or!SCAP!checks!(Terala!&!Cole,!2015)!prior!to!deployment,!triggering!an!

approval!process!before!securityWrelevant!changes!make!it!to!production!

(DeLuccia,!Gallimore,!et!al,!2015).!Puppet!offers!modules!for!implementing!many!

of!the!CIS!Benchmark!hardening!elements!for!Red!Hat!operating!systems!and!

Amazon!Red!Hat!AMIs,!while!Chef!offers!recipes!that!will!audit,!though!not!

automate,!enforcement!of!the!CIS!Benchmarks!(Timberman,!2015).!

!
Figure'4'Security'Testing'and'Continuous'Deployment'

Docker!and!other!container!technologies!are!increasingly!popular!methods!

for!deploying!applications!in!DevOps!environments,!due!to!advantages!in!

portability,!efficiency!in!resource!sharing!and!speed!of!deployment!(Suleman,!

2015).!!Docker!also!offers!some!security!advantages,!in!the!form!of!increased!

isolation!of!applications,!particularly!in!multiWtenant!environments!(Zeltser,!

2015).!!Docker!images,!however,!cannot!be!patched!and!updated!or!have!



!

Alyssa!Robinson,!lyssanr@yahoo.com!

9!

running!configuration!changed!on!the!fly;!updated!software!or!secure!

configuration!must!be!baked!in!as!part!of!the!image!build!and!new!containers!

deployed,!(Doran,!2015)!leading!to!situations!where!multiple!container!versions!

of!varying!security!may!be!running!(Zeltser,!2015).!!While!publiclyWavailable!

container!images!make!it!easy!to!test!out!new!technologies,!these!images!may!

contain!outdated!software!or!other!vulnerabilities.!!As!Docker!gains!popularity,!

however,!tools!are!becoming!available!to!scan!Docker!images!(Doran,!2015)!and!

recently!the!Center!for!Internet!Security!has!even!provided!a!Docker!security!

benchmark!(Petazzoni,!2015).!!

!

CC4:+Continuous+Vulnerability+Assessment+and+Remediation+

Keeping!up!with!the!relentless!pace!of!newlyWannounced!vulnerabilities!is!a!

challenge!across!traditional!and!DevOps!systems!alike.!Once!again,!however,!the!

focus!on!automation,!testing,!and!continuous!monitoring!in!DevOps!

environments!can!be!advantageous;!the!same!systems!that!allow!automated!

deployments!of!new!application!code!via!thorough!unit!and!functional!testing!

provide!a!strong!foundation!for!testing!new!patches.!Deployment!strategies!for!

BlueWGreen!deployments!and!AWB!testing!allow!gradual!rollout!and!immediate!

feedback!regarding!issues!and!changes!in!system!behavior.!Security!scans!that!

happen!as!part!of!the!deployment!process!provide!verification!that!updates!

address!known!issues!and!reach!all!intended!targets.!!

Another!security!advantage!for!container!systems!like!Docker!is!that!

application!containers!are!treated!as!transient;!rather!than!worrying!about!

patching!individual!systems,!with!all!of!the!change!history!and!possible!

differences!they!contain,!container!images!can!be!patched!as!part!of!the!

application!build!and!identical!containers!are!tested!and!deployed!to!replace!the!

old!(Zeltser,!2015).!!A!similar!(but!heavierWweight)!strategy!could!of!course!be!

used!with!virtual!machines,!rolling!out!newly!patched!image!files!by!scaling!the!

system!up!using!the!new!images!and!then!removing!the!older,!unWpatched!

systems!when!scaling!down!(Minjar,!2015).!!



!

Alyssa!Robinson,!lyssanr@yahoo.com!

10!

!
Figure'5'A/B'Testing'of'Patch'Set'Deployments'

CSC6:+Application+Software+Security+

In!the!2015!Trustwave!Global!Security!Report,!vulnerabilities!were!found!in!

98%!of!the!applications!scanned!with!the!Trustwave!App!Scanner!product.!These!

included!issues!with!data!leakage,!crossWsite!scripting,!SQL!injection!and!

authorization,!among!others.!!Efficiently!preventing!these!vulnerabilities!from!

making!it!to!production!is!essential!for!success!in!a!DevOps!environment.!The!

automated!deployment!pipeline!provides!a!mechanism!to!require!that!defenses!like!

code!review,!static!analysis!and!web!application!scanning!(Cole!&!Terala,!2015)!are!

performed!before!new!software!is!moved!to!production.!!

!
Figure'6'Jenkins>integrated'static'analysis'

Jenkins,!Hudson,!and!most!other!popular!deployment!tools!provide!easy!support!

via!plugins!both!for!requiring!code!review!and!for!running!static!analysis!as!part!of!

the!pipeline.!These!acceptance!tests!should!be!designed!to!complete!quickly!and!can!

be!run!before!new!code!is!even!deployed!to!the!integration/staging!environment!

(Humble!&!Farley,!2011).!Further!security!testing,!such!as!tests!of!securityWrelated!

functionality,!vulnerability!scanning,!and!application!security!scans!can!then!be!run!

in!parallel!to!other!acceptance!testing!within!the!staging!environment!(De!Vries,!

2015).!Keeping!the!production!deployment!infrastructure!separate!from!the!

infrastructure!that!pushes!code!to!nonWproduction!envionments!like!load!or!staging!



!

Alyssa!Robinson,!lyssanr@yahoo.com!

11!

can!help!to!provide!the!access!needed!to!automate!and!debug!while!enforcing!

segregation!of!duties!and!limited!access!to!the!production!environment!(Smith,!

2014).!!

CSC12:+Controlled+Use+of+Administrative+Privileges+

In the DevOps model, where everyone has the potential to administer systems and 

debug production issues, controlling administrative credentials becomes even more 

important.!In!a!continuous!deployment,!“infrastructure!as!code”!environment,!the!

code!itself!acts!as!a!privileged!user!(Lawler,!2015);!administrative!privileges!will!be!

used!by!the!configuration!management!and!orchestration!systems!that!spin!up!new!

servers,!install!software!and!make!configuration!changes!in!response!to!events!and!

alerts!in!the!environment!(Andre,!2015).!These!credential!“secrets”!must!be!used!by!

the!orchestration!systems,!but!not!available!to!anyone!with!access!to!the!code!

repositories,!enabling!untraceable!administrative!actions!and!greatly!increasing!the!

potential!for!exploitation.!!

Secrets!Management!systems!aim!to!roleWbased!access!control!and!auditability!to!

the!DevOps!system!(Lawler,!2015),!while!preserving!the!automation!and!lack!of!

human!intervention!that!is!key!to!continuous!deployment!(Gilman,!2015).!

Configuration!management!systems!like!Chef!and!Puppet!provide!their!own!

solutions!for!protecting!secrets!stored!within!the!infrastructure!code!using!publicW

key!encryption.!!While!this!meets!the!goal!of!hashing!or!encrypting!stored!

passwords!(Cole!&!Terala,!2015),!they!lack!more!advanced!features!such!as!roleW

based!controlled!access!to!the!secrets,!or!full!featured!support!for!rotating!

passwords!and!SSH!keys.!!–!for!example,!not!every!server!managed!by!Puppet!needs!

to!access!the!PII!database!–!In the idealized DevOps environment, no individual 

developer or administrator should be SSHing into a system at all (Parsons, 2014); a 

popular quote from Piston Cloud CEO Joshua McKenty reads “OpenStack is a system for 

managing your servers like cattle -- you number them, and when they get sick and you 

have to shoot them in the head, the herd can keep moving. It takes a family of three to 

care for a single puppy, but a few cowboys can drive tens of thousands of cows over great 

distances, all while drinking whiskey.”!Following!this!model,!problematic application 



!

Alyssa!Robinson,!lyssanr@yahoo.com!

12!

servers are simply killed off in response to an alert and the orchestration engine spins up 

servers to replace the lost capacity. If this were always the case, the goal of minimizing 

administrative privileges (Cole & Terala, 2015) would be simple to achieve. The reality, 

however, is rarely that simple, and there will be times that developers and sysadmins 

need access to determine root cause for a recurring issue. Secrets management systems 

like Hashicorp’s Vault and Conjur’s SSH Management solution provide methods to 

automatically provision temporary access via one-time passwords or SSH keys and to 

enable SSH key rotation for service accounts. When an application server needs direct 

access for debugging, orchestration services can quarantine the problematic system, 

removing it from the set of “production” servers used by customers and then 

automatically grant the necessary access. !

!
Figure'7:'One>time'access'for'debug 

Conclusion+

! The!success!of!the!DevOps!movement!means!that!DevOps!practices!are!being!

adopted!by!diverse!organizations,!from!small!startups!to!Fortune!500!companies.!As!

the!movement!matures,!security!is!no!longer!an!afterthought!and!consensus!is!

building!about!the!right!ways!to!integrate!security!best!practices!into!the!DevOps!

cultural!and!technical!evolution.!In!the!last!year!alone,!there!has!been!an!explosion!

in!the!numbers!of!tools!available!to!help!secure!DevOps!environments,!from!

repository!firewalls!(Weeks,!2015)!to!new!application!scanners!and!security!

functional!test!infrastructures!(DeVries,!2015),!to!new!SSH!Management!solutions!

and!the!ability!to!scan!Docker!containers!(Doran,!2015).!Contained!within!the!

DevOps!philosophy!and!the!typical!microservices!architecture!is!the!freedom!to!



!

Alyssa!Robinson,!lyssanr@yahoo.com!

13!

choose!the!tools!that!are!best!for!a!particular!culture!and!environment!(Newman,!

2015)!and!every!month!there!are!more!tools!to!choose!from.!!

! The!cultural!and!technical!practices!that!comprise!the!DevOps!shift!have!both!

advantages!and!disadvantages!when!implementing!a!Critical!ControlsWbased!control!

infrastructure.!In!a!regulated!environment,!DevOps!teams!will!need!to!involve!

security!early!in!the!process!to!ensure!a!smooth!deployment!for!new!features;!the!

opportunity!for!greater!collaboration!with!security!teams!can!only!be!a!positive!

step.!The!glut!of!new!security!tools!adapted!for!DevOps!environments!has!the!ability!

to!provide!new!levels!of!visibility!and!automation!for!implementing!security!

controls.!Such!new!tools!may!not!be!fully!mature,!however,!and!may!have!flaws!or!

lack!features!present!in!more!established!products.!There!is!also!a!lack!of!precedent!

when!it!comes!to!using!such!tools!for!audit!against!security!standards.!As!the!shift!

towards!DevOps!continues,!we!can!expect!increased!maturity!for!DevOps!security!

tools!and!best!practices!that!should!make!implementation!of!these!important!

controls!easier!in!the!future.!!

References+

Amazon. (2011, November). AWS Acceptable Use Policy. Retrieved from 

 https://aws.amazon.com/aup/ 

Andre, J. (2015, February). Who Watches the Watchmen? Securing Configuration 

 Management Systems. Retrieved from http://blog.threatstack.com/who-watches-t

 he-watchmen-securing-configuration-management-systems 

Barr, J. (2014, November). Track AWS Resource Configurations With AWS Config | 

 AWS Official Blog. Retrieved from https://aws.amazon.com/blogs/aws/track-

 aws-with-config/ 

Belis, E. (2015, November). DOES15 - Ed Bellis - Security as Code A SecDevOps Use 

 Case [Video file]. Retrieved from 

 https://www.youtube.com/watch?v=JQ0yLU26j5I 

Cole, E. & Tarala, J..(2015). Implementing & Auditing the Critical Security Controls – In 

 Depth. The SANS Institute. 

Davis, J., & Daniels, K. (2015) Effective DevOps. Sebastopol: O’Reilly Media, Inc. 



!

Alyssa!Robinson,!lyssanr@yahoo.com!

14!

DeLuccia, J., Duval, P., Kapadia, M., Kim, G., Mangot, D., Pal, T., Wickett, J., & Yoo, J. 

 (2015) An Unlikely Union:  DevOps and Audit. Portland: IT Revolution. 

 Retrieved from 

 http://devopsenterprise.io/media/DOES_forum_security_102015.pdf 

DeLuccia, J., Gallimore, J., Kim, G., & Miller, B. (2015). DevOps Audit Defense Toolkit. 

 Retrieved from 

 http://images.itrevolution.com/documents/DevOps_Audit_Defense_Toolkit_v1.0.

 pdf 

DevOps Forum. (2015). Mythbusting DevOps in the Enterprise. Retrieved from IT 

 Revolution website: 

 http://devopsenterprise.io/media/DOES_forum_addressing_culture_102015.pdf 

De Vries, S. (2015, April). Automated Security Testing in a Continuous Delivery 

 PipelineDevOps.com. Retrieved from http://devops.com/2015/04/06/automated-

 security-testing-continuous-delivery-pipeline 

Doran, J. (2015, July). Is your Docker container secure? Ask Vulnerability Advisor! -

 BlueMix Dev. Retrieved from 

 https://developer.ibm.com/bluemix/2015/07/02/vulnerability-advisor/ 

Dunn, J. (2014, September). Detecting & Repairing Shellshock with Chef | Chef Blog. 

 Retrieved from https://www.chef.io/blog/2014/09/30/detecting-repairing-

 shellshock-with-chef/ 

Edwards, D. (2012, November). The History Of DevOps - IT Revolution IT 

 Revolution[Video file]. Retrieved from http://itrevolution.com/the-history-of-

 devops/ 

Fowler, M. (2010, March). BlueGreenDeployment. Retrieved from 

 http://martinfowler.com/bliki/BlueGreenDeployment.html 

Fowler, M. (2013, May). ContinuousDelivery. Retrieved from 

 http://martinfowler.com/bliki/ContinuousDelivery.html 

Gartner (2015, March). DevOps Will Evolve From a Niche to a Mainstream Strategy 

 Employed by 25 Percent of Global 2000 Organizations. (n.d.). Retrieved from 

 http://www.gartner.com/newsroom/id/2999017 



!

Alyssa!Robinson,!lyssanr@yahoo.com!

15!

Gilpin, K. (2015, April). What is a DevOps Secrets Server?. Retrieved from 

 https://blog.conjur.net/what-is-a-devops-secrets-server 

Hay, A. (2013, May). Automating Secure Server Baselines with Chef. Paper presented at 

 ChefConf. 

Humble, J. (2014, February). The case for continuous delivery - O'Reilly Media. 

 Retrieved from https://www.oreilly.com/ideas/the-case-for-continuous-delivery 

Humble, J., & Farley, D. (2011). Continuous delivery. Upper Saddle River, NJ: Addison-

 Wesley 

Linthicum, D. (2014, October). Devops has moved out of the cloud | InfoWorld. 

 Retrieved from http://www.infoworld.com/article/2836372/cloud-

 computing/does-devops-drive-the-cloud-or-vice-versa.html 

Loukides, M. (2015, February). What is DevOps (yet again)? - O'Reilly Media. Retrieved 

 from https://www.oreilly.com/ideas/what-is-devops-yet-again 

Minjar, & Amazon Web Services. (2015). ITIL Asset and Configuration Management in 

 the Cloud. Retrieved from 

 http://www.minjar.com/documents/resources/AWS_asset_configuration_manage

 ment_whitepaper.pdf 

Netwirx. (2015, December). Security Concerns and Lack of Visibility Hinder Cloud 

 Adoption, Say 65% of IT Pros. Retrieved from 

 http://www.netwrix.com/netwrix_reveals_security_concerns_in_cloud.html 

Newman, S. (2015). Building microservices: Designing fine-grained systems. Sebastopol: 

 O'Reilly. 

Pais, M. (2015, November). Speeding and Scaling the DevOps Enterprise - IT Revolution 

 IT Revolution. Retrieved from http://itrevolution.com/speeding-scaling-devops-

 enterprise/ 

Parsons, T. (2014, August). 5 Ways to Make Your DevOps Team More Efficient | 

 Logentries. Retrieved from https://blog.logentries.com/2014/08/make-your-

 devops-team-more-efficient/ 

Petazzoni, J. (2015, May). Someone said that 30% of the images on the Docker Registry 

 contain vulnerabilities. Retrieved from 

 https://jpetazzo.github.io/2015/05/27/docker-images-vulnerabilities/ 



!

Alyssa!Robinson,!lyssanr@yahoo.com!

16!

Puppet Labs. (2015). 2015 State of Devops Report. 

Reid, J. (2014). DevOps in Practice. Retrieved from O'Reilly website: 

 http://www.oreilly.com/webops-perf/free/devops-in-practice.csp 

Smith, S. (2014, April). Atlassian Blogs: Practical Continuous Deployment. Retrieved 

 from http://blogs.atlassian.com/2014/04/practical-continuous-deployment/ 

Suleman, A. (2015). 8 Proven Real-World Ways to Use Docker. Retrieved from 

 https://www.airpair.com/docker/posts/8-proven-real-world-ways-to-use-docker 

Riley, C. (2014, May). Meet Infrastructure as Code - DevOps.com Retrieved from 

 http://devops.com/2014/05/05/meet-infrastructure-code/ 

Timberman, J. (2015, April). Chef Audit Mode: CIS Benchmarks | Chef Blog. Retrieved 

 from https://www.chef.io/blog/2015/04/09/chef-audit-mode-cis-benchmarks/ 

Vadalasetty, S. (2003, October). Security Concerns in Using Open Source 

Software for  Enterprise Requirements. Retrieved from 

https://www.sans.org/reading-room/whitepapers/awareness/security-concerns-

open-source-software-enterprise-requirements-1305 

Trustwave. (2015). Trustwave Global Security Report. Retrieved from 

 https://www2.trustwave.com/rs/815-RFM-

 693/images/2015_TrustwaveGlobalSecurityReport.pdf 

Weeks, D. (2015, December). DevOpsSec: Survival is Not Mandatory - 

 DevOps.comDevOps.com. Retrieved from 

 http://devops.com/2015/12/08/devopssec-survival-not-mandatory/ 

Zeltser, L. (2015, December). Security Risks and Benefits of Docker Application 

 Containers. Retrieved from https://zeltser.com/security-risks-and-benefits-of-

 docker-application/ 
 

 
 


